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Abstract

Dense retrieval methods have shown great
promise over sparse retrieval methods in a
range of NLP problems. Among them, dense
phrase retrieval—the most fine-grained re-
trieval unit—is appealing because phrases can
be directly used as the output for question an-
swering and slot filling tasks.1 In this work,
we follow the intuition that retrieving phrases
naturally entails retrieving larger text blocks
and study whether phrase retrieval can serve
as the basis for coarse-level retrieval includ-
ing passages and documents. We first observe
that a dense phrase-retrieval system, without
any retraining, already achieves better passage
retrieval accuracy (+3-5% in top-5 accuracy)
compared to passage retrievers, which also
helps achieve superior end-to-end QA perfor-
mance with fewer passages. Then, we pro-
vide an interpretation for why phrase-level su-
pervision helps learn better fine-grained entail-
ment compared to passage-level supervision,
and also show that phrase retrieval can be im-
proved to achieve competitive performance in
document-retrieval tasks such as entity link-
ing and knowledge-grounded dialogue. Fi-
nally, we demonstrate how phrase filtering
and vector quantization can reduce the size
of our index by 4-10x, making dense phrase
retrieval a practical and versatile solution in
multi-granularity retrieval.2

1 Introduction

Dense retrieval aims to retrieve relevant contexts
from a large corpus, by learning dense representa-
tions of queries and text segments. Recently, dense
retrieval of passages (Lee et al., 2019; Karpukhin
et al., 2020; Xiong et al., 2021) has been shown

*This work was done when JL worked as a visiting re-
search scholar at Princeton University.

1Following previous work (Seo et al., 2018, 2019), the term
phrase denotes any contiguous text segment up to L words,
which is not necessarily a linguistic phrase (see Section 2).

2Our code and models are available at https://
github.com/princeton-nlp/DensePhrases.
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Figure 1: Comparison of passage representations from
DPR (Karpukhin et al., 2020) and DensePhrases (Lee
et al., 2021). Unlike using a single vector for each pas-
sage, DensePhrases represents each passage with mul-
tiple phrase vectors and the score of a passage can be
computed by the maximum score of phrases within it.

to outperform traditional sparse retrieval methods
such as TF-IDF and BM25 in a range of knowledge-
intensive NLP tasks (Petroni et al., 2021), includ-
ing open-domain question answering (QA) (Chen
et al., 2017), entity linking (Wu et al., 2020), and
knowledge-grounded dialogue (Dinan et al., 2019).

One natural design choice of these dense re-
trieval methods is the retrieval unit. For instance,
the dense passage retriever (DPR) (Karpukhin et al.,
2020) encodes a fixed-size text block of 100 words
as the basic retrieval unit. On the other extreme,
recent work (Seo et al., 2019; Lee et al., 2021)
demonstrates that phrases can be used as a retrieval
unit. In particular, Lee et al. (2021) show that
learning dense representations of phrases alone can
achieve competitive performance in a number of
open-domain QA and slot filling tasks. This is par-
ticularly appealing since the phrases can directly
serve as the output, without relying on an additional
reader model to process text passages.

In this work, we draw on an intuitive motiva-
tion that every single phrase is embedded within
a larger text context and ask the following ques-
tion: If a retriever is able to locate phrases, can

https://github.com/princeton-nlp/DensePhrases
https://github.com/princeton-nlp/DensePhrases
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we directly make use of it for passage and even
document retrieval as well? We formulate phrase-
based passage retrieval, in which the score of a
passage is determined by the maximum score of
phrases within it (see Figure 1 for an illustration).
By evaluating DensePhrases (Lee et al., 2021) on
popular QA datasets, we observe that it achieves
competitive or even better passage retrieval accu-
racy compared to DPR, without any re-training or
modification to the original model (Table 1). The
gains are especially pronounced for top-k accu-
racy when k is smaller (e.g., 5), which also helps
achieve strong open-domain QA accuracy with a
much smaller number of passages as input to a gen-
erative reader model (Izacard and Grave, 2021b).

To better understand the nature of dense retrieval
methods, we carefully analyze the training ob-
jectives of phrase and passage retrieval methods.
While the in-batch negative losses in both mod-
els encourage them to retrieve topically relevant
passages, we find that phrase-level supervision in
DensePhrases provides a stronger training signal
than using hard negatives from BM25, and helps
DensePhrases retrieve correct phrases, and hence
passages. Following this positive finding, we fur-
ther explore whether phrase retrieval can be ex-
tended to retrieval of coarser granularities, or other
NLP tasks. Through fine-tuning of the query en-
coder with document-level supervision, we are able
to obtain competitive performance on entity link-
ing (Hoffart et al., 2011) and knowledge-grounded
dialogue retrieval (Dinan et al., 2019) in the KILT
benchmark (Petroni et al., 2021).

Finally, we draw connections to multi-vector pas-
sage encoding models (Khattab and Zaharia, 2020;
Luan et al., 2021), where phrase retrieval models
can be viewed as learning a dynamic set of vectors
for each passage. We show that a simple phrase
filtering strategy learned from QA datasets gives
us a control over the trade-off between the number
of vectors per passage and the retrieval accuracy.
Since phrase retrievers encode a larger number of
vectors, we also propose a quantization-aware fine-
tuning method based on Optimized Product Quan-
tization (Ge et al., 2013), reducing the size of the
phrase index from 307GB to 69GB (or under 30GB
with more aggressive phrase filtering) for full En-
glish Wikipedia, without any performance degrada-
tion. This matches the index size of passage retriev-
ers and makes dense phrase retrieval a practical and
versatile solution for multi-granularity retrieval.

2 Background

Passage retrieval Given a set of documents D,
passage retrieval aims to provide a set of relevant
passages for a question q. Typically, each docu-
ment in D is segmented into a set of disjoint pas-
sages and we denote the entire set of passages in
D as P = {p1, . . . , pM}, where each passage can
be a natural paragraph or a fixed-length text block.
A passage retriever is designed to return top-k pas-
sages Pk ⊂ P with the goal of retrieving passages
that are relevant to the question. In open-domain
QA, passages are considered relevant if they con-
tain answers to the question. However, many other
knowledge-intensive NLP tasks (e.g., knowledge-
grounded dialogue) provide human-annotated evi-
dence passages or documents.

While traditional passage retrieval models rely
on sparse representations such as BM25 (Robert-
son and Zaragoza, 2009), recent methods show
promising results with dense representations of
passages and questions, and enable retrieving pas-
sages that may have low lexical overlap with ques-
tions. Specifically, Karpukhin et al. (2020) intro-
duce DPR that has a passage encoder Ep(·) and
a question encoder Eq(·) trained on QA datasets
and retrieves passages by using the inner product
as a similarity function between a passage and a
question:

f(p, q) = Ep(p)
>Eq(q). (1)

For open-domain QA where a system is required to
provide an exact answer string a, the retrieved top
k passages Pk are subsequently fed into a reading
comprehension model such as a BERT model (De-
vlin et al., 2019), and this is called the retriever-
reader approach (Chen et al., 2017).

Phrase retrieval While passage retrievers require
another reader model to find an answer, Seo et al.
(2019) introduce the phrase retrieval approach that
encodes phrases in each document and performs
similarity search over all phrase vectors to directly
locate the answer. Following previous work (Seo
et al., 2018, 2019), we use the term ‘phrase’ to
denote any contiguous text segment up to L words
(including single words), which is not necessarily a
linguistic phrase and we take phrases up to length
L = 20. Given a phrase s(p) from a passage p,
their similarity function f is computed as:

f(s(p), q) = Es(s
(p))>Eq(q), (2)
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Natural Questions TriviaQA

Retriever Top-1 Top-5 Top-20 MRR@20 P@20 Top-1 Top-5 Top-20 MRR@20 P@20

DPR♦ 46.0 68.1 79.8 55.7 16.5 54.4† - 79.4‡ - -
DPR♠ 44.2 66.8 79.2 54.2 17.7 54.6 70.8 79.5 61.7 30.3

DensePhrases♦ 50.1 69.5 79.8 58.7 20.5 - - - - -
DensePhrases♠ 51.1 69.9 78.7 59.3 22.7 62.7 75.0 80.9 68.2 38.4

Table 1: Open-domain QA passage retrieval results. We retrieve top k passages from DensePhrases using Eq. (3).
We report top-k passage retrieval accuracy (Top-k), mean reciprocal rank at k (MRR@k), and precision at k (P@k).
♦: trained on each dataset independently. ♠: trained on multiple open-domain QA datasets. See §3.1 for more
details. †: (Yang and Seo, 2020). ‡: (Karpukhin et al., 2020).

where Es(·) and Eq(·) denote the phrase encoder
and the question encoder, respectively. Since this
formulates open-domain QA purely as a maxi-
mum inner product search (MIPS), it can drasti-
cally improve end-to-end efficiency. While previ-
ous work (Seo et al., 2019; Lee et al., 2020) relied
on a combination of dense and sparse vectors, Lee
et al. (2021) demonstrate that dense representations
of phrases alone are sufficient to close the perfor-
mance gap with retriever-reader systems. For more
details on how phrase representations are learned,
we refer interested readers to Lee et al. (2021).

3 Phrase Retrieval for Passage Retrieval

Phrases naturally have their source texts from
which they are extracted. Based on this fact,
we define a simple phrase-based passage retrieval
strategy, where we retrieve passages based on the
phrase-retrieval score:

f̃(p, q) := max
s(p)∈S(p)

Es(s
(p))>Eq(q), (3)

where S(p) denotes the set of phrases in the pas-
sage p. In practice, we first retrieve a slightly larger
number of phrases, compute the score for each pas-
sage, and return top k unique passages.3 Based
on our definition, phrases can act as a basic re-
trieval unit of any other granularity such as sen-
tences or documents by simply changing S(p) (e.g.,
s(d) ∈ S(d) for a document d). Note that, since
the cost of score aggregation is negligible, the in-
ference speed of phrase-based passage retrieval is
the same as for phrase retrieval, which is shown
to be efficient in Lee et al. (2021). In this section,
we evaluate the passage retrieval performance (Eq.
(3)) and also how phrase-based passage retrieval
can contribute to end-to-end open-domain QA.

3In most cases, retrieving 2k phrases is sufficient for ob-
taining k unique passages. If not, we try 4k and so on.

3.1 Experiment: Passage Retrieval

Datasets We use two open-domain QA datasets:
Natural Questions (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017), following the stan-
dard train/dev/test splits for the open-domain QA
evaluation. For both models, we use the 2018-12-
20 Wikipedia snapshot. To provide a fair com-
parison, we use Wikipedia articles pre-processed
for DPR, which are split into 21-million text
blocks and each text block has exactly 100 words.
Note that while DPR is trained in this setting,
DensePhrases is trained with natural paragraphs.4

Models For DPR, we use publicly available check-
points5 trained on each dataset (DPR♦) or multiple
QA datasets (DPR♠), which we find to perform
slightly better than the ones reported in Karpukhin
et al. (2020). For DensePhrases, we train it on Nat-
ural Questions (DensePhrases♦) or multiple QA
datasets (DensePhrases♠) with the code provided
by the authors.6 Note that we do not make any
modification to the architecture or training methods
of DensePhrases and achieve similar open-domain
QA accuracy as reported. For phrase-based passage
retrieval, we compute Eq. (3) with DensePhrases
and return top k passages.

Metrics Following previous work on passage re-
trieval for open-domain QA, we measure the top-k
passage retrieval accuracy (Top-k), which denotes
the proportion of questions whose top k retrieved
passages contain at least one of the gold answers.

4We expect DensePhrases to achieve even higher perfor-
mance if it is re-trained with 100-word text blocks. We leave
it for future investigation.

5https://github.com/facebookresearch/DPR.
6DPR♠ is trained on NaturalQuestions, TriviaQA, Curat-

edTREC (Baudiš and Šedivỳ, 2015), and WebQuestions (Be-
rant et al., 2013). DensePhrases♠ additionally includes
SQuAD (Rajpurkar et al., 2016), although it does not con-
tribute to Natural Questions and TriviaQA much.

https://github.com/facebookresearch/DPR
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To further characterize the behavior of each system,
we also include the following evaluation metrics:
mean reciprocal rank at k (MRR@k) and precision
at k (P@k). MRR@k is the average reciprocal
rank of the first relevant passage (that contains an
answer) in the top k passages. Higher MRR@k
means relevant passages appear at higher ranks.
Meanwhile, P@k is the average proportion of rele-
vant passages in the top k passages. Higher P@k
denotes that a larger proportion of top k passages
contains the answers.

Results As shown in Table 1, DensePhrases
achieves competitive passage retrieval accuracy
with DPR, while having a clear advantage on
top-1 or top-5 accuracy for both Natural Ques-
tions (+6.9% Top-1) and TriviaQA (+8.1% Top-1).
Although the top-20 (and top-100, which is not
shown) accuracy is similar across different models,
MRR@20 and P@20 reveal interesting aspects of
DensePhrases—it ranks relevant passages higher
and provides a larger number of correct passages.
Our results suggest that DensePhrases can also re-
trieve passages very accurately, even though it was
not explicitly trained for that purpose. For the rest
of the paper, we mainly compare the DPR♠ and
DensePhrases♠ models, which were both trained
on multiple QA datasets.

3.2 Experiment: Open-domain QA

Recently, Izacard and Grave (2021b) proposed the
Fusion-in-Decoder (FiD) approach where they feed
top 100 passages from DPR into a generative model
T5 (Raffel et al., 2020) and achieve the state-of-
the-art on open-domain QA benchmarks. Since
their generative model computes the hidden states
of all tokens in 100 passages, it requires large
GPU memory and Izacard and Grave (2021b) used
64 Tesla V100 32GB for training.

In this section, we use our phrase-based passage
retrieval with DensePhrases to replace DPR in FiD
and see if we can use a much smaller number of pas-
sages to achieve comparable performance, which
can greatly reduce the computational requirements.
We train our model with 4 24GB RTX GPUs for
training T5-base, which are more affordable with
academic budgets. Note that training T5-base with
5 or 10 passages can also be done with 11GB GPUs.
We keep all the hyperparameters the same as in
Izacard and Grave (2021b).7

7We also accumulate gradients for 16 steps to match the
effective batch size of the original work.

NaturalQ TriviaQA
Model Dev Test Test

ORQA (Lee et al., 2019) - 33.3 45.0
REALM (Guu et al., 2020) - 40.4 -
DPR (reader: BERT-base) - 41.5 56.8
DensePhrases - 41.3 53.5

FiD with DPR (Izacard and Grave, 2021b)

Reader: T5-base k = 5 37.8 - -
k = 10 42.3 - -
k = 25 45.3 - -
k = 50 45.7 - -
k = 100 46.5 48.2 65.0

FiD with DensePhrases (ours)

Reader: T5-base k = 5 44.2 45.9 59.5
k = 10 45.5 45.9 61.0
k = 25 46.4 47.2 63.4
k = 50 47.2 47.9 64.5

Table 2: Open-domain QA results. We report exact
match (EM) of each model by feeding top k passages
into a T5-base model. DensePhrases can greatly reduce
the computational cost of running generative reader
models while having competitive performance.

Results As shown in Table 2, using DensePhrases
as a passage retriever achieves competitive per-
formance to DPR-based FiD and significantly
improves upon the performance of original
DensePhrases (NQ = 41.3 EM without a reader).
Its better retrieval quality at top-k for smaller k in-
deed translates to better open-domain QA accuracy,
achieving +6.4% gain compared to DPR-based FiD
when k = 5. To obtain similar performance with
using 100 passages in FiD, DensePhrases needs
fewer passages (k = 25 or 50), which can fit in
GPUs with smaller RAM.

4 A Unified View of Dense Retrieval

As shown in the previous section, phrase-based
passage retrieval is able to achieve competitive
passage retrieval accuracy, despite that the mod-
els were not explicitly trained for that. In this
section, we compare the training objectives of
DPR and DensePhrases in detail and explain how
DensePhrases learns passage retrieval.

4.1 Training Objectives

Both DPR and DensePhrases set out to learn a sim-
ilarity function f between a passage or phrase and
a question. Passages and phrases differ primarily
in characteristic length, so we refer to either as
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Figure 2: Comparison of training objectives of DPR and DensePhrases. While both models use in-batch negatives,
DensePhrases use in-passage negatives (phrases) compared to BM25 hard-negative passages in DPR. Note that
each phrase in DensePhrases can directly serve as an answer to open-domain questions.

a retrieval unit x.8 DPR and DensePhrases both
adopt a dual-encoder approach with inner product
similarity as shown in Eq. (1) and (2), and they
are initialized with BERT (Devlin et al., 2019) and
SpanBERT (Joshi et al., 2020), respectively.

These dual-encoder models are then trained with
a negative log-likelihood loss for discriminating
positive retrieval units from negative ones:

L = − log
ef(x

+,q)

ef(x+,q) +
∑

x−∈X−
ef(x−,q)

, (4)

where x+ is the positive phrase or passage corre-
sponding to question q, and X− is a set of negative
examples. The choice of negatives is critical in
this setting and both DPR and DensePhrases make
important adjustments.

In-batch negatives In-batch negatives are a com-
mon way to define X−, since they are available at
no extra cost when encoding a mini-batch of exam-
ples. Specifically, in a mini-batch of B examples,
we can add B − 1 in-batch negatives for each posi-
tive example. Since each mini-batch is randomly
sampled from the set of all training passages, in-
batch negative passages are usually topically nega-
tive, i.e., models can discriminate between x+ and
X− based on their topic only.

Hard negatives Although topic-related features
are useful in identifying broadly relevant passages,
they often lack the precision to locate the exact
passage containing the answer in a large corpus.

8Note that phrases may overlap, whereas passages are
usually disjoint segments with each other.

Karpukhin et al. (2020) propose to use additional
hard negatives which have a high BM25 lexical
overlap with a given question but do not contain the
answer. These hard negatives are likely to share a
similar topic and encourage DPR to learn more fine-
grained features to rank x+ over the hard negatives.
Figure 2 (left) shows an illustrating example.

In-passage negatives While DPR is limited to
use positive passages x+ which contain the an-
swer, DensePhrases is trained to predict that the
positive phrase x+ is the answer. Thus, the fine-
grained structure of phrases allows for another
source of negatives, in-passage negatives. In par-
ticular, DensePhrases augments the set of nega-
tives X− to encompass all phrases within the same
passage that do not express the answer.9 See Fig-
ure 2 (right) for an example. We hypothesize that
these in-passage negatives achieve a similar effect
as DPR’s hard negatives: They require the model to
go beyond simple topic modeling since they share
not only the same topic but also the same context.
Our phrase-based passage retriever might benefit
from this phrase-level supervision, which has al-
ready been shown to be useful in the context of
distilling knowledge from reader to retriever (Izac-
ard and Grave, 2021a; Yang and Seo, 2020).

4.2 Topical vs. Hard Negatives
To address our hypothesis, we would like to study
how these different types of negatives used by DPR
and DensePhrases affect their reliance on topical

9Technically, DensePhrases treats start and end representa-
tions of phrases independently and use start (or end) represen-
tations other than the positive one as negatives.
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Figure 3: Comparison of DPR and DensePhrases on
NQ (dev) with Ltopic and Lhard. Starting from each
model trained with in-batch negatives (in-batch), we
show the effect of using hard negatives (+BM25), in-
passage negatives (+in-passage), as well as training on
multiple QA datasets (+multi. dataset). The x-axis is
in log-scale for better visualization. For both metrics,
lower numbers are better.

and fine-grained entailment cues. We character-
ize their passage retrieval based on two metrics
(losses): Ltopic and Lhard. We use Eq. (4) to define
both Ltopic and Lhard, but use different sets of neg-
atives X−. For Ltopic, X− contains passages that
are topically different from the gold passage—In
practice, we randomly sample passages from En-
glish Wikipedia. For Lhard, X− uses negatives con-
taining topically similar passages, such that Lhard
estimates how accurately models locate a passage
that contains the exact answer among topically sim-
ilar passages. From a positive passage paired with
a question, we create a single hard negative by re-
moving the sentence that contains the answer.10 In
our analysis, both metrics are estimated on the Nat-
ural Questions development set, which provides a
set of questions and (gold) positive passages.

Results Figure 3 shows the comparison of DPR
and DensePhrases trained on NQ with the two
losses. For DensePhrases, we compute the pas-
sage score using f̃(p, q) as described in Eq. (3).
First, we observe that in-batch negatives are highly
effective at reducing Ltopic as DensePhrases trained
with only in-passage negatives has a relatively high
Ltopic. Furthermore, we observe that using in-
passage negatives in DensePhrases (+in-passage)
significantly lowers Lhard, even lower than DPR

10While Lhard with this type of hard negatives might favor
DensePhrases, using BM25 hard negatives for Lhard would
favor DPR since DPR was directly trained on BM25 hard
negatives. Nonetheless, we observed similar trends in Lhard
regardless of the choice of hard negatives.

Type D = {p} D = Dsmall

DensePhrases 71.8 61.3

+ BM25 neg. 71.8 60.6
+ Same-phrase neg. 72.1 60.9

Table 3: Effect of using hard negatives in DensePhrases
on the NQ development set. We report EM when a sin-
gle gold passage is given (D = {p}) or 6K passages are
given by gathering all the gold passages from NQ de-
velopment set (D = Dsmall). The two hard negatives do
not give any noticeable improvement in DensePhrases.

that uses BM25 hard negatives (+BM25). Us-
ing multiple datasets (+multi. dataset) further im-
proves Lhard for both models. DPR has gener-
ally better (lower) Ltopic than DensePhrases, which
might be due to the smaller training batch size of
DensePhrases (hence a smaller number of in-batch
negatives) compared to DPR. The results suggest
that DensePhrases relies less on topical features
and is better at retrieving passages based on fine-
grained entailment cues. This might contribute to
the better ranking of the retrieved passages in Ta-
ble 1, where DensePhrases shows better MRR@20
and P@20 while top-20 accuracy is similar.

Hard negatives for DensePhrases? We test two
different kinds of hard negatives in DensePhrases to
see whether its performance can further improve in
the presence of in-passage negatives. For each train-
ing question, we mine for a hard negative passage,
either by BM25 similarity or by finding another pas-
sage that contains the gold-answer phrase, but pos-
sibly with a wrong context. Then we use all phrases
from the hard negative passage as additional hard
negatives in X− along with the existing in-passage
negatives. As shown in Table 3, DensePhrases
obtains no substantial improvements from addi-
tional hard negatives, indicating that in-passage
negatives are already highly effective at producing
good phrase (or passage) representations.

5 Improving Coarse-grained Retrieval

While we showed that DensePhrases implicitly
learns passage retrieval, Figure 3 indicates that
DensePhrases might not be very good for retrieval
tasks where topic matters more than fine-grained
entailment, for instance, the retrieval of a single
evidence document for entity linking. In this sec-
tion, we propose a simple method that can adapt
DensePhrases to larger retrieval units, especially
when the topical relevance is more important.
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Method We modify the query-side fine-tuning
proposed by Lee et al. (2021), which drastically
improves the performance of DensePhrases by re-
ducing the discrepancy between training and infer-
ence time. Since it is prohibitive to update the large
number of phrase representations after indexing,
only the query encoder is fine-tuned over the entire
set of phrases in Wikipedia. Given a question q and
an annotated document set D∗, we minimize:

Ldoc = − log

∑
s∈S̃(q),d(s)∈D∗ e

f(s,q)∑
s∈S̃(q) e

f(s,q)
, (5)

where S̃(q) denotes top k phrases for the question
q, out of the entire set of phrase vectors. To retrieve
coarse-grained text better, we simply check the
condition d(s) ∈ D∗, which means d(s), the source
document of s, is included in the set of annotated
gold documents D∗ for the question. With Ldoc,
the model is trained to retrieve any phrases that
are contained in a relevant document. Note that
d(s) can be changed to reflect any desired level of
granularity such as passages.

Datasets We test DensePhrases trained with Ldoc
on entity linking (Hoffart et al., 2011; Guo and Bar-
bosa, 2018) and knowledge-grounded dialogue (Di-
nan et al., 2019) tasks in KILT (Petroni et al.,
2021). Entity linking contains three datasets:
AIDA CoNLL-YAGO (AY2) (Hoffart et al., 2011),
WNED-WIKI (WnWi) (Guo and Barbosa, 2018),
and WNED-CWEB (WnCw) (Guo and Barbosa,
2018). Each query in entity linking datasets con-
tains a named entity marked with special tokens
(i.e., [START_ENT], [END_ENT]), which need
to be linked to one of the Wikipedia articles. For
knowledge-grounded dialogue, we use Wizard of
Wikipedia (WoW) (Dinan et al., 2019) where each
query consists of conversation history, and the gen-
erated utterances should be grounded in one of the
Wikipedia articles. We follow the KILT guidelines
and evaluate the document (i.e., Wikipedia article)
retrieval performance of our models given each
query. We use R-precision, the proportion of suc-
cessfully retrieved pages in the top R results, where
R is the number of distinct pages in the provenance
set. However, in the tasks considered, R-precision
is equivalent to precision@1, since each question
is annotated with only one document.

Models DensePhrases is trained with the origi-
nal query-side fine-tuning loss (denoted as Lphrase)
or with Ldoc as described in Eq. (5). When

Entity Linking Dialogue
Model AY2 WnWi WnCw WoW

Retriever Only

TF-IDF 3.7 0.2 2.1 49.0
DPR 1.8 0.3 0.5 25.5
DensePhrases-Lphrase 7.7 12.5 6.4 -
DensePhrases-Ldoc 61.6 32.1 37.4 47.0
DPR♣ 26.5 4.9 1.9 41.1
DensePhrases-Ldoc

♣ 68.4 47.5 47.5 55.7

Retriever + Additional Components

RAG 72.6 48.1 47.6 57.8
BLINK + flair 81.5 80.2 68.8 -

Table 4: Results on the KILT test set. We report page-
level R-precision on each task, which is equivalent to
precision@1 on these datasets. ♣: Multi-task models.

DensePhrases is trained with Lphrase, it labels any
phrase that matches the title of gold document as
positive. After training, DensePhrases returns the
document that contains the top passage. For base-
line retrieval methods, we report the performance
of TF-IDF and DPR from Petroni et al. (2021).
We also include a multi-task version of DPR and
DensePhrases, which uses the entire KILT training
datasets.11 While not our main focus of compari-
son, we also report the performance of other base-
lines from Petroni et al. (2021), which uses genera-
tive models (e.g., RAG (Lewis et al., 2020)) or task-
specific models (e.g., BLINK (Wu et al., 2020),
which has additional entity linking pre-training).
Note that these methods use additional compo-
nents such as a generative model or a cross-encoder
model on top of retrieval models.

Results Table 4 shows the results on three entity
linking tasks and a knowledge-grounded dialogue
task. On all tasks, we find that DensePhrases with
Ldoc performs much better than DensePhrases with
Lphrase and also matches the performance of RAG
that uses an additional large generative model to
generate the document titles. Using Lphrase does
very poorly since it focuses on phrase-level entail-
ment, rather than document-level relevance. Com-
pared to the multi-task version of DPR (i.e., DPR♣),
DensePhrases-Ldoc

♣ can be easily adapted to non-
QA tasks like entity linking and generalizes better
on tasks without training sets (WnWi, WnCw).

11We follow the same steps described in Petroni et al. (2021)
for training the multi-task version of DensePhrases.
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6 DensePhrases as a Multi-Vector
Passage Encoder

In this section, we demonstrate that DensePhrases
can be interpreted as a multi-vector passage en-
coder, which has recently been shown to be very
effective for passage retrieval (Luan et al., 2021;
Khattab and Zaharia, 2020). Since this type of
multi-vector encoding models requires a large disk
footprint, we show that we can control the number
of vectors per passage (and hence the index size)
through filtering. We also introduce quantization
techniques to build more efficient phrase retrieval
models without a significant performance drop.

6.1 Multi-Vector Encodings

Since we represent passages not by a single vec-
tor, but by a set of phrase vectors (decomposed
as token-level start and end vectors, see Lee et al.
(2021)), we notice similarities to previous work,
which addresses the capacity limitations of dense,
fixed-length passage encodings. While these ap-
proaches store a fixed number of vectors per pas-
sage (Luan et al., 2021; Humeau et al., 2020) or
all token-level vectors (Khattab and Zaharia, 2020),
phrase retrieval models store a dynamic number of
phrase vectors per passage, where many phrases
are filtered by a model trained on QA datasets.

Specifically, Lee et al. (2021) trains a binary clas-
sifier (or a phrase filter) to filter phrases based on
their phrase representations. This phrase filter is su-
pervised by the answer annotations in QA datasets,
hence denotes candidate answer phrases. In our ex-
periment, we tune the filter threshold to control the
number of vectors per passage for passage retrieval.

6.2 Efficient Phrase Retrieval

The multi-vector encoding models as well as ours
are prohibitively large since they contain multi-
ple vector representations for every passage in the
entire corpus. We introduce a vector quantization-
based method that can safely reduce the size of our
phrase index, without performance degradation.

Optimized product quantization Since the multi-
vector encoding models are prohibitively large due
to their multiple representations, we further intro-
duce a vector quantization-based method that can
safely reduce the size of our phrase index, without
performance degradation. We use Product Quan-
tization (PQ) (Jegou et al., 2010) where the origi-
nal vector space is decomposed into the Cartesian
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Figure 4: Top-5 passage retrieval accuracy on Nat-
ural Questions (dev) for different index sizes of
DensePhrases. The index size (GB) and the average
number of saved vectors per passage (# vec / p) are
controlled by the filtering threshold τ . For instance,
# vec / p reduces from 28.0 to 5.1 with higher τ , which
also reduces the index size from 69GB to 23GB. OPQ:
Optimized Product Quantization (Ge et al., 2013).

product of subspaces. Using PQ, the memory us-
age of using N number of d-dimensional centroid
vectors reduces from Nd to N1/Md with M sub-
spaces while each database vector requires log2N
bits. Among different variants of PQ, we use Op-
timized Product Quantization (OPQ) (Ge et al.,
2013), which learns an orthogonal matrix R to bet-
ter decompose the original vector space. See Ge
et al. (2013) for more details on OPQ.

Quantization-aware training While this type of
aggressive vector quantization can significantly re-
duce memory usage, it often comes at the cost of
performance degradation due to the quantization
loss. To mitigate this problem, we use quantization-
aware query-side fine-tuning motivated by the re-
cent successes on quantization-aware training (Ja-
cob et al., 2018). Specifically, during query-side
fine-tuning, we reconstruct the phrase vectors using
the trained (optimized) product quantizer, which
are then used to minimize Eq. (5).

6.3 Experimental Results

In Figure 4, we present the top-5 passage retrieval
accuracy with respect to the size of the phrase index
in DensePhrases. First, applying OPQ can reduce
the index size of DensePhrases from 307GB to
69GB, while the top-5 retrieval accuracy is poor
without quantization-aware query-side fine-tuning.
Furthermore, by tuning the threshold τ for the
phrase filter, the number of vectors per each pas-
sage (# vec / p) can be reduced without hurting the
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performance significantly. The performance im-
proves with a larger number of vectors per passage,
which aligns with the findings of multi-vector en-
coding models (Khattab and Zaharia, 2020; Luan
et al., 2021). Our results show that having 8.8
vectors per passage in DensePhrases has similar
retrieval accuracy with DPR.

7 Related Work

Text retrieval has a long history in information re-
trieval, either for serving relevant information to
users directly or for feeding them to computation-
ally expensive downstream systems. While tradi-
tional research has focused on designing heuris-
tics, such as sparse vector models like TF-IDF and
BM25, it has recently become an active area of
interest for machine learning researchers. This was
precipitated by the emergence of open-domain QA
as a standard problem setting (Chen et al., 2017)
and the spread of the retriever-reader paradigm
(Yang et al., 2019; Nie et al., 2019). The inter-
est has spread to include a more diverse set of
downstream tasks, such as fact checking (Thorne
et al., 2018), entity-linking (Wu et al., 2020) or
dialogue generation (Dinan et al., 2019), where
the problems require access to large corpora or
knowledge sources. Recently, REALM (Guu et al.,
2020) and RAG (retrieval-augmented generation)
(Lewis et al., 2020) have been proposed as general-
purpose pre-trained models with explicit access to
world knowledge through the retriever. There has
also been a line of work to integrate text retrieval
with structured knowledge graphs (Sun et al., 2018,
2019; Min et al., 2020). We refer to Lin et al.
(2020) for a comprehensive overview of neural text
retrieval methods.

8 Conclusion

In this paper, we show that phrase retrieval models
also learn passage retrieval without any modifi-
cation. By drawing connections between the ob-
jectives of DPR and DensePhrases, we provide a
better understanding of how phrase retrieval learns
passage retrieval, which is also supported by sev-
eral empirical evaluations on multiple benchmarks.
Specifically, phrase-based passage retrieval has bet-
ter retrieval quality on top k passages when k is
small, and this translates to an efficient use of pas-
sages for open-domain QA. We also show that
DensePhrases can be fine-tuned for more coarse-
grained retrieval units, serving as a basis for any

retrieval unit. We plan to further evaluate phrase-
based passage retrieval on standard information
retrieval tasks such as MS MARCO.
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