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Abstract
Deep reinforcement learning (RL) methods of-
ten require many trials before convergence,
and no direct interpretability of trained poli-
cies is provided. In order to achieve fast
convergence and interpretability for the pol-
icy in RL, we propose a novel RL method
for text-based games with a recent neuro-
symbolic framework called Logical Neural
Network, which can learn symbolic and inter-
pretable rules in their differentiable network.
The method is first to extract first-order log-
ical facts from text observation and external
word meaning network (ConceptNet), then
train a policy in the network with directly in-
terpretable logical operators. Our experimen-
tal results show RL training with the proposed
method converges significantly faster than
other state-of-the-art neuro-symbolic methods
in a TextWorld benchmark.

1 Introduction

Deep reinforcement learning (RL) has been suc-
cessfully applied to many applications, such as
computer games, text-based games, and robot con-
trol applications (Mnih et al., 2015; Narasimhan
et al., 2015; Kimura, 2018; Yuan et al., 2018;
Kimura et al., 2018). However, these methods re-
quire many training trials for converging to the
optimal action policy, and the trained action policy
is not understandable for human operators. This is
because, although the training results are sufficient,
the policy is stored in a black-box deep neural net-
work. These issues become critical problems when
the human operator wants to solve a real-world
problem and verify the trained rules. If the trained
rules are understandable and modifiable, the human
operator can control them and design an action re-
striction. While using a symbolic (logical) format
as representation for stored rules is suitable for
achieving interpretability and quick training, it is
difficult to train the logical rules with a traditional
training approach.

-= Studio =- I am required to announce that you 
are now in the studio. You don't like doors? 
Why not try going north, that entranceway is 
unblocked. You don't like doors? Why not try going 
south, that entranceway is unguarded.
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Figure 1: Overview of the proposed method. The agent
takes a text observation from the environment, and the
first-order logical facts are extracted from an FOL con-
verter that uses a semantic parser, ConceptNet, and his-
tory. The weights (shown by line thickness in this fig-
ure) of the network are updated by these extracted pred-
icate logics. Solid lines show one trained rule; when
the agent finds a direction x and the direction x has not
been visited, the agent takes a “Go x” action. Dashed
lines show the initial connections before training.

In order to train logical rules, a recent neuro-
symbolic framework called the Logical Neural Net-
work (LNN) (Riegel et al., 2020) has been pro-
posed to simultaneously provide key properties of
both the neural network (learning) and the sym-
bolic logic (reasoning). The LNN can train the
symbolic rules with logical functions in the neural
networks by having an end-to-end differentiable
network minimizes a contradiction loss. Every neu-
ron in the LNN has a component for a formula of
weighted real-valued logics from a unique logical
conjunction, disjunction, or negation nodes, and
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then it can calculate the probability and logical
contradiction loss during the inference and train-
ing. At the same time, the trained LNN can extract
obtained logical rules by selecting high weighted
connections that represent the important rules for
an action policy.

In this paper, we propose an action knowledge
acquisition method featuring a neuro-symbolic
LNN framework for the RL algorithm. Through
experiments, we demonstrate the advantages of the
proposed method for real-world problems which
is not logically grounded games such as Blocks
World. Since natural language observation is easier
to convert into logical information than visual or
audio, we tackle text-based interaction games for
verifying the proposed method.

Figure 1 shows an overview of our method. The
observation text is input to a semantic parser to ex-
tract the logical values of each propositional logic.
In this case, the semantic parser finds there are
two exits (north and south). The method then con-
verts first-order logical (predicates) facts from the
propositional logics and categories of each word,
such as ∃x ∈ {south,north}, ⟨find x⟩ = True and
∃x ∈ {east,west}, ⟨find x⟩ = False. These ex-
tracted predicated logics are fed into LNN which
has some conjunction gates and one disjunction
gate. The LNN trains the weights for these connec-
tions by the reward value to obtain the action policy.
The contributions of this paper are as follows.

• The paper describes design and implementa-
tion of a novel neuro-symbolic RL for a text-
based interaction games.

• The paper explains an algorithm to extract
first-order logical facts from given textual ob-
servation by using the agent history and Con-
ceptNet as an external knowledge.

• We observed our proposed method has advan-
tages for faster convergence and interpretabil-
ity than state-of-the-art methods and baselines
by ablation study on the text-based games.

2 Related work

Various prior works have examined RL for text-
based games. LSTM-DQN (Narasimhan et al.,
2015) is an early study on an LSTM-based en-
coder for feature extraction from observation and
Q-learning for action policy. LSTM-DQN++ (Yuan
et al., 2018) extended the exploration and LSTM-
DRQN (Yuan et al., 2018) was proposed for adding

memory units in the action scorer. KG-DQN (Am-
manabrolu and Riedl, 2019) and GATA (Adhikari
et al., 2020) extended the language understand-
ing. LeDeepChef (Adolphs and Hofmann, 2020)
used recurrent feature extraction along with the
A2C (Mnih et al., 2016). CREST (Chaudhury et al.,
2020) was proposed for pruning observation infor-
mation. TWC (Murugesan et al., 2021) was pro-
posed for utilizing common sense reasoning. How-
ever, none of these studies used the neuro-symbolic
approach.

For recent neuro-symbolic RL work, the Neural
Logic Machine (NLM) (Dong et al., 2018) was pro-
posed as a method for combination of deep neural
network and symbolic logic reasoning. It uses a
sequence of multi-layer perceptron layers to deduct
symbolic logics. Rules are combined or separated
during forward propagation, and an output of the
entire architecture represents complicated rules. In
this paper, we compare our method with this NLM.

3 Proposed method

3.1 Problem formulation

As text-based games are sequential decision-
making problems, they can naturally be applied to
RL. These games are partially observable Markov
decision processes (POMDP) (Kaelbling et al.,
1998), where the observation text does not include
the entire information of the environment. For-
mally, the game is a discrete-time POMDP de-
fined by ⟨S,A,T,R,ω,O, γ⟩, where S is a set of
states (st ∈ S), A is a set of actions, T is a set
of transition probabilities, R is a reward function,
ω is a set of observations (ot ∈ ω), O is a set of
conditional observation probabilities, and γ is a
discount factor. Although the state st contains the
complete internal information, the observation ot
does not. In this paper, we follow following two
assumptions: one, the word in each command is
taken from a fixed vocabulary V , and two, each
action command consists of two words (verb and
object). The objective for the agent is to maximize
the expected discounted reward E[∑t γ

trt].

3.2 Method

The proposed method consists of two processes:
converting text into first-order logic (FOL), and
training the action policy in LNN.
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3.2.1 FOL converter

The FOL converter converts a given natu-
ral observation text ot and observation his-
tory (ot−1, ot−2, ...) into first-order logic facts. The
method first converts text into propositional log-
ics li,t by a semantic parser from ot, such as, the
agent understands an opened direction from the cur-
rent room. The agent then retrieves the class type c
of the word meaning in propositional logic li,t by
using ConceptNet (Liu and Singh, 2004) or the net-
work of another word’s definition. For example,
“east” and “west” are classified as a direction-type,
and “coin” is as a money-type. The class is used
for selecting the appropriate LNN for FOL training
and inference.

3.2.2 LNN training

The LNN training component is for obtaining
an action policy from the given FOL logics.
LNN (Riegel et al., 2020) has logical conjunc-
tion (AND), logical disjunction (OR), and nega-
tion (NOT) nodes directly in its neural network.
In our method, we prepare an AND-OR network
for training arbitrary rules from given inputs. As
shown in Fig. 1, we prepare all logical facts at the
first layer, several AND gates (as many as the net-
work is required) at the second layer, and one OR
gate connected to all previous AND gates. During
the training, the reward value is used for adding a
new AND gate, and for updating the weight value
for each connection. More specifically, the method
is storing the replay buffer which has current ob-
servation ot, action at, reward rt, and next ob-
servation ot+1 value. For each training step, the
method selects some replies, and it extracts first-
order logical facts from current observation ot and
action at. The LNN trains by this fact inputs and
reward; that means it forwards from input facts
through LNN, calculates a loss values from the re-
ward value, and optimizes weights in LNN. The
whole training mechanism is similar to DQN (Mnih
et al., 2013), the difference from these is the net-
work. To aid the interpretability of node values, we
define a threshold α ∈ [12 ,1] such that a continuous
value is considered True if the value is in [α,1],
and False if it is in [0,1 − α].

Algorithm 1 describes the whole algorithm for
the proposed method.

Algorithm 1 RL by FOL-LNN

1: procedure REINFORCEMENT LEARNING

2: for t = 1,2,3, ... do
3: ot ← Observe observation
4: lt,i ← Extract logic from ot, ot−1, ...
5: for i = 1,2,3, ... do
6: c← Find class from ConceptNet
7: θc ← Select LNN
8: lct,i ← Convert into FOL logic
9: at,i ← θc(lct,i)

10: end for
11: at ← arg maxat,i
12: rt, ot+1 ← Get reward and next obs
13: Store reply ⟨ot, at, rt, ot+1⟩
14: ∇θ ← Update LNN from reply
15: end for
16: end procedure

4 Experiments

We evaluated the proposed method on a coin-
collector game in TextWorld (Côté et al., 2018)
with three different difficulties (easy, medium, and
hard). The objective of the game is to find and
collect a coin which is placed in a room within con-
nected rooms. Since we tackle a real-world game
problem rather than a symbolic games, we need
to extract logical facts from given natural texts for
neuro-symbolic methods. We prepare the follow-
ing propositional logics as extracting logical facts:
which object is found in the observation, which
direction has already been visited, and which direc-
tion the agent comes from initially. These logical
values are easily calculated from visited room his-
tory and word definitions. In this experiment, we
prepared 26 logical values1, and all the following
neuro-symbolic methods used these value as input.
For the evaluation metric, we focused on (1) the test
reward value on the unseen (test) games and (2) the
number of steps to achieve the goal on unseen
games. Since we focus on the performance of gen-
eralization, we only use 50 small-size (level = 5)
games for training, 50 unseen games from 5 differ-
ent size (level = 5,10,15,20,25) games for test2,
and mini-batch in training (batch size = 4). The
other parameters for the game and agent follow
LSTM-DQN++ (Narasimhan et al., 2015).

126 = (5 (object) +4 (visited) +4 (initial)) × 2 (negation)
2The agent needs to generalize the game level size
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Table 1: Average reward and number of steps (reward: higher is better / number of steps: lower is better) for
each epoch on 50 unseen games with three difficulty levels. These results are from moving average (N = 100) and
5 random seeds. Training is done on only small-size games. Although neuro-only method cannot solve unseen test
games, our proposed method (FOL-LNN) can solve and converge extremely faster than other SOTAs and baselines.

Easy game Medium game Hard game

Epoch 100 200 1000 100 200 2000 100 200 2000

LSTM-DQN++ * 0.07 / 93.4 0.10 / 90.9 0.12 / 88.6 0.00 / 99.9 0.00 / 99.6 0.03 / 97.3 0.00 / 99.9 0.00 / 99.9 0.04 / 96.6

NLM-DQN ** 0.87 / 26.4 0.93 / 20.8 1.00 / 15.0 0.27 / 81.1 0.48 / 65.9 1.00 / 29.7 0.01 / 99.7 0.10 / 94.8 0.66 / 64.0

NN-DQN 0.91 / 22.8 0.95 / 19.0 1.00 / 15.0 0.48 / 65.6 0.65 / 54.3 1.00 / 29.5 0.19 / 89.0 0.28 / 84.0 0.97 / 46.3

LNN-NN-DQN 0.88 / 24.8 0.94 / 20.2 1.00 / 15.0 0.49 / 65.8 0.61 / 57.0 1.00 / 29.6 0.24 / 86.9 0.27 / 84.9 0.97 / 47.4

FOL-LNN (Ours) 0.95 / 19.0 0.98 / 17.1 1.00 / 15.0 0.94 / 32.7 0.97 / 30.7 1.00 / 28.6 0.95 / 44.8 0.98 / 43.5 1.00 / 42.0
* State-of-the-art neuro-only method with a simple DQN action scorer (Narasimhan et al., 2015)
** State-of-the-art neuro-symbolic method has same input as ours and other neuro-symbolic methods (Dong et al., 2018)

We prepared five methods for an evaluation of
the proposed method:

• LSTM-DQN++ (Narasimhan et al., 2015):
State-of-the-art neuro-only method with a sim-
ple DQN action scorer. We use this method
as a baseline method for the neuro-only agent,
and LSTM receives extracted embedding vec-
tor from natural text information.

• NLM-DQN (Dong et al., 2018): State-of-
the-art neuro-symbolic method. The input
is propositional logical values that is also
used in following baselines and proposed
method. The original NLM uses the REIN-
FORCE (Williams, 1992) algorithm, but in or-
der to handle text-based games with the same
setting as the other methods, we applied the
DQN algorithm. In short, the method uses
an NLM layer instead of an LSTM (Hochre-
iter and Schmidhuber, 1997) for the encoder
of the LSTM-DQN++ method. We tuned the
hyper-parameters from the same search space
as the original paper.

• NN-DQN: Naïve neuro-symbolic baseline
method. The input of the network is propo-
sitional logical values, and it uses a multi
layer perceptron as the encoder of the LSTM-
DQN++.

• LNN-NN-DQN: Neuro-symbolic baseline
method. The method first gets propositional
logical values, it converts by LNN into some
conjunction values for all combinations of
given logical values, and then it inputs them

into a multi layer perceptron. It differs from
NN-DQN in that LNN-NN-DQN has prepared
conjunction nodes, which should lead to faster
training in beginning of the training, and bet-
ter interpretabiliity after the training.

• FOL-LNN: Our neuro-symbolic method.

Table 1 shows the test reward and test step val-
ues on unseen games, and Fig. 2 shows curves.
First, all the RL results with logical input were
better than those with textual input. Second, our
proposed method could converge much faster than
the other neuro-symbolic state-of-the-art and base-
line methods. Third, only our method could extract
the trained rules by checking the weight value of
the LNN. We attached the extracted rules from the
medium level games here:

∃x ∈Wmoney

⟨find x⟩→ ⟪take x⟫,

∃x ∈Wdirection

(⟨find x⟩ ∧ ¬⟨visited x⟩ ∧ ¬⟨initial x⟩)∨
(⟨find x⟩ ∧ ⟨all are visited⟩ ∧ ⟨initial x⟩) → ⟪go x⟫,

where Wdirection is a set of words in a type of “di-
rection” in ConceptNet. The rule for "take"-action
is for taking a coin. The first conjunction rule for
“go”-action is for visiting an un-visited room, and
the second rule is for returning to the initial room
from a dead-end. With our proposed method, we
can see that these trained rules will be helpful for
operating the neural agent in real use cases.



3509

0 250 500 750 1000
Training epoch

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 a

ve
ra

ge
 re

wa
rd

 o
n 

un
se

en
 g

am
es

LSTM-DQN++
NLM-DQN
NN-DQN
LNN-NN-DQN
FOL-LNN

(a) Easy, Test reward

0 250 500 750 1000
Training epoch

20

40

60

80

100

Te
st

 a
ve

ra
ge

 st
ep

s o
n 

un
se

en
 g

am
es

LSTM-DQN++
NLM-DQN
NN-DQN
LNN-NN-DQN
FOL-LNN

(b) Easy, Test step

0 500 1000 1500 2000
Training epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
ve

ra
ge

 re
wa

rd
 o

n 
un

se
en

 g
am

es

LSTM-DQN++
NLM-DQN
NN-DQN
LNN-NN-DQN
FOL-LNN

(c) Medium, Test reward
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(d) Medium, Test step
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(e) Hard, Test reward
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Figure 2: Curves for reward and number of steps for
50 unseen games. Moving average is applied.

5 Conclusion

In this paper, we proposed a novel neuro-symbolic
method for RL on text-based games. According to
the evaluation on the natural language text-based
game with several difficulties, our method can
converge extremely faster than other state-of-the-
art neuro-only and neuro-symbolic methods, and
extract trained logical rules for improving inter-
pretability of the model.

Discussion about ethics

Our model is not using any sensitive contexts such
as legal or health-care settings. The data set used
in our experiment does not contain any sensitive
information. Since our proposed neuro-symbolic
RL method can extract the trained rules for inter-
pretability of the model, the method can analyze a
reason behind taken action. We are sure that if the
model returns biased results, this functionality is
helpful for clearing the reason for these data bias
issues.
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Appendix A: Environment Setting

In this section we describe Coin-Collector (Yuan
et al., 2018), a text-based game used in our exper-
iments. Then, we describe the hyper-parameter
setting.

Appendix A.1: Coin-Collector
Coin-Collector is a kind of text-based games, and
we have to move an agent through rooms to get a
coin placed in a room. An agent receives an obser-
vation text that describes the structure of a current
room from a game. The goal of Coin-Collector is
to analyze textual data and understand the structure
of given rooms for training an agent.

A game has hyper-parameters such as level and
difficulty. A game level indicates the minimum
number of steps to a room in which a coin is placed.
Rooms are randomly connected and their structure
depends on difficulty. An easy game has no dis-
tractor rooms (dead ends) along the path. On a
medium game, each room along the optimal trajec-
tory has one distractor room randomly connected
to it. A hard game, each room has two distractor
rooms which means each room has one for optimal
trajectory, one for the previous room, and two for
distractor rooms.

An agent can use two types of verbs ({take,
go}) and five types of nouns ({coin, east, west,
south, north}). Since an action consists of a verb
and a noun, there are ten different actions that
an agent can take. For the settings of LSTM-
DQN++ (Narasimhan et al., 2015), the agent gets
the positive reward when the agent goes in a new
room. The agent also gets positive reward when
the agent successfully returns the initial coming
direction for medium setting. If an agent takes an
invalid action such as “go coin”, or “go north” at no
north room, the agent does not receive a negative
reward.

Appendix A.2: Hyper-parameters
For the all experiments, we used the same hyper-
parameters with the previous work for Coin-
Collector as follows.

• We used a prioritized replay memory with
capacity of 500,000 and the priority fraction
is 0.25.

• A mini-batch gradient update is performed
every 4 steps in the game play.

• The discount factor for Q-learning γ is 0.9.

• We used an episodic discovery bonus that en-
courages an agent to discover unseen states
and the coefficient β is 1.0.

• We anneal the ε for the ε-greedy strategy
from 1 to 0.2 over 1000 epochs. After 1000
episodes, the ε is 0.2.

• We used the Adam algorithm (Kingma and Ba,
2014) for the optimization and the learning
rate is 1e−3.

Appendix B: Experiment details

The training and validation times until
3,000 epochs for each method are as follows.

• LSTM-DQN++ (Narasimhan et al., 2015):
Around 2 hours for easy difficulty, and around
4 hours for medium difficulty.

• NLM-DQN (Dong et al., 2018): Around
40 minutes for easy difficulty, and around
2.5 hours for medium difficulty.

• NN-DQN: Around 30 minutes for easy diffi-
culty, and around 1.5 hours for medium diffi-
culty.

• LNN-NN-DQN: Around 30 minutes for easy
difficulty, and around 1.5 hours for medium
difficulty.

• FOL-LNN: Around 35 minutes for easy dif-
ficulty, and around 2 hours for medium diffi-
culty.

These results are calculated on Intel Core i7-6700K
CPU (4.00GHz) and NVIDIA Titan X. From these
results, our proposed method is not computation-
ally expensive than other methods.


