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Abstract

This paper considers the unsupervised domain
adaptation problem for neural machine trans-
lation (NMT), where we assume the access
to only monolingual text in either the source
or target language in the new domain. We
propose a cross-lingual data selection method
to extract in-domain sentences in the missing
language side from a large generic monolin-
gual corpus. Our proposed method trains an
adaptive layer on top of multilingual BERT
by contrastive learning to align the represen-
tation between the source and target language.
This then enables the transferability of the
domain classifier between the languages in a
zero-shot manner. Once the in-domain data
is detected by the classifier, the NMT model
is then adapted to the new domain by jointly
learning translation and domain discrimination
tasks. We evaluate our cross-lingual data se-
lection method on NMT across five diverse
domains in three language pairs, as well as a
real-world scenario of translation for COVID-
19. The results show that our proposed method
outperforms other selection baselines up to
+1.5 BLEU score.

1 Introduction

Unsupervised domain adaptation (UDA) aims to
generalise MT models trained on domains with typ-
ically large-scale bilingual parallel text to new do-
mains without parallel data (Chu and Wang, 2018).
Most prior works in UDA of NMT assume the
availability of either non-parallel texts of both lan-
guages or only the farget-language monolingual
text in the new domain to adapt the NMT model.
The adaptation is achieved by modifying the model
architecture and joint training with other auxiliary
tasks (Gulcehre et al., 2015; Domhan and Hieber,
2017; Dou et al., 2019), or constructing a parallel
corpus for the new domain from a general-domain
parallel text using data-selection methods (Silva
et al., 2018; Hu et al., 2019). However, very little

attention has been paid to the UDA problem with
only the source-language monolingual text in the
new domain. In practice, this setting is not very
rare, e.g. building a translation system from En-
glish to Shona (a low-resource African language)
in a specific domain such as healthcare and disaster.
While it would be very time consuming to collect
in-domain text in Shona, English corpora are more
accessible.

In this paper, we consider the generalised prob-
lem of UDA in NMT where we assume the avail-
ability of monotext in only one language, either the
source or target, in the new domain. We propose a
generalised approach to the problem using cross-
lingual data selection to extract sentences in the
new domain for the missing language side from a
large monolingual generic corpus. Our proposed
data selection method trains an adaptive layer on
top of multilingual BERT by contrastive learning
(Chen et al., 2020), such that the representations
of source and target language are aligned. The
aligned representations enable the transferability
of a domain classifier trained on one language side
to the other language for in-domain data detection.
Previous works have explored filtering data of the
same language for MT (Moore and Lewis, 2010;
Axelrod et al., 2011; Duh et al., 2013; Junczys-
Dowmunt, 2018); however, utilising data in one
language to detect in-domain data in the other lan-
guage is under-explored.

With selected sentences in the new domain of
the missing language side, the original adaptation
problem is transformed to the usual setting of UDA
problem, and can be approached by the existing
UDA methods. In this paper, we extend the dis-
criminative domain mixing method for supervised
domain adaptation (Britz et al., 2017) which jointly
learns domain discrimination and translation to the
unsupervised setting. More specifically, the NMT
model jointly learns to translate with the translation
loss on pseudo bitext, and captures the characteris-
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tics of the new domain by the domain discrimina-
tion loss on data from the old and new domains.
Our contributions can be summarised as follows:

* We introduce a generalised UDA (GUDA)
problem for NMT which unifies both the usual
setting of having only target language mono-
text and the under-explored setting with only
source language monotext in the new domain.

* We propose a cross-lingual data selection
method to address GUDA by retrieving in-
domain sentences of the missing language
from a generic monolingual corpus.

* We augment the discriminative domain mix-
ing method to UDA by constructing an in-
domain pseudo bitext via forward-translation
and back-translation.

* We empirically verify the effectiveness of
our approach on translation tasks across five
diverse domains in three language-pairs, as
well as a real-world translation scenario for
COVID-19. The experimental results show
that our method achieves up to +1.5 BLEU
improvement over other data selection base-
lines. The visualisation of the representations
generated by the adaptive layer demonstrates
that our method is not only able to align the
representation of the source and target lan-
guage, but it also preserves characteristics of
the domains in each space!.

2 Generalised Unsupervised Domain
Adaptation

Domain adaptation is an important problem in
NMT as it is very expensive to obtain training data
that are both large and relevant to all possible do-
mains. Supervised adaptation problem requires the
existence of out-of-domain (OOD) bitext and in-
domain bitext. Unsupervised domain adaptation
problem assumes OOD and in-domain monotext,
usually in the target language.

A domain is defined as a distribution P(X,Y")
where X ranges over sentences in the source lan-
guage s, and Y is its translation in the target
language t. We define the generalised unsuper-
vised domain adaptation (GUDA) for NMT as
the problem of adapting an NMT model trained
on an old domain P,;4(X,Y’) to a new domain

'Source code is available at https://github.com/
trangvu/guda.

Phew(X,Y), where only either the source or tar-
get language text is available in the new domain.
Since P(X,Y) = P*(X)P%'(Y|X), let us con-
sider P ,(X) which is the distribution over se-
quences on the source language s in the old do-
main. It is usually much richer (i.e., containing
diverse categories such as news, politics, etc.) than
P?..,(X) which is typically a much more specific
category where we aim to adapt the NMT model.
The conditional distribution P%(Y|X) specifies
the encoder-decoder NMT network to be adapted
to the new domain.

Given parallel bitext Dojg = {(2;,y;)} in the old
domain, we consider two settings in GUDA:

* An initial monolingual text Xyew = {z;} of
the source language in the new domain and
a generic monolingual text D; of the target
language.

* An initial monolingual text Vpew = {yi} of
the target language in the new domain and
a generic monolingual text D, of the source
language.

Crucially, in both cases we do not require any par-
allel text in the new domain, hence the term unsu-
pervised domain adaptation. The goal is to adapt
an NMT model, parametrised by 0, trained on the
old domain bitext D,)4 to the new domain.

In the setting involving Ypew, it can be used
to create pseudo-parallel data via back-translation
(Sennrich et al., 2016), or to adapt the decoder via
multi-task learning (Gulcehre et al., 2015; Domhan
and Hieber, 2017). This setting is the usual formu-
lation in UDA for NMT (Chu and Wang, 2018). In
contrast, the setting involving the source monotext
Xhew 18 not well explored in the literature.

Our approach for addressing GUDA is to create
in-domain monotext for the language side, where
the data in the new domain is missing. That is,
if given Xy, we build a classifier to select in-
domain monotext V. in the target language from
the generic monotext D;. We perform a similar
procedure for the other case where only in-domain
Yhew 18 present. We then adapt the NMT model
based on the bitext from the old domain as well
as the source and target language monotext in the
new domain. The challenge, however, is how to
train a classifier for data selection for the language-
side with missing data. We address this problem
in Section 3, then mention how to adapt the NMT
model to the new domain in Section 4.
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Figure 1: Our proposed cross-lingual data selection

3 Cross-lingual In-domain Data
Selection

Aharoni and Goldberg (2020) have shown that the
emergent domain clusters via BERT (Devlin et al.,
2019) can be used to select in-domain bitext for
NMT. Inspired from that observation, we leverage
the sentence representations produced by the multi-
lingual BERT (mBERT) for cross-lingual monotext
selection. We first align the source and target lan-
guage representation space while preserving the do-
main clustering characteristics in each space. Using
the available monotext in one language, we train
a binary classifier to detect old and new domains
on the aligned semantic spaces. This classifier is
then transferred to pick in-domain sentences in the
other language (fig. 1).

Representation Alignment. We encode the rep-
resentation of a sentence z by h(mBERT(z)),
where h computes the mean-pooled top-layer hid-
den states obtained from mBERT. To align the rep-
resentation space of the source and target language,
we learn an adaptive layer g4(.), a feed-forward
network parametrised by ¢, on top of the mBERT
by contrastive learning (Chen et al., 2020). The
intuition is that the representation of a translation
pair (z;,y;) should be close to each other in the
semantic space, while the representation of non-
translation pairs should be far apart. Specifically,
we aim to optimise a contrastive loss,

exp(sim(z;f ,Z;))/T (1)

Econ(z+ z+) = —log > exp(sim(zg 2y ) /T

o~y

where 2, := g4(h(mBERT(z))) and 2z, :=
94(h(mBERT(y))) are the output of the adaptive

method for GUDA with source monotext Xpey.

layer for the source and target sentences; (2, z; )

and (z;, 2, ) denote the positive and negative ex-
ample pairs, 7 is a temperature parameter, and
sim(.) is the cosine similarity following Aharoni
and Goldberg (2020). While training ¢ of the adap-
tive layer, other layers including embedding and

transformer layers are frozen.

Given a batch of N training examples from the
old domain (z;,y;)_; ~ Do, these translation
pairs from the bitext are the positive examples. In-
stead of blindly treating those from non-translation
pairs as negative examples, we create domain la-
bels by clustering the mBERT representations of
the bitext into k clusters. For a given (z;,y;) pair
in the training batch, we consider the pairs from
distinct clusters in the same batch as the negative
examples. This helps the computational complex-
ity by encoding and using all positive and negative
examples in the same batch (Chen et al., 2020). We
will show the benefit of this setting in § 6.1.

In-domain Data Selection. Using the adaptive
layer’s encoding, we learn a domain classifier for
the language-side in which we are given the mono-
text in the new domain. Let us assume we are given
source language monotext &y, in the new domain,
and the bitext Dy4 in the old domain.2 The domain
classifier ¢y, (2) produces the probability of belong-
ing to the new domain for an input vector 2. We
train the parameter % for the domain classifier by

The other case where we are given Vew is similar, and is
omitted due to the space constraints.
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minimising the following loss (fig. 1),

3" logley(g(hle

iL‘EchW

Laisc(P) = —

where D7, denotes source language side of the par-
allel bitext Dyg. Thanks to the aligned semantic
spaces, we then transfer the trained domain clas-
sifier cross-lingually to the other language-side to
select a subcorpus of in-domain monotext. We se-
lect the top-k probable sentences from the given
generic corpus of the other language-side.

4 NMT Adaptation to the New Domain

Given the parallel data in the old domain D,q and
monolingual data in the new domain for both the
source language A and target language Vyew, We
adapt the NMT model by minimising the loss,

L= E;flt/IT + [:(siisc + Efiisc (3)
as illustrated in fig. 2 and explained below.

Bitext Loss. We create pseudo-bitext Dpey by
back-translating Y,ew using a reverse-direction
translation model trained on D,y. The quality of
the pseudo-bitext depends on the quality of the
reverse-direction NMT model in the new domain.
We further mix the pseudo-bitext Dy with the old-
domain bitext Dy)q to form the bitext loss function

L@ =— Y logpe(ylz)
($,y)€Dnew

-\ Z log pg(y|z)

(%,¥) €Dl

“4)

where pg(y|x) is the translation probability accord-
ing to the NMT model, and A; controls effect of
the old domain.

Source Monotext Loss. To take into account the
clean text in source language of the new domain,
we apply the discriminative domain mixing method
(Britz et al., 2017) to force the encoder towards
capturing new domain’s characteristics. For this
purpose, we build a classifier ¢y, (2.), a feedfor-
ward network parametrised by ., whose output is
the new domain’s probability. z. = h(encg(z)) is
the representation of the sentence &, computed by
the mean-pooled average of the top layer’s states

Target Lt
Discriminator disc
Decoder ]——’ st
NMT
Source
Discriminator

Figure 2: Discriminative domain mixing approach to
UDA for NMT

s
[’disc

of the NMT’s encoder. The source monotext loss
is then defined as,

dlsc 0 I‘l"e = Z IOgc’l/) enCO(m)))
LE Xpew
&)
— X2 Y log(1 — ey, (h(ency())))
€Dy,

where Ao controls the effect of the old domain.

Target Monotext Loss.
monotext loss is defined as,

Similarly, the target

dlSC 0, %q) = Z logc'llld (deco(y)))
yeynew (6)
g 3 log(1 — ey, (h(deca(y))
yeDy,

where decg is the NMT’s decoder, ¢y, is the do-
main classifier parametrised by 4 for the decoder,
D!, is the target sentences in the old domain’s
bitext, and A3 controls the effect of the old domain.

S Experiments

We evaluate our proposed approach for GUDA on
the three language pairs covering five domains, and
a real-world translation task, namely, TICO-19.

5.1 Setup

Datasets. Table 1 shows data statistics. The gen-
eral domain datasets come from WMT2014 for
English-French, WMT2020 for English-German,
news parallel corpus from OPUS for Arabic-
English®. We appraise our proposed methods on
following specific domains: TED talk, Law, Medi-
cal, IT, Koran from OPUS (Tiedemann, 2012) fol-
lowing the recipe in Koehn and Knowles (2017).
We sample 10M English sentences from Newcrawl
2007-2019 as the generic monolingual corpus.
Data pre-processing is described in Appendix A.

3 GlobalVoices, News-Commentary, UN, WikiMatrix,
UNPC
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Domain H Fr-En De-En Ar-En
NEWS 357M  40.5M  21.2M
Law 625K 454K -

MED 689K 231K -

IT 362K 158K 246K
KORAN 128K 17.8K 183K
TED 190K 164K 199K

Table 1: Number of training sentences in the evalua-
tion datasets. Each dataset contains 2K dev and test
sentences.

Baselines. We evaluate the effectiveness of our
GUDA framework over the zero-shot baseline
(base) where the old-domain model is evaluated
without any further training on the new domain.
We also evaluate our method against a pseudo-
translation baseline (trans) where the old-domain
model is further trained on the pseudo-translation
of monolingual data from the new domain. More
specifically, the pseudo-translation training data
contains sentences in the source language and
its forward-translated sentences in English for to-
English translation direction. Otherwise, it contains
sentences in the target language and their back-
translated sentences in English for from-English
translation direction. We also train fully-supervised
models (sup.) which further trains the old-domain
models on in-domain parallel data and yields ap-
proximately the upperbound BLEU scores.

We compare our proposed in-domain data selec-
tion method against several baselines including,

* random: we randomly select English sen-
tences from the generic monolingual pool and
treat them as in-domain sentences.

* cross entropy difference (CED) (Moore and
Lewis, 2010) which is a widely used data se-
lection method in MT. The CED score of a
given sentence x in the generic corpus is calcu-
lated as CED(z) = Hg(z) — Hg(x), where
Hg(x) and Hg(x) are the cross-entropy of
the sentence x according to the specific do-
main and generic domain LMs respectively.
The lower the CED score is, the more likely
the sentence belongs to this specific domain.
In our GUDA setting, to enable cross-lingual
data selection, we train a multilingual neural
LM on the bitext in the old domain then fur-
ther finetune it on the available monotext in

the new domain and use it to rank the generic
corpus. We only run CED methods for En<Fr
and En<«>De translation since we do not share
vocabulary between Ar and En.

* domain-finetune (Aharoni and Goldberg,
2020) which trains a domain classifier on
mBERT representations and selects the top-
k in-domain sentences scored by the classi-
fier. Despite of having similar selection mech-
anism to our method, the classifier in the
domain-finetune technique operates on the
pretrained representation space of mBERT
without alignment between languages.

GUDA setup. We assume the availability of non-
English language data and evaluate our method to
select S00K English sentences from the generic
monolingual pool. We use the multilingual Distill-
BERT(mDistilIBERT) (Sanh et al., 2019) to encode
the sentence representation. We sample and cluster
2M sentences from the old-domain bitext into k=5
clusters for negative example creation. To train
the domain classifier, we extract the top S00K sen-
tences from the old domain with low similarity
scores between their representation and the mean
representation of the monotext in the new domain.

The adaptive layer is a 2-layer feed-forward net-
work with hidden size 128. We set the temperature
parameter 7 in the contrastive loss to 0.2. We train
the adaptive layer using the Adam optimiser with
learning rate le-5 , batch size of 64 sentences, up
to 20 epochs with early stopping if there is no im-
provement for 5 epochs on the loss of the dev set
in the old domain. The domain discriminator is
also a 2-layer feed-forward network with the same
hyperparameters as the adaptive layer. We use the
Transformer (Vaswani et al., 2017) as NMT model
and set the mixing hyperparameters A1, Aa, Az to 1,
i.e. the old domain parallel data as well as source
and target monotext contributes equally to the train-
ing signal for the NMT model. Detail of the model
hyperparameters can be found in the Appendix A.

5.2 Main Results

Table 2 presents the result of translations to and
from English, according to GUDA with source
and target language monotext respectively. There
is a significant gap between the fully supervised
(sup.) and zero-shot (base) scores. It can be seen
that GUDA is able to reduce this gap, especially
when the in-domain data are selected intelligently.
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Fr-En De-En Ar-En

law med 1T Koran TED law med IT Koran TED 1T Koran TED
Translate to English
base || 42.64 37.81 2879 7.68 3427 | 3937 3797 3566 14.08 3655 | 1532 191 21.84
trans || 43.33  40.70 31.15 7.94 33.60 | 3835 37.50 3548 14.08 3640 | 391 023 14.61
rand || 46.33 42.08 3548 11.15 3548 | 4432 39.81 3753 1852 3692 | 1652 643 2035
CED || 46.60 4333 37.66 14.56 37.41 | 48.03 4500 4272 1920 3846 - - -
DF 4792 4406 3879 1634 3748 | 4987 4537 4252 21.86 3922 | 1898  7.74  22.39
our 4788 44367 38.89 17.257 38.79" | 51.017 46.617 42.737 21451 3934 | 20.22F 10.907 22.71%
sup. || 49.81 5382 6368 19.53 4156 | 61.02 5338 4342 2098 40.19 | 41.61 1744 3671
Translate from English
base || 23.73 2532 2051 558 3573 | 3460 3452 2935 1123 3132 | 13.66 030  12.77
trans || 33.71 28.82 3528 1291 35.11 | 3513 3880 3150 1235 3258 | 1265 0.89  12.83
rand || 3243 2853  40.02 13.77 3497 | 33.86 3647 3029 1257 3277 | 1237 301 1446
CED || 33.19 29.14 40.82 14.04 3586 | 34.81 40.62 31.02 1252 32.83 - - -
DF 34.63 2999 41.09 1497 36.18 | 3523 4128 3193 13.19 33.69 | 1432 642  15.07
our || 35.67"7 30.59" 41.48' 16.107 37.797 | 35.657 42.677 31.81 13.72f 33.86' | 14.517 7.99t 16.33%
sup. || 4095 41.09 5324 2272 4047 | 4682 4609 34.03 1429 3453 | 2664 1574 2185

Table 2: BLEU score of GUDA under various selection strategies: random (rand), cross-entropy difference (CED),
domain-finetune (DF), and our cross-lingual data selection. base and sup. are the scores of zero-shot and fully
supervised on in-domain parallel data. trans is the NMT model trained on pseudo bitext where monolingual in-
domain data is machine translated in the missing side. Highest scores of GUDA are marked in bold.  indicates
that our method is statistically significant difference to the domain-finetune baseline (p-value < 0.05).

H Fr-En En-Fr Ar-En En-Ar
base || 32.35 2507 34.11 24.52
rand | 30.59 24.61 3230 24.20
CED || 3255 25.13 - -
DF 3325 2624 3456 2536
Our | 3417t 27457 35.247 26.107

Table 3: Results on TICO-19 translation task. T indi-
cates that our method is statistically significant differ-
ence to the domain-finetune baseline (p-value < 0.05).

Overall, our selection method consistently outper-
forms both the domain-finetune and CED strategy.

We further assess our approach on the translation
initiative for COVID-19 task (TICO-19) for En-Fr
and En-Ar (Anastasopoulos et al., 2020). The task
contains a dev set and a test set of 971 and 2100
sentences. As an emerging domain, there is no
training set. We collect additional 49K and 17K in-
domain French and Arabic monotext*. As shown
in Table 3, surprisingly, GUDA on random selec-
tion deteriorates the BLEU score. It is possible that
pandemic related words have not appeared often be-
fore. Consistent with previous results, our method

*https://github.com/neulab/
covidl9-datashare

Figure 3: t-SNE visualisation of the Fr (red) and En
(blue) of TICO-19 dev set, encoded by multilingual
DistillBERT (left) and the adaptive layer (right).

outperforms other methods up to +1.2 BLEU score.

To evaluate our alignment method, we visualise
the representation of the TICO-19 dev set produced
by mDistilIBERT and the adaptive layer in Figure 3.
It can be seen that the adapted French and English
representations are better aligned in the semantic
space than the mDistillBERT.

6 Ablation and Analysis
6.1 Ablation

Clustering-based negative sampling. The intu-
ition of the clustering-based negative sampling is
to preserve the domain clustering characteristics
emerged in mBERT. We assess the importance of
this clustering step and the effect of the number of
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k De-En En-De

law med TED law med TED
1 50.76 46.32 38.61 | 3498 4145 31.92
2 50.60 46.44 3843 | 35.14 41.71 33.01
3 5086 46.62 39.20 | 35.77 4234 3351
5 51.01 46.61 3934 | 35.65 42.67 33.86
7 51.04 46.62 39.67 | 35.02 42.05 33.06
10 50.81 46.70 39.39 | 3521 42.24 35.35

Table 4: Cluster-based negative sampling ablation. k is
the number of clusters.

mDistillBERT - en

mDistillBERT - ar

e it e it
e koran koran
e ted ted

tico tico

Adaptive layer - en Adaptive layer - ar

it
koran
ted
tico tico

De-En En-De

law med TED law med TED
sup. 61.02 53.38 40.19 ‘ 46.82 46.09 34.53
True Bitext
BI 53.59 49.35 40.01 | 45.69 43.10 30.78
BI+S 54.69 51.47 4033 | 46.98 4559 31.83
BI+T 5470 51.31 40.28 | 46.84 45.62 31.63
BI+S+T 54.73 51.38 40.38 | 47.11 45.79 31.67
Pseudo Bitext - Warm Start
BI 48.57 45.62 38.61 | 35.04 3998 31.99
BI+S 50.65 46.50 39.05 | 35.27 4197 33.33
BI+T 50.22 46.27 38.88 | 35.16 40.68 33.16
BI+S+T 51.01 46.61 39.34 | 35.65 42.67 33.86
Pseudo Bitext - Cold Start
BI 29.33 35.02 30.83 | 30.98 3528 28.19
BI+S 3539 37.28 33.02 | 32.03 37.81 30.35
BI+T 35.68 37.13 33.49 | 32.37 37.50 30.80
BI+S+T 36.07 37.78 33.47 | 33.24 37.73 30.47

Table 5: Domain discriminative mixing ablation

cluster k on the En<+De translation performance
in law, med and TED domains. Table 4 reports the
BLEU score of the NMT model in the new domain
with £ = {1,2,3,5,7,10} where & = 1 corre-
sponds to perform negative sampling without pre-
clustering mBERT representation space. Overall,
the NMT model trained on the selected data with
clustering-based negative sampling £ > 1 outper-
forms the one without clustering & = 1. On the
other hand, the effect of number clusters k varies,
depending on the domains and languages. From
the empirical results, we found that & = {5,7}
works better than other values.

Discriminative domain mixing. We run abla-
tion experiments to verify the contribution of each
loss term in the discriminative domain mixing train-
ing objective presented in eq. (3). Particularly, we
evaluate the NMT adapted to the new domain using
(1) only the bitext loss (BI); (ii) the combination of

Figure 4: 2D visualisation of the unsupervised GMM-
based clustering of En-Ar representations.

the bitext loss and either the source monotext loss
(BI+S) or the target monotext loss (BI+T); and (iii)
the joint of all three loss terms (BI+S+T). Table 5
shows the results under both supervised domain
adaptation where we have access to the true bitext,
and UDA in which the model is trained on pseudo
bitext generated by back-translation (warm-start).
The size of the ground-truth bitext is shown in Ta-
ble 1. The size of the pseudo-bitext is 500K which
is approximately double the size of the ground-
truth bitext of TED and med domains, and roughly
the same for law domain. We also further evalu-
ate the contribution of the discriminative domain
loss when the NMT model is trained from scratch
(cold-start).

Consistent with Britz et al. (2017), training NMT
on mixed domain data (BI) degrades performance
versus models fit to a single domain (sup.). Adding
the discriminative domain loss can mitigate this
negative effect in multi-domain NMT. We observe
similar outcomes in both domain adaption with the
true bitext and the pseudo bitext. Overall, we found
that the source monotext loss plays a more critical
role than the target monotext loss. Combining both
monotext loss achieves the best BLEU score in
most of domain adaptation scenarios.

6.2 Analysis

Domain cluster visualisation. To demonstrate
the ability of our approach in preserving the do-
main clustered characteristics of mBERT, we plot
2D visualisation of the mean-pooling BERT hidden
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Figure 6: CDF of predicted score produced by the do-
main classifier. The smaller the score is, the higher
probability the sentence belongs to the new domain.

state sentence representation and our constrastive-
based sentence representations using PCA. Follow-
ing Aharoni and Goldberg (2020), we combined
the development set of all the new domain dataset
and cluster the representations using a Gaussian
Mixture Model (GMM) with k pre-defined clusters
where k is number of domains.

Figure 4 visualises the obtained clusters in se-
mantic space of mDistillBERT and the adaptive
layer for each language in the translation pairs. The
ellipses describe the mean and variance parameters
learned for each cluster. In line with the finding in
Aharoni and Goldberg (2020), the mDistillBERT
representation of English sentences can be clus-
tered by their domains with a small overlap region.
In contrast, Arabic sentences are not well-clustered
according to their domains where their domain clus-
ters exhibit a high overlap rate. As can be seen, our
contrastive-based representation alignment method
is not only able to preserve the domain clusters in
English sentences but also learn domain clustered
representations of Arabic sentences in which the

clusters are less overlapped.

Distribution of domain predictive score. Fig-
ure 6 plots the cumulative distribution for the do-
main predictive score over the generic English cor-
pus. It can be seen that only a small portion of the
generic corpus are predicted to belong to the new
domains. As expected, the more specific-domains
such as med and law have smaller number of antic-
ipated sentences than the TED domain.

ngram analysis. A domain can be considerred
as a distribution over ngram. The data selection
methods mitigate the domain shift in NMT by in-
troducing ngrams of the new domain to the training
corpus. We estimate the new in-domain ngram con-
tribution of each selection method by calculating
the overlap of ngrams in the translation hypothe-
sis and the translation reference. The new ngram
contribution is calculated as

22 G ) N (G (W) \G (T ren))
Zi g(yfifew)\g(yzzenrgw)

where G(yL, ), G(755,). G(GSUDA) are the set
of ngrams in the reference, the zero-shot and the
GUDA translation hypothesis of the sentence ¢ in
the test set in the new domain, respectively.

Figure 5 presents the percentage of new ngram
contribution, 1 < n < 4, of each data selection
methods as well as the fully supervised model for
De-En translation in law, med, ted domains. As
expected, the fully-supervised model has the high-
est correct in-domain ngram rate to the translation
hypothesis. Our proposed selection method con-
tributes a higher percentage of in-domain ngrams
than other selection methods in all domains.

(N

7 Related Works

Unsupervised Domain Adaptation. Previous
works in UDA has been focused on aligning do-
main distribution by minimising the discrepancy
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between representations of source and target do-
mains (Shen et al., 2018; Wang et al., 2018); learn-
ing domain-invariant representation via adversarial
learning (Ganin and Lempitsky, 2015; Shah et al.,
2018; Moghimifar et al., 2020); bridging the do-
main gap by adaptive pretraining of contextualised
word embeddings (Han and Eisenstein, 2019; Vu
et al., 2020). In this paper, we adapt the NMT
model from the old to new domain by learning
domain-invariant representations of both encoder
and decoder via domain discrimination loss.

Unsupervised Domain Adaptation of NMT.
There are two main approaches in UDA for NMT,
including model-centric and data-centric meth-
ods (Chu and Wang, 2018). In the model-centric
approach, the model architecture is modified and
jointly trained on MT tasks, and other auxiliary
tasks such as language modelling (Gulcehre et al.,
2015). On the other hand, the data-centric methods
focus on constructing in-domain parallel corpus
by data-selection from general corpus (Domhan
and Hieber, 2017), and back-translation (Jin et al.,
2020; Mahdieh et al., 2020). Most prior works in
UDA of NMT often assume the availability of in-
domain data in the target language. While there are
few studies on the UDA problem with in-domain
source-language data in statistical MT (Mansour
and Ney, 2014; Cuong et al., 2016), this problem
remains unexplored in NMT.

Data selection for NMT. To address the scarcity
problem of MT parallel data in specific-domain,
data selection methods utilise an initial in-domain
training data to select relevant additional sentences
from a generic parallel corpus. Previous research
has used n-gram language model (Moore and
Lewis, 2010; Axelrod et al., 2011; Duh et al., 2013),
count-based methods (Way et al., 2018; Parcheta
et al., 2018), similarity score of sentence embed-
dings (Wang et al., 2017; Junczys-Dowmunt, 2018;
Dou et al., 2020) to rank the generic corpus. The
ranking and selection process often operate in the
same language, either source or target language,
and take advantage of the parallel corpus to re-
trieve the paired translation (Farajian et al., 2017).
When such generic parallel corpus is unavailable,
cross-lingual data selection which uses data in one
language to detect in-domain data in the other lan-
guage is under-explored.

8 Conclusion

We have proposed a cross-lingual data selection
method to the GUDA problem for NMT where
only monolingual data from one language side is
available in the new domain. We first learn an adap-
tive layer to align the BERT representation of the
source and target languages. We then utilise a do-
main classifier trained on one language to select
in-domain data for another. Experiments on trans-
lation tasks of several language pairs and domains
show the effectiveness of our method over other
baselines.
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A Training Procedure

Data preprocessing. We tokenise English,
French, German sentences using Moses tok-
enizer (Koehn et al., 2007) and remove the
sentences with more than 175 tokens. Arabic
text are tokenised using CAMeL (Obeid et al.,
2020). For Arabic, we first filter out the sentences
containing more than 50% Latin characters, then
remove those with more than 175 tokens.

Model hyperparameters. The adaptive layer is
a 2-layer feed-forward net with hidden size 128.
We set the temperature parameter 7 in the con-
trastive loss to 0.2. We train the adaptive layer
using the Adam optimiser with learning rate le-5,
batch size of 64 sentences, up to 20 epochs with
early stopping if there is no improvement for 5
epochs on the loss of the dev set in the old do-
main. The domain discriminator is also a 2-layer
feed-forward net. We train it with the same hyper-
parameters as in the adaptive layer.

We use the Transformer as NMT model, which
consists of 6 encoder and decoder layers, 4 self-
attention heads, hidden size of 256, feed-forward
hidden size of 1024, implemented in Fairseq frame-
work (Ott et al., 2019). Number of parameters is
64.3M. We use the Adam optimiser with learning
rate Se-4 (Kingma and Ba, 2015) and an inverse
square root schedule with warm-up 1000 steps. We
apply dropout and label smoothing with a rate of
0.3 and 0.1 respectively. We learn the vocabulary of
size 32000 using unigram language model (Kudo,
2018), implemented in SentencePiece®. For En-Fr,
En-De, and En-Cs, the source and target embed-
dings are shared and tied with the last layer. We
set the mixing hyperparameters A, A2, A3 to 1, i.e.
the old domain parallel data as well as source and
target monotext contributes equally to the training
signal for the NMT model. We train the NMT with
the batch size of 32768 tokens and up to 30 epochs
with early stopping if there is no improvement on
dev set for 5 epochs.

Our model is trained on a V100 GPU, and took
up to 4 days for the NMT trained in old domain,
and 1 day for other experiments.

®https://github.com/google/
sentencepiece
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