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Abstract

Recent research questions the importance of
the dot-product self-attention in Transformer
models and shows that most attention heads
learn simple positional patterns. In this pa-
per, we push further in this research line
and propose a novel substitute mechanism for
self-attention: Recurrent AtteNtion (RAN).
RAN directly learns attention weights with-
out any token-to-token interaction and further
improves their capacity by layer-to-layer in-
teraction. Across an extensive set of exper-
iments on 10 machine translation tasks, we
find that RAN models are competitive and out-
perform their Transformer counterpart in cer-
tain scenarios, with fewer parameters and in-
ference time. Particularly, when apply RAN
to the decoder of Transformer, there brings
consistent improvements by about +0.5 BLEU
on 6 translation tasks and +1.0 BLEU on
Turkish-English translation task. In addition,
we conduct extensive analysis on the attention
weights of RAN to confirm their reasonable-
ness. Our RAN is a promising alternative to
build more effective and efficient NMT mod-
els.

1 Introduction

Transformer models have achieved remarkable
success in Neural Machine Translation (NMT)
(Vaswani et al., 2017; Freitag and Firat, 2020; Fan
et al., 2020). One of the most crucial component
of Transformer is the dot-product multi-head self-
attention, which is essential to learn relationships
between words as well as complex structural repre-
sentations. However, many studies have shown that
the pairwise self-attention is over-parameterized
and leads to a costly inference (Sanh et al., 2019;
Correia et al., 2019; Xiao et al., 2019). Based on
these observations, various improved networks are
proposed by either pruning negligible heads (Voita
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et al., 2019; Michel et al., 2019) or replacing self-
attention with more efficient one (Xu et al., 2019;
Wu et al., 2019; Kitaev et al., 2020; Beltagy et al.,
2020).

More recently, several researches take this direc-
tion to an extreme by replacing dot-product self-
attention with fixed or trainable global position-
based attentions (Zhang et al., 2018; Tay et al.,
2020; You et al., 2020; Raganato et al., 2020). For
example, You et al. (2020) roughly modeled atten-
tion weights as hard-coded Gaussian distributions,
based on the observation that most heads only focus
their attention on a local neighborhood.

Another more representative method is Random
Synthesizer proposed by Tay et al. (2020). Dif-
ferent from You et al. (2020), they simply treat
attention weights of all heads in each layer as train-
able parameters. At inference time, the attention
weights are directly retrieved based on the index of
the query without dot-product operation. However,
these variants are not the ideal alternatives of self-
attention due to the unsatisfactory performance.

In this paper, we go further along this research
line and show that self-attention is empirically re-
placeable. We propose a novel attention mecha-
nism: Recurrent AtteNtion (RAN). Specifically,
RAN starts with an unnormalized Initial Attention
Matrix for each head, which is randomly initialized
and trained together with other model parameters.
Then we introduce a Recurrent Transition Module,
which takes the Initial Attention Matrices as the
input and refines them by layer-wise interaction be-
tween adjacent layers. The motivation of Recurrent
Transition Module is based on the observation that
attention weights show a regular pattern and have
certain correlation across layers (Xiao et al., 2019;
He et al., 2020). Our RAN not only discards the
expensive pairwise dot-product of self-attention but
also exploit correlation between attention weights
of different layers, achieving a more efficient and
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compact NMT model.1

To verify the effectiveness of RAN, we conduct
experiments on a wide range of translation tasks in-
volving 10 language pairs. Compared with a vanilla
Transformer, our RAN shows competitive or better
performance with lower latency and fewer parame-
ters. We conduct extensive analysis on the learned
RAN weights showing that the learned attention
pattern are reasonable and explainable, which gives
credit for the improvement.

2 Our Method

In this section, we first give a brief introduction of
self-attention and we refer readers to the original
paper (Vaswani et al., 2017) for details. Then, we
introduce the proposed recurrent attention mecha-
nism in detail.

2.1 Multi-Head Attention
Figure 1 depicts the scaled dot-product self-
attention which only details the computation of
the k-th head in the l-th encoder layer. Given a
sequence of token representations with a length
of n, the self-attention model first converts the
representations into three matrices Qk

l ∈ Rn×dk ,
Kk

l ∈ Rn×dk and V k
l ∈ Rn×dk , representing

queries, keys, and values, respectively, where dk is
the dimensionality of the vector in the k-th head.
Then, the attention matrix is calculated via the dot
product of queries and keys followed by rescaling:

Ak
l =

Qk
l · (Kk

l )
T

√
dk

, (1)

where Ak
l is an n × n matrix. Finally, a softmax

operation is applied on this unnormalized attention
matrix and then the output is used to compute a
weighted sum of values:

Hk
l = Softmax(Ak

l ) · V k
l , (2)

where Hk
l is new contextual representations of the

l-th layer. This procedure can be implemented with
multi-head mechanism by projecting the input into
different subspaces which requires extra splitting
and concatenation operations. The output is fed
into a position-wise feed-forward network to get
the final representations of this layer.

While flexible, it has been proven that there ex-
ists redundant information with pair-wise calcula-
tion, which can be replaced by simpler positional

1We release source code at
https://github.com/lemon0830/RAN.
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Figure 1: An overview of standard self-attention.

attention patterns. In the next section, we propose
an extreme version of multi-head self-attention by
totally removing the dot-product.

2.2 RAN: Recurrent Attention

We propose a Recurrent AtteNtion (RAN) as an
alternative of multi-head self-attention. RAN con-
sists of a set of global Initial Attention Matrices
and a Recurrent Transition Module. The orig-
inal self-attention derives key, query from the
same token representations and compute attention
weights on the fly following Eq. (1), which is re-
peated in each layer. Our RAN instead learns a
set of learnable global attention matrices A0 =
{A1

0, .., A
k
0, .., A

h
0}, Ak

0 ∈ Rn×n, where h denotes
the total number of heads. We denotes A0 as the
Initial Attention Matrices, which are initialized to-
gether with other parameters. Then, we propose a
simple but effective Recurrent Transition Module.
This module takes A0 as the input and recursively
updated the attention matrices layer by layer. Dur-
ing training, we jointly optimize A0, the recurrent
transition module, and other components. During
inference, the attention matrices are completely
agnostic to the input representations, and can be
retrieved directly without recomputation.

For easier understanding, we illustrate the com-
putation of the k-th head in the l-th encoder layer
in Figure 2. Instead of producing attention weights
by the dot-product of Qk

l and Kk
l , we generate the

attention matrix Ak
l by the recurrent transition mod-

ule Rec(∗) with the attention matrix Ak
l−1 from the

previous layer. After obtaining Ak
l , we generate

the weighted sum of values by Eq. (2).
We introduce RAN to the encoder self-attention,

the decoder self-attention and both of them in our
experiment, respectively. We do not consider the
cross-attention between encoder and decoder be-
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Figure 2: Model architecture of our proposed RAN.
Dotted lines indicate parameter sharing.

cause of the poor performance of applying fixed po-
sitional attention patterns shown in previous work
(You et al., 2020; Tay et al., 2020). When applying
RAN to the decoder self-attention, the modeling
process is identical to that of the encoder except
that only the lower triangular matrix of each Ini-
tial Attention Matrix is leveraged due to the causal
language modeling objective.

2.3 Recurrent Transition Module
We detailedly introduce the composition of the Re-
current Transition Module in this section. The tran-
sition module can be implemented in various ways
such as position-wise feed-forward networks (FFN)
(Vaswani et al., 2017), GRU (Cho et al., 2014) or
LSTM (Hochreiter and Schmidhuber, 1997). In
this paper, we simply use a single feed-forward net-
work with tanh as its activation function followed
by a layer normalization and a residual connection:

Âk
l = LN(tanh(W ·Ak

l−1 + b)) (3)

Ak
l = Âk

l +Ak
l−1. (4)

Notably, we share the parameters of the transition
module across all heads and all layers.

It is obvious that our RAN has no interaction
between queries and keys and thus is more effi-

cient than the dot-product self-attention. In con-
trast to fixed attention patterns (You et al., 2020;
Raganato et al., 2020), the learnable Initial Atten-
tion Matrices and Recurrent Transition Module
make the proposed RAN more flexible to learn dif-
ferent attention distribution for different translation
tasks. Compared to Random Synthesizer (Tay et al.,
2020), our RAN is more likely to learn better con-
text representations thanks to the Recurrent Tran-
sition. In terms of parameters, RAN only needs h
attention matrices and a linear layer, however, Syn-
thesizer has h× L attention matrices. Thus RAN
is superior in reducing the overall parameters.

3 Experiment

In this section, we evaluate RAN on WMT and
NIST translation tasks including 10 different lan-
guage pairs altogether. We apply RAN to the en-
coder (RAN-E), the decoder (RAN-D), or both of
them (RAN-ALL), respectively. For baselines, we
compare against the standard Transformer (TransF
for short) (Vaswani et al., 2017), and two most
related work that are Hard-coded Transformer (HC-
SA) (You et al., 2020) and Random Synthesizer
(Syn-R) (Tay et al., 2020).

3.1 Settings

Our corpora come from three sources, and the
scales of bilingual corpus range from 210K to 36M:

• WMT2014 (En⇔De, En⇒Fr). We use
English-German and English-French corpus,
which are comprised of 4.5 and 36 million
sentence pairs. We choose newstest 2013 as
the valid set and newstest 2014 as the test set.

• WMT2017 (En⇔Lv, En⇔Fi, En⇔Tr). The
bidirectional translation tasks of English-
Latvian, English-Finnish, English-Turkish
consist of 4.46M, 2.63M, and 210K sentence
pairs. The setting follows Zhang et al. (2018).

• NIST12 (Zh⇒En). We use parts of the bi-
text of NIST OpenMT12 2 as the training set
which consists of 1.9 M sentence pairs. The
valid data is MT02, and the test sets are MT03,
MT04, MT05, MT06, and MT08. We report
the average score over all the test sets.

2LDC2000T46, LDC2000T47, LDC2000T50,
LDC2003E14, LDC2005T10, LDC2002E18, LDC2007T09
and LDC2004T08
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Lang. Matrix TransF HC-SA Syn-R RAN-E RAN-D RAN-ALL

En⇒De
BLEU 27.70 26.94 (-0.76) 27.17 (-0.53) 27.42 (-0.28) 28.18 (+0.48)† 27.66 (-0.04)

SacreBLEU 27.00 26.30 (-0.70) 26.50 (-0.50) 26.80 (-0.20) 27.50 (+0.50)† 27.00 (+0.00)

De⇒En
BLEU 30.97 29.82 (-1.15) 30.26 (-0.71) 30.74 (-0.23) 30.95 (-0.02) 30.84 (-0.13)

SacreBLEU 31.00 29.80 (-1.20) 30.20 (-0.80) 30.70 (-0.30) 31.00 (+0.00) 30.80 (-0.20)

En⇒Fr
BLEU 42.40 41.26 (-1.14) 41.33 (-1.07) 42.26 (-0.14) 42.39 (-0.01) 42.05 (-0.25)

SacreBLEU 39.40 38.30 (-1.10) 38.30 (-1.10) 39.30 (-0.10) 39.40 (+0.00) 39.10 (-0.30)

En⇒Lv
BLEU 16.78 16.11 (-0.67) 16.67 (-0.11) 16.66 (-0.12) 17.39 (+0.61)† 17.00 (+0.22)

SacreBLEU 16.30 15.60 (-0.70) 16.30 (+0.00) 16.20 (-0.10) 16.90 (+0.60)† 16.50 (+0.20)

Lv⇒En
BLEU 18.74 18.41 (-0.33) 18.56 (-0.18) 18.78 (+0.04) 18.84 (+0.10) 18.81 (+0.07)

SacreBLEU 17.40 17.10 (-0.30) 17.30 (-0.10) 17.40 (+0.00) 17.50 (+0.10) 17.50 (+0.10)

En⇒Fi
BLEU 21.96 21.36 (-0.60) 22.08 (+0.12) 22.46 (+0.50)† 22.89 (+0.93)† 22.45 (+0.49)†

SacreBLEU 20.00 19.30 (-0.70) 20.10 (+0.10) 20.50 (+0.50)† 20.70 (+0.70)† 20.50 (+0.50)†

Fi⇒En
BLEU 26.05 25.07 (-0.98) 25.69 (-0.36) 25.96 (+0.09) 26.55 (+0.50)† 26.10 (+0.05)

SacreBLEU 24.10 23.30 (-0.80) 23.80 (-0.30) 24.10(+0.00) 24.70 (+0.60)† 24.30 (+0.20)

En⇒Tr
BLEU 16.45 16.35 (-0.10) 16.19 (-0.26) 17.61 (+1.16)† 17.22 (+0.77)† 17.23 (+0.78)†

SacreBLEU 12.20 12.00 (-0.20) 11.80 (-0.40) 13.20 (+1.00)† 12.70 (+0.50)† 13.00 (+0.80)†

Tr⇒En
BLEU 17.65 17.89 (+0.24) 17.18 (-0.47) 18.39 (+0.74)† 18.62 (+0.97)† 18.41 (+0.76)†

SacreBLEU 16.60 16.90 (+0.30) 16.10 (-0.50) 17.30 (+0.70)† 17.60 (+1.00)† 17.30 (+0.70)†

Zh⇒En BLEU 48.17 47.02 (-1.15) 47.56 (-0.61) 47.95 (-0.22) 48.69 (+0.52)† 47.91 (-0.26)

Average
BLEU 26.69 26.02 (-0.67) 26.27 (-0.42) 26.82 (+0.13) 27.17 (+0.48)† 26.85 (+0.16)

SacreBLEU 22.67 22.07 (-0.60) 22.27 (-0.40) 22.83 (+0.16) 23.11 (+0.44)† 22.89 (+0.22)

Table 1: Experimental results on WMT14, WMT17 and NIST12 translation tasks. †means RAN is significantly
better than TransF on each test set (p < 0.01).

In terms of data preprocessing, for Chinese, we
segment all sentences with the word segmentation
toolkit THULAC.3 For the other languages, we run
the official script of WMT for tokenization. All
sentences of more than 256 words are removed and
are encoded using byte-pair encoding.4 We use a
joint vocabulary of 40K tokens for En-De, En-Fr
language pairs and 32K tokens for the others, and
a separate vocabulary of 32K tokens for Zh-En.

We use standard BASE implementation of Trans-
former which consists of a 6-layer encoder and a
6-layer decoder. By default, we set dk=dv=512
and use 2,048 hidden units in the FFN sub-layers.
The residual dropout is 0.1. As for RANs, we set
the dropout of attention as 0.2 to avoid over-fitting
except on En-Fr. For HC-SA, we follow the setting
of You et al. (2020) to replace the encoder self-
attention with distributions centered around i− 1
and i + 1 and the decoder self-attention with dis-
tributions centered around i− 1 and i, and set the
standard deviation as 1.0. All models are trained
for 150k steps except WMT14 (250k steps) and

3https://github.com/thunlp/THULAC-Python
4https://github.com/rsennrich/subword-nmt

En-Tr (20k steps). Training is performed using 8
x V100 GPUs for all language pairs except En-Tr
and Zh-En which use 2. When decoding, we use
a beam width of 4 and a length penalty of 0.6 for
the WMT tasks and a length penalty of 1.0 for the
Zh-En task. We report the case-sensitive BLEU
(Papineni et al., 2002) with Multi-bleu.perl 5 and
detokenized BLEU score with SacreBLEU 6 (Post,
2018) of the best checkpoint in the validation set.

3.2 Main Result

First, we leverage RAN to replace the self-attention
of encoder or decoder, respectively. Table 1
shows the overall results on the 10 language
pairs. Compared with TransF, our RAN models
consistently yield competitive or even better re-
sults against TransF on all datasets. Concretely,
0.13/0.16, 0.48/0.44 and 0.16/0.22 more average
BLEU/SacreBLEU are achieved by RAN-E, RAN-
D and RAN-ALL, respectively. Although different
languages have different linguistic and syntactic
structures, RAN can learn reasonable global atten-

5https://github.com/moses-smt
6https://github.com/mjpost/sacrebleu
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Figure 3: Translation speed (token/sec) varying batch
sizes and beam sizes. We set the beam size as 4 when
investigating effect of batch sizes, and set the batch size
as 100 when explore beam size’s influence.

tion patterns over the whole training corpus.
It is interesting to see that RAN-D performs

best, which significantly outperforms the TransF
on most of the language pairs. The biggest perfor-
mance gain comes from the low resource transla-
tion task Tr⇒En where RAN-D outperform TransF
by 0.97/1.0 BLEU/SacreBLEU points. We conjec-
ture that the position-based attention without token-
wise interaction is easier to learn and our RAN is
able to capture more generalized attention patterns.
By contrast, the dot-product self-attention is forced
to learn semantic relationship between tokens, and
may fall into sub-optimal local minima especially
when the training scale is low. This observation is
consistent with that in (Raganato et al., 2020). In
brief, the improvement indicates that NMT systems
can benefit from simplified decoders when training
data is insufficient. Besides, although both RAN-E
and RAN-D are effective, we find that their effects
can not be accumulated.

Next, we compare RAN with two related meth-
ods. To be fair, we only compare RAN-ALL to them,
where both encoder and decoder self-attention are
replaced as done in the two papers. From the
table, we can see the two methods significantly
decrease the performance over TransF, while our
model bridges the performance gap between Trans-
former and the models without the dot-product self-
attention, demonstrating the effectiveness of RAN.

3.3 Decoding Speedups

We plot the decoding speed as functions of batch
size and beam size in Figure 3. Each experiment is
conducted on the same hardware environment and
the numbers come from the average of 3 individual
runs. To maximize the speedup, we consider RAN-
ALL setting where both encoder and decoder are
accelerated. We can see that RAN-ALL speedups
the decoding by up to 23.6% with a batch size

Figure 4: Attention entropy of each encoder or decoder
layer.

of 100. In terms of beam size, RAN-ALL shows
consistent improvement about 1.2x. Note that the
previous studies of simplifying attention mecha-
nisms (You et al., 2020; Wu et al., 2019; Michel
et al., 2019) also report efficiency improvement of
similar magnitudes.

4 Analysis

In order to better understand RAN, we conduct
comprehensive empirical studies on its behavior on
the WMT14 En⇒De test set.

4.1 Distribution of RAN Weights

In this experiment, we investigate the difference
between the learned attention distribution of the
different models. To this end, first, we follow Tang
et al. (2019) to measure the concentration of at-
tention distribution with attention entropy (Ghader
and Monz, 2017):

EA(xt) = −
|x|∑
i=1

A(xt, xi)logA(xt, xi), (5)

where xi denotes the i-th token and A(xt, xi) repre-
sents the attention distribution at timestep t. Then,
we average the attention entropy over all timesteps
and then average the attention entropy over all
heads in each layer.

Figure 4 displays the entropy of attention distri-
bution. As for encoder, the attention distribution of
the TransF has the lowest entropy, which gets dis-
tributed first and then becomes concentrated again.
The attention entropy of Syn-R is clearly higher and
the attention distribution is uniform. In contrast,
the attention distribution of RAN-ALL is uniform
in the first layer and becomes increasingly concen-
trated, indicating that the RAN encoder extracts
more local information in the higher layers. The
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Enc L1 Enc L3 Enc L6

Dec L1 Dec L3 Dec L6

Figure 5: Histogram of encoder and decoder attention
weights. Enc/Dec denotes the encoder or decoder, and
L denotes the layer number.

Enc L1

Dec L1

Enc L6

Dec L6

Figure 6: Visualization of RAN Weights.

phenomena of TransF and Syn-R hold in the de-
coder, while RAN-ALL shows clearly low entropy
in all decoder layers.

Moreover, we show each model’s attention his-
tograms at layer 1, 3, and 6 in Figure 5. In the
encoder, the weights of Syn-R and RAN-ALL tend
to be distributed. In the decoder, the weights of
TransF and RAN-ALL stay near 0 and have smaller
variance, while Syn-R ’s weights are still distributed.

4.2 Visualization of RAN Weights

Since the learned attention weight matrices of RAN
are independent of input tokens, we can easily vi-
sualize the attention patterns of RAN over posi-

Self-attention of Encoder Self-attention of Decoder 

(a) TransF
(b) Syn-R

(c) R
A

N
-A

LL

Figure 7: Similarity of attention weights for each pair
of layers (WMT14 En⇒De). A dark cell means the
distributions are similar.

tions.7 In Figure 6, we find that in the encoder,
RAN focuses their attention on a local neighbor-
hood around each position. Specifically, in the last
layer of the encoder, the weights become more con-
centrated, potentially due to the hidden represen-
tations being contextualized. Interestingly, except
attending local windows to the current position, the
weights of the decoder are most concentrated in the
first token of target sequences. This may demon-
strate the mechanism of decoder self-attention that
the RAN decoder attends to source-side hidden
states based on global source sentence representa-
tions aggregated by the start tokens.

4.3 Analysis of Attention Weights across
Layers

To explore similarity of the attention weights un-
der the different attention mechanisms, we display
the Jensen-Shannon divergence (Lin, 1991) of at-
tention between each pair of layers in Figure 7.
The conclusions are as follows: First, the attention
similarity in TransF is not salient but the attention
distribution of adjacent layers are similar to some

7Each matrix is 80 × 80 since most sentences are not
longer than 80 tokens.
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Model
En⇒De

BLEU SacreBLEU
TransF 27.70 27.12
−Pos-E 13.14 12.90
−Pos-E+RAN-E 27.48 26.80
−Pos-D 27.66 27.07
−Pos-D+RAN-D 28.02 27.40

Table 2: Experimental results for ablating position em-
beddings and RAN.

Model
En⇒De En⇒Fr

BLEU SacreBLEU BLEU SacreBLEU
RAN-ALL 27.66 27.00 42.05 39.10

fixed 27.52 26.80 41.93 38.90
w/o LN&RES 27.15 26.50 41.14 38.20

Table 3: Experimental results of ablation study. RES
and LN denotes residual connection and layer normal-
ization, respectively.

extent. Second, there are no noticeable patterns
found in Syn-R. Third, as for RAN-ALL, the atten-
tion similarity is high especially in the decoder
(the JS-divergence ranges from 0.08 to 0.2), and is
remarkable between adjacent layers.

4.4 RAN vs. Positional Embedding

The positional embedding is very important to
Transformer, and lets the model be aware of word
orders. Our RAN learns the input-agnostic global
attentions which actually involves the positional
information. To verify this point, in this section,
we compare several variants of RAN by remov-
ing positional embeddings on EN⇒DE translation
task, as shown in Table 2. Removing the encoder
positional embeddings leads to a catastrophic per-
formance degradation over 14 points. This gap
can be recovered by replacing multi-head attention
with RAN. TransF is merely affected marginally by
removing the decoder position embeddings. After
applying RAN to decoder, we obtain even better
performance than TransF. This demonstrates that
our RAN indeed captures positional information.

4.5 Ablation Study

To analyze the impact of different components of
RAN, we investigate two variants: (1) RAN-ALL
fixed, where we fixed Initial Attention Matrices by
random initialization without training; (2) RAN-
ALL w/o LN&RES, where we removed layer nor-
malization and residual connection in Recurrent
Transition Module. The results on En⇒De and

Figure 8: Translation statistics on WMT14 English-
German with respect to lengths of source or target sen-
tences.

En⇒Fr translation tasks are listed in Table 3. Sur-
prisingly, we find that the fixed Initial Attention
Matrices does not lead to significant performance
degradation (-0.1 ∼ -0.2 BLEU). This shows we
can further reduce the parameters by fixing the Ini-
tial Attention Matrices. Moreover, removing layer
normalization and residual connection leads to a
performance drop, which illustrates their effective-
ness.

4.6 Effects on Sentence Length

We divide the WMT14 En⇒De test set into seven
bins by source sentence lengths and target sentence
lengths, respectively, and plot the performance of
each model in BLEU for each bin in Figure 8. We
observe that RANs yield better performance on the
short and medium-length sentences, while is not
good at processing long sentences. Specifically,
RAN-E performs worse on long source sentences
than TransF. The improvement of RAN-D mainly
comes from the performance improvement in trans-
lation of the sentences shorter than 50 and promis-
ing performance on the long sentences.
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Model
Summarization

Rouge-1 Rouge-2 Rouge-L
TransF 39.07 17.30 36.00
Syn-R 36.99 15.78 34.07
RAN-E 39.55 17.73 36.62
RAN-D 37.59 16.41 34.73
RAN-ALL 38.25 17.10 35.31

Model
Dialogue

BLEU-4 Rouge-L Meteor
TransF 3.12 16.54 8.05
Syn-R 2.87 14.82 7.74
RAN-E 3.47 16.54 8.33
RAN-D 3.30 16.32 8.03
RAN-ALL 3.50 16.66 8.21

Table 4: Experimental results on abstractive sum-
marization (CNN/Dailymail) and dialogue generation
(PersonaChat).

5 Application to Other Generation Tasks

To investigate the generalization of RAN, we con-
duct additional experiments on abstractive summa-
rization using the CNN/Dailymail dataset and dia-
logue generation using the PersonaChat dataset.8

On summarization task, all of the models are
trained for 300k steps on 2 GPUs with a batch
size of 128 sentences. For dialog generation, we
segment all dialog with BERT tokenizer9 and train
a SMALL Transformer for 20K steps. We use
NLG_Eval10 for evaluation and report the results
in Table 4. RANs achieve competitive results com-
pared to TransF, which demonstrates the general-
ization of RAN on other generation tasks.

6 Related Work

The introduction of attention mechanisms into
NMT can be traced back to Bahdanau et al. (2015)
and Luong et al. (2015), which are used to learn soft
word alignments between language pairs. Due to
the significant improvements in translation quality,
the attention models have become an critical com-
ponent of NMT models. More recently, Vaswani
et al. (2017) proposed Transformer that achieved
the state-of-the-art and soon becomes the most pop-
ular NMT architecture. The Self-Attention Net-
work (SAN), playing an important role in the Trans-
former, has been investigated and analyzed by a
number of recent studies (Sanh et al., 2019; Correia

8we directly use the dataset from
https://github.com/PaddlePaddle/Research/tree/master/NLP
/Dialogue-PLATO

9https://github.com/google-research/bert
10https://github.com/Maluuba/nlg-eval

et al., 2019; Voita et al., 2019; Michel et al., 2019).
These studies have shown that Transformer models
are over-parametrized and the self-attention models
learn redundant information that can be pruned in
various ways.

The observations motivate lots of attempts in
improvement of SAN, including 1) improving its
computation efficiency and 2) completely replacing
it with fixed or learnable global attention patterns.
For the former thread, several studies bias atten-
tion distributions towards more local areas (Yang
et al., 2018; Xu et al., 2019; Cui et al., 2019) or re-
place SAN with convolutional modules (Yang et al.,
2019; Wu et al., 2019), which are more in line with
the linguistic expectation. Xiao et al. (2019) share
attention weights in adjacent layers and enable effi-
cient re-use of hidden states in a vertical manner.

On the other hand, given that most attention
heads learn simple, and often positional patterns,
many researchers turn to substitute instance-wise
self-attention with global position-based attention
patterns. Concretely, Zhang et al. (2018) use aver-
age attention models in the decoder of Transformer.
You et al. (2020) model the attention distribution
as hard-coded Gaussian ones, and Raganato et al.
(2020) also replace all but one attention head of
each encoder layer with totally position based at-
tentive patterns. More recently, Tay et al. (2020)
propose Random Synthesizer in which the attention
matrices as trainable parameters that are random
initialized and trained with other model parameters.

Overall, our work is related to the second type
of approaches and most related to You et al. (2020)
and Tay et al. (2020). Unlike You et al. (2020) ap-
plying hard-coded Gaussian attention focusing on
local windows, the RAN can learn more flexible
attention distribution. Tay et al. (2020) allocate
different learnable attention matrix for every head
in each layer. In addition, so many individual ma-
trices are hard to train and do not reduce the overall
parameters at all. In contrast, our RAN uses the re-
current mechanism to refine the learnable attention
matrices layer by layer to improve the model capac-
ity, and has the advantages of saving parameters
and modeling relationships of attention between
adjacent layers.

7 Conclusion

In this paper, we considered a simpler Transformer
architecture for NMT without costly dot-product
self-attention. For this goal, a novel recurrent atten-
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tion mechanism (RAN) is proposed, which takes
the Initial Attention Matrices as a whole and update
it by a Recurrent Transition Module recurrently.
Experiments on 10 representative translation tasks
show effectiveness of RAN. In the future, we will
explore the application of RAN on cross-attention.
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