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Abstract

Multi-label document classification, associat-
ing one document instance with a set of rel-
evant labels, is attracting more and more re-
search attention. Existing methods explore
the incorporation of information beyond text,
such as document metadata or label structure.
These approaches however either simply uti-
lize the semantic information of metadata or
employ the predefined parent-child label hi-
erarchy, ignoring the heterogeneous graphical
structures of metadata and labels, which we be-
lieve are crucial for accurate multi-label doc-
ument classification. Therefore, in this pa-
per, we propose a novel neural network based
approach for multi-label document classifica-
tion, in which two heterogeneous graphs are
constructed and learned using heterogeneous
graph transformers. One is metadata hetero-
geneous graph, which models various types of
metadata and their topological relations. The
other is label heterogeneous graph, which is
constructed based on both the labels’ hierarchy
and their statistical dependencies. Experimen-
tal results on two benchmark datasets show the
proposed approach outperforms several state-
of-the-art baselines.

1 Introduction

With the rapid growth of scientific documents, it
is difficult to track related literature manually. For
example, there are more than 200,000 publications
related to COVID-19 by April 2021. Therefore,
it is crucial to automatically assign publications
with their corresponding categories. Multi-label
document classification (MLDC), associating one
document instance with a set of most relevant la-
bels, is attracting more and more research attention.

To tackle the problem, early work focused on
learning semantic representations of the input text
using some text encoders. For example, Liu et al.

⇤Corresponding author.

Venue

NAACL

Venue

NAACL

Reference

...

Reference

...
Reference

 Glove: Global 
Vectors ...

Reference

 Glove: Global 
Vectors ...

Reference

Attention is All 
You Need

Reference

Attention is All 
You Need

Author

Jacob Devlin

Author

Jacob Devlin

Author

M-W Chang

Author

M-W Chang

Author

...

Author

...

Document

BERT: Pre-
training of ...

Document

BERT: Pre-
training of ...

(a) Metadata Graph.

Natural 
language 

processing

Topic 
model

Natural 
language

Sequence 
labeling

0.66

0.620.62

0.54
0.33

Machine 
learning

0.43 0.40

(b) Label Graph.

Figure 1: An example of a document with metadata and
the label relationship in the MAG-CS dataset. In sub-
figure (b), the arrow in black represents the hierarchy
relationship between labels and the arrow in blue rep-
resents the statistical dependency relationship between
labels.

(2017) proposed the XML-CNN model using a con-
volutional neural network and You et al. (2018) pro-
posed the AttentionXML model using a recurrent
neural network as text semantic encoder. Recently,
Chang et al. (2020) proposed the X-Transformer
model, a deep transformer model fine-tuned for
MLDC.

Different from the aforementioned approaches,
there have been attempts exploring information be-
yond text for MLDC. On the one hand, the informa-
tion associated with labels such as label semantics
and the relationships between labels are employed.
For example, Xiao et al. (2019) generated label-
specific document representation using the label
semantic information. You et al. (2018) improved
the classification performance by constructing a
hierarchical label tree. To model label dependency,
MLDC is cast as a seq2seq task (Yang et al., 2018).
On the other hand, the document metadata is in-
corporated. For example, to employ the metadata
information, the representation of the document
and its metadata are learned in the same embedding
space (Zhang et al., 2021). The label hierarchy is
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also applied to regularize the output probability of
each child label by its parents.

However, existing methods have two limitations:
(1) the heterogeneous structure of a document’s
metadata is ignored. As shown in Figure 1a, for
the BERT paper (Devlin et al., 2018), a heteroge-
neous metadata graph can be constructed which
consists of multiple authors, multiple references
and a publication venue. It can be observed that
different types of nodes convey information in dif-
ferent granularity. It is worth noting that labels
can also be categorized in different granularity.
For example, in Figure 1b, yellow nodes are more
coarse-grained compared to blue nodes. The node
“NAACL” of the venue type in Figure 1a carries
the coarse-grained information relating to the label
node “Natural language processing” in Figure 1b,
while the node “Glove: Global Vectors for Word
Representation” of the reference type in Figure 1a
contains the fine-grained information relating to
the label node “Word Embedding” in Figure 1b.
We believe that modeling such metadata with a het-
erogeneous graph structure helps to improve the
accuracy of final classification. (2) the implicit sta-
tistical dependencies between labels are ignored.
As shown in Figure 1b, there might exist statistical
dependencies between labels. For example, the la-
bel “topic model” might have a strong association
with “machine learning”. But such information is
not captured in the label hierarchy.

To tackle the above limitations, in this paper, we
propose a novel neural network based approach
for multi-label document classification using two
heterogeneous graphs. Specifically, a metadata het-
erogeneous graph with four node types and five
edge types is constructed to capture the metadata
information and a label heterogeneous graph with
two edge types is constructed to capture both the
label hierarchy and labels’ statistical dependencies.
Both graphs are learned using the heterogeneous
graph transformer. Moreover, to fully utilize the
label information, the label-specific document rep-
resentation is learned.

The main contributions of this paper are listed
as follows:

• A novel neural network based approach is pro-
posed to utilize the information learned from
two heterogeneous graphs. As far as we know,
we are first to incorporate both the document
metadata and the label structure information
using the heterogeneous graphs.

• Experimental results on two benchmark
datasets show that the proposed approach out-
performs existing state-of-the-art approaches
for multi-label document classification.

2 Related Work

Based on the information utilized for model learn-
ing, approaches for multi-label document classi-
fication can be categorized into two types: using
textual information only or additionally incorporat-
ing external information.

For approaches solely based on textual informa-
tion, early attempts (Babbar and Schölkopf, 2017;
Jain et al., 2016) employed bag-of-words represen-
tations. Recently, deep learning based approaches
were proposed to learn better text representations.
For example, Liu et al. (2017) proposed to use
a convolutional neural network for text encoding.
You et al. (2018) proposed a neural network ap-
proach with the attention mechanism to capture
the most relevant part of the input text for each
label. Chang et al. (2020) employed a pre-trained
Transformer (Vaswani et al., 2017) to capture tex-
tual information for text classification. However,
such methods ignore the information beyond text,
which we believe is crucial for accurate multi-label
document classification.

Other approaches attempted to incorporate ex-
ternal information, which can be further classified
into two categories, using the document metadata
and using label information. For approaches utiliz-
ing metadata, Tang et al. (2015) proposed a neural
network approach for sentiment analysis which in-
corporates user and product meta information by
a vector space model. Kim et al. (2019) employed
categorical metadata signals as additional features
to train a deep neural network classifier. (Zhang
et al., 2021) developed an approach called MATCH,
which pre-trained the embeddings of text and meta-
data in the same space, and used the Transformer
to capture the relationship between them. Never-
theless, these methods ignored the heterogeneous
structure of a document’s metadata.

Approaches using label information have con-
sidered label semantic information, label hierarchy
and label dependency. To incorporate label seman-
tic information, Du et al. (2019) proposed an in-
teractive mechanism that incorporates word-level
matching signals into the text classification task.
LSAN (Xiao et al., 2019) leveraged label seman-
tic information to determine the semantic connec-
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Figure 2: The overall architecture of the proposed model for multi-label document classification. The description
of the notations in the figure can be found in Table 1.

tion between each label and the document. Pappas
and Henderson (2019) proposed the GILE model,
which is a joint input label embedding model for
neural text classification. To incorporate label hier-
archy, Gopal and Yang (2015) employed a recursive
regularization to encourage the similarity between
the child classifiers and their parent classifier. Peng
et al. (2018) further extended this regularization
to a text semantic encoder based on graph con-
volutional neural networks. Zhang et al. (2018)
constructed a label dependency graph to model the
label embedding in the label space based on the
graph prior. Yang et al. (2018) converted multi-
label document classification into a Seq2Seq task,
and predicted label sequences with label depen-
dence. Zhang et al. (2021) proposed the MATCH
model and employed different ways to regularize
the parameters and output probability of each child
label by its parents. However, these methods can-
not jointly consider label semantic information, la-
bel hierarchy, and label dependency.

Our approach is partly inspired by MATCH
(Zhang et al., 2021), but with the following dif-
ferences: (1) the heterogeneous structure of the
document’s metadata is modeled in the proposed
approach, which is ignored in (Zhang et al., 2021);
and (2) the proposed approach incorporates the
implicit statistical dependencies between labels,
which are not considered in (Zhang et al., 2021).

Notation Description
d The d-th document
li The i-th label
ci Label embedding of li
wj The j-th word in document text
mt The t-th metadata of document
ŷi Predicted score of li
yi Ground-truth label of li
ŷd Predicted score for all labels of d
yd Ground-truth label for all labels of d
h
(L)
d,wj

Word representation of wj in d

h
meta
d Metadata representation of d

h
label
i Label representation of li

h
text
d Label-specific text representation of d

h
doc
d Label-specific document representation of d

Table 1: Notations used in the model.

3 Methodology

3.1 Problem Definition

In traditional approaches, the multi-label docu-
ment classification task is to learn a mapping func-
tion f : Wd ! ŷd using only textual informa-
tion of document d, where ŷd is the relevant la-
bels of document d and Wd is the word sequence
w1, w2, ..., w|Wd|. However, as shown in Figure 1a
and 1b, the information beyond text (such as the
metadata of documents, the label semantic informa-
tion, and the label hierarchy) is crucial for accurate
document classification.
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Figure 3: The schema and meta relations of the meta-
data heterogeneous graph.

Therefore, in this paper, not only the document
text but also the information of the metadata and
labels is considered. Given a dataset, a label set
is denoted as L = {l1, l2, ..., l|L|}, and a label hi-
erarchy is represented as a directed acyclic graph
Ghierarchy = (L, Ehierarchy), where Ehierarchy is
the set of the edges representing the parent-child re-
lationships between labels. The semantic informa-
tion of each label is represented as an �-dimension
embedding vector ci 2 R�. Given a document
d 2 D and its word sequence Wd, its associated
metadata set Md is denoted as:

Md = (m1,m2, ...,m|Md||mi 2 M) (1)

Here, M is the set of all metadata in the dataset.
Take the BERT paper in Figure 1a as an example,
Wd is its title and abstract, Md is a set of its meta-
data such as the author of the paper, ‘Jacob Devlin’,
and the paper it cited, ‘Attention is All You Need’.

The task aims to learn a mapping function f :
(Wd,Md,L) ! ŷd that assigns the most relevant
labels ŷd to the document d, while yd = {yd,i 2
{0, 1}|L|} is the ground truth labels of the docu-
ment d.

3.2 Metadata Heterogeneous Graph

Construction

In this subsection, we present how to construct a
metadata heterogeneous graph (MHG) based on
the relationship between documents and their meta-
data.

The MHG schema is shown in Figure 3a, which
contains four types of nodes such as document,
author, venue, and reference. In addition, there
are five types of edges in MHG as shown in Figure
3b. It is worth noting that the document ! venue

relationship is ignored as the node of the venue
type is connected with a large number of nodes of
the document type, which increases the computa-
tional complexity. Taking the MAG-CS dataset as
an example, the number of document ! venue

edges is 705, 407, the number of venue nodes is
105, on average, each venue is connected to 6, 718
document.

After defining the MHG schema, mathemat-
ically, the MHG can be denoted as Gmeta =
(Vmeta, Emeta,Ameta,Rmeta), where Vmeta is the
combined set of nodes representing all documents
D and nodes representing metadata M, Emeta is
the set of edges, Ameta is a set of four node types,
and Rmeta is a set of five edge types. In the MHG,
each node vmeta and each edge emeta are associ-
ated with their type mapping functions ⌧(vmeta) :
Vmeta ! Ameta and �(emeta) : Emeta ! Rmeta.
Taking Figure 1a as an example, the “NAACL”
node belongs to Vmeta, but its type venue is a node
type belonging to Ameta.

In MHG, an edge emeta = (vi, vj) indicates the
relevance between node vi and vj , whose weight is
determined by

A
�
�
(vi,vj)

�

i,j =

⇢
1, if i is metadata of j,
0, otherwise.

A
�
�
(vj ,vi)

�

j,i =

⇢
1, if j has metadata i,

0, otherwise.

(2)

where �
�
(vi, vj)

�
is the edge type of (vi, vj) and

A is the adjacency matrix of Gmeta. For the re-

verse edge (vj , vi), A
�
�
(vj ,vi)

�

j,i needs to be calcu-
lated except for vj with venue type. For each edge
�(emeta) type, there is a corresponding adjacency
matrix A

�(emeta) 2 R|Vmeta|⇥|Vmeta| in the MHG.

3.3 Label Heterogeneous Graph

Construction

In this subsection, we introduce how to construct a
label heterogeneous graph based on the label hier-
archy and statistical dependencies between labels.

Unlike MHG, LHG contains only one type of
nodes label and two types of edges representing
label hierarchy and statistical dependency. Take
the “Topic Model” label in Figure 1b as an ex-
ample, (“NLP”, is_the_parent_label_of , “Topic
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Model”) is an edge representing the label hierarchy,
(“Topic Model”, depends_on, “Machine Learn-
ing”) is an edge representing the label statistical
dependency.

Therefore, we define label heterogeneous graph
as Glabel = (Vlabel, Elabel,Alabel,Rlabel), where
Vlabel is the set of the label nodes, Elabel is the
set of all edges, Alabel is the set containing only
the label node type, and Rlabel is the set consisting
of two edge types.

A label hierarchy edge (vi, vj) indicates the
parent-child relevance of two label node vi and
vj , whose weight is determined by

A
hierarchy
i,j =

⇢
1, if i is parent of j,
0, otherwise. (3)

where A
hierarchy is the adjacency matrix of the

label hierarchy in Glabel.
Following Chen et al. (2019), the probability be-

tween two labels is employed to represent the label
statistical dependency. For example, as shown in
Figure 1b, the label statistical dependency is in
the form of conditional probability, i.e., P (B|A)
which denotes the probability of the presence of
B when A appears. In addition, we use the thresh-
old � to filter noisy edges in the label statistical
dependency edges. Thus, we can obtain the ad-
jacency matrix A

dependency of the label statistical
dependency in Glabel as

A
dependency
i,j =

⇢
1, if P (j|i) � �,

0, if P (j|i) < �.
(4)

The adjacency matrix of LHG can be defined as
A = {Adependency

, A
hierarchy}.

3.4 Model Architecture

In this subsection, we introduce the architecture of
the proposed model as shown in Figure 2. It con-
sists of three components: (1) an encoding layer,
(2) a label-specific document representation layer
and (3) a classification layer. The first layer aims to
obtain the text representation and the metadata rep-
resentation of an input document, and also the label
representation based on the label heterogeneous
graph. The second layer is designed to generate a
label-specific document representation by fusing
text representation, label semantic representation
and metadata representation. Finally, the last layer
employs the label-specific document representa-
tion and the label representation based on LHG to
predict the most relevant labels.

Encoding Layer The encoding layer consists of
three parts. The first part is a text semantic encoder
built on the multi-layers Transformer (Vaswani
et al., 2017) to capture the text semantics infor-
mation. The second part is a metadata heteroge-
neous graph where the heterogeneous structure of
the document’s metadata is learned through the het-
erogeneous graph transformer (HGT) (Hu et al.,
2020). The last part is a label heterogeneous graph
through which the label representation is learned
via HGT.

The input to the Text Semantic Encoder is a word
sequence of a document, prepended by a [CLS]
token as typically done in BERT (Devlin et al.,
2018). That is, for a document d, the input to the
Text Semantic Encoder, denoted as h(0)d , is:

h
(0)
d = [e[CLS]; ew1 ; ew2 ; ...; ew|Wd|

]. (5)

Here, h(0)d 2 R(1+|Wd|)⇥�, where � is the dimen-
sion of the word representation space and ew1 2 Rk

is the word embedding of the token w1. One Trans-
former layer can be described by

zi = Norm(ei +MHA(ei, h
(0)
d )),

hi = Norm(zi + FFN(zi)).
(6)

where Norm(.) is the normalization layer,
MHA(.) is multi-head attention operator, and
FFN(.) is the position-wise feed-forward network
(Vaswani et al., 2017). We can stack L Trans-
former layers to model text semantics, where the
l-th layer h

(l)
d is also the input of the (l + 1)-th

layer. Therefore, we can obtain the word represen-
tation h

(L)
d 2 R(1+|Wd|)⇥� and text representation

h
(L)
d,[CLS] 2 R� of document text through the text

semantic encoder.
In order to model the heterogeneous graph struc-

ture of metadata and label, the heterogeneous graph
transformer (HGT) (Hu et al., 2020) is employed
to build two heterogeneous graph neural networks.
HGT consists of three components: Heterogeneous
Mutual Attention ATT (.), Heterogeneous Mes-
sage Passing MSG(.) and Target-Specific Aggre-
gation AGG(.). When t is the target node, the
layer-wise propagation rule of the HGT at layer
l � 1 2 [0, L] is defined as:

h(l)[t] = AGG
⇣
t, h̃(l)[t]

⌘
+ h(l�1)[t]

h̃(l)[t] = �
8s2N(t)

⇣
ATT (s, e, t)�MSG(s, e, t)

⌘ (7)
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Here e is the edge between s and t, and N(t) is
all neighbor nodes of t. h(l)[t] 2 R� is the repre-
sentation of the target node t at the l-th layer. In
the metadata heterogeneous graph neural network,
we set the document node as the target node, and
use the text representation hd,[CLS] 2 R� as the
embedding of the document d node. We can obtain
the metadata representation of document d by:

h
meta
d = MHG(Gmeta,d, h

(L)
d,[CLS]) (8)

Here Gmeta,d is a sub-graph composed of the docu-
ment node d and its neighbor nodes.

In the label heterogeneous graph neural network,
we set the label nodes as target nodes, and use
label embedding C to initialize the embedding of
label nodes. We can obtain the label representation
h
label 2 R|L|⇥�:

h
label = LHG(Glabel, C) (9)

Different from the metadata heterogeneous graph
neural network, to obtain the representation of the
labels, Glabel is set as full-graph.

Label-specific Document Representation Layer

The label-specific document representation layer
aims to obtain the label-related representation
based on the document text and metadata. To ob-
tain the label-specific text representation h

text
d 2

R|L|⇥� using the attention mechanism, we con-
struct the query vector Qlabel 2 R|L|⇥� using label
semantics embedding C and construct the key vec-
tor Kd and the value vector Vd using the represen-
tation of the document d, h(L)d :

Qlabel = tanh(Linearq(C))

Kd = tanh(Lineark(h
(L)
d ))

Vd = tanh(Linearv(h
(L)
d ))

Att
label
d = Softmax(Qlabel �K

T
d )

h
text
d = tanh(Attlabeld � Vd)

(10)

Here, Linear(.) is a linear transform layer, tanh(.)
is the activation function, Attlabeld 2 R|L|⇥(1+|Wd|)

is the attention score between the labels and words,
and � is the dot product operation. Then, we con-
catenate the text representation h

text
d,i along the i-th

label and the document d’s metadata representation
h
meta
d :

h
doc
d,i = tanh(Linear(htextd,i � h

meta
d )) (11)

Here, hdocd 2 R|L|⇥� is the label-specific document
d representation with the metadata.

MAG-CS PubMed

#Training Docs 564,340 718,837
#Validation Docs 70,534 89,855
#Testing Docs 70,533 89,854
#Labels 15,809 17,963
#Labels / Doc 5.60 7.78
Vocabulary Size 425,345 776,975
#Words / Doc 126.33 198.97
#Authors 818,927 2,201,919
#Venues 105 150
#Document-Author Edges 2,274,546 5,989,142
#Document-Venue Edges 705,407 898,546
#Document-Document Edges 1,518,466 4,455,702
#Edges in Taxonomy 27,288 22,842
#Layers of Taxonomy 6 15

Table 2: Dataset statistics.

Classification Layer The classification layer
aims to assign the most relevant labels ŷd to the doc-
ument d. We dot product the label representation
h
label with the label-specific document represen-

tation h
doc
d , and then use the sigmoid activation

function to obtain the multi-label prediction:

ŷd = sigmoid(hdocd � h
label) (12)

Finally, the cross-entropy loss is used:

JBCE =�
X

d2D

X

l2L

⇣
yd,llog(ŷd,l)

+ (1� yd,l)log(1� ŷd,l)
⌘ (13)

4 Experiments

In this section, we evaluate the proposed model
on two large-scale datasets for extreme multi-label
document classification (with the number of labels
more than 15,000).

4.1 Experiments Setting

Datasets Two large-scale datasets1 constructed
by Zhang et al. (2021) are employed:

• MAG-CS: focusing on the computer science
domain based on the Microsoft Academic
Graph (MAG). Papers published in 105 top
CS conferences from 1990 to 2020 are col-
lected.

• PubMed: containing papers published in 150
top journals in medicine from 2010 to 2020.
Each paper is tagged with related MeSH

1
https://drive.google.com/file/d/

1pn9WhPxIR4J7Wgm5_AJLgNHvTaMexDcC
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Dataset Method P@1=nDCG@1 P@3 P@5 nDCG@3 nDCG@5

MAG-CS

XML-CNN 0.8656 ± 0.0006 0.7028 ± 0.0010 0.5756 ± 0.0010 0.7842 ± 0.0009 0.7407 ± 0.0009
MeSHProbeNet 0.8738 ± 0.0016 0.7219 ± 0.0059 0.5927 ± 0.0075 0.8020 ± 0.0048 0.7588 ± 0.0067
AttentionXML 0.9035 ± 0.0009 0.7682 ± 0.0017 0.6441 ± 0.0020 0.8489 ± 0.0016 0.8145 ± 0.0020
Star-Transformer 0.8569 ± 0.0011 0.7089 ± 0.0010 0.5853 ± 0.0011 0.7876 ± 0.0008 0.7486 ± 0.0011
BERTXML 0.9011 ± 0.0027 0.7532 ± 0.0015 0.6238 ± 0.0020 0.8355 ± 0.0025 0.7954 ± 0.0024
Transformer 0.8805 ± 0.0007 0.7327 ± 0.0006 0.6024 ± 0.0010 0.8129 ± 0.0008 0.7703 ± 0.0010
MATCH 0.9190 ± 0.0012 0.7763 ± 0.0023 0.6457 ± 0.0030 0.8610 ± 0.0022 0.8223 ± 0.0030
Ours w/o LHG 0.9160 ± 0.0009 0.7867 ± 0.0005 0.6659 ± 0.0005 0.8684 ± 0.0007 0.8387 ± 0.0008
Ours w/o MHG 0.9088 ± 0.0021 0.7815 ± 0.0033 0.6620 ± 0.0026 0.8596 ± 0.0033 0.8296 ± 0.0030
Ours 0.9312 ± 0.0025 0.8022 ± 0.0013 0.6797 ± 0.0015 0.8847 ± 0.0017 0.8546 ± 0.0019

PubMed

XML-CNN 0.9084 ± 0.0004 0.7182 ± 0.0007 0.5857 ± 0.0004 0.7790 ± 0.0007 0.7075 ± 0.0005
MeSHProbeNet 0.9135 ± 0.0021 0.7224 ± 0.0066 0.5878 ± 0.0070 0.7836 ± 0.0057 0.7109 ± 0.0065
AttentionXML 0.9125 ± 0.0003 0.7414 ± 0.0017 0.6169 ± 0.0016 0.7979 ± 0.0013 0.7341 ± 0.0013
Star-Transformer 0.8962 ± 0.0023 0.6990 ± 0.0014 0.5641 ± 0.0008 0.7612 ± 0.0015 0.6869 ± 0.0011
BERTXML 0.9144 ± 0.0014 0.7362 ± 0.0046 0.6032 ± 0.0050 0.7949 ± 0.0038 0.7247 ± 0.0045
Transformer 0.8971 ± 0.0050 0.7299 ± 0.0029 0.6003 ± 0.0018 0.7867 ± 0.0034 0.7178 ± 0.0027
MATCH 0.9168 ± 0.0013 0.7511 ± 0.0029 0.6199 ± 0.0029 0.8072 ± 0.0027 0.7395 ± 0.0029
Ours w/o LHG 0.9165 ± 0.0010 0.7556 ± 0.0013 0.6345 ± 0.0015 0.8101 ± 0.0013 0.7497 ± 0.0014
Ours w/o MHG 0.9230 ± 0.0015 0.7662 ± 0.0010 0.6440 ± 0.0004 0.8201 ± 0.0011 0.7598 ± 0.0005
Ours 0.9352 ± 0.0012 0.7900 ± 0.0012 0.6662 ± 0.0013 0.8420 ± 0.0012 0.7822 ± 0.0014

Table 3: Experimental Results on MAG-CS and PubMed datasets.

terms2, which are viewed as labels in the
MLDC task.

For both datasets, metadata information (in-
cludes disambiguated authors, venues, and refer-
ences) is collected from MAG. The text informa-
tion of each document is its title and abstract. Ta-
ble 2 shows the statistics of the two datasets.

Baselines The following extreme multi-label
document classification methods and transformer-
based models are chosen as the baselines.

• XML-CNN (Liu et al., 2017) is an extreme
multi-label document classification model
built on convolutional neural networks.

• MeSHProbeNet (Xun et al., 2019) solves the
problem of multi-label document classifica-
tion with recurrent neural networks and multi-
ple MeSH “probes”.

• AttentionXML (You et al., 2018) is an
extreme multi-label document classification
model that is built on RNN with a label-aware
attention layer.

• Transformer (Vaswani et al., 2017) is com-
posed of multiple self-attention layers.

• Star-Transformer (Guo et al., 2019) sparsi-
fies the fully connected attention in the Trans-
former to a star-shaped structure.

• BERTXML (Xun et al., 2020) is a model in-
spired by BERT (Devlin et al., 2018) with a
multi-layer Transformer and multiple [CLS]

2
https://www.nlm.nih.gov/mesh/meshhome.

html

symbols.
• MATCH

3 (Zhang et al., 2021) is a multi-
label document classification method with
metadata-aware Transformer and label hier-
archy.

Evaluation Metrics Two widely used metrics,
precision at top k (P@k) and Normalized Dis-
counted Cumulative Gains at top k (nDCG@k),
are used to evaluate the model performance 4.

P@k =
1

k

kX

i=1

yd,rank(i).

DCG@k =
kX

i=1

yd,rank(i)

log(i+ 1)
,

nDCG@k =
DCG@k

Pmin(k,||yd||0)
i=1

1
log(i+1)

.

(14)

Here, yd 2 {0, 1}|L| is the ground truth label vector
of the document d, rank(i) is the index of the i-th
highest predicted label .

Parameter Setting For all methods, the embed-
ding dimension k is set to 100, and GloVe.6B.100d
(Pennington et al., 2014) is used to initialize word
embeddings. For our method, we set the hidden
vector dimension � = 100, the number of the text

3
https://github.com/yuzhimanhua/MATCH

4
https://github.com/yuzhimanhua/MATCH/

blob/master/deepxml/evaluation.py
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(a) MAG-CS (b) PubMed

Figure 4: Ablation analysis of Comprehensive Label Information.

encode layers L = 4, the threshold of label depen-
dency � = 0.3, and the number of attention heads
2. The training is performed using Adam (Kingma
and Ba, 2014) with a batch size of 200 and a learn-
ing rate of 1e-3, and the maximum training epochs
is 20. The compared methods use their default
parameter setting.

4.2 Results

Table 3 shows the performance comparison of the
proposed approach with other baselines. Experi-
ments are conducted three times with the mean and
standard deviations reported. According to Eq.14,
it is easy to show that P@1 = nDCG@1 if each
document has at least one true label.

It can observed from Table 3 that: (1) the pro-
posed model is significantly better than all com-
pared models on both datasets. (2) the proposed
model is also superior to the two ablation mod-
els Ours without LHG and Ours without MHG on
both datasets. It shows that the label heteroge-
neous graph and the metadata heterogeneous graph
are effective for the MLDC task. (3) The label-
aware models (such as AttentionXML, MATCH
and Ours) significantly outperform other models
for MLDC on both datasets. It shows that label-
awareness is essential, and modeling label informa-
tion can further improve the classification perfor-
mance.

It is worth noting that the performance improve-
ment by incorporating the label heterogeneous
graph is more significant on PubMed. In specific,
on MAG-CS, the proposed model has an average
absolute improvement of 1.5% on five metrics in
comparison with ours w/o LHG, while on PubMed,
the improvement is 2.9%. It might attribute to the
different label dependencies in the two datasets.
When the label dependency threshold is � = 0.3,

the label dependency edge number on MAG-CS is
67, 620, while in the PubMed dataset, the number
is 88, 390.

4.3 Effect of Comprehensive Label Info

In both datasets, the label hierarchy is available and
we construct the label statistical dependencies by
calculating the conditional probability between the
labels. To explore the effectiveness of each type
of relationships, we conduct an ablation analysis.
Three ablation versions of the proposed model are
constructed: No-Hierarchy, No-Dependency, Nei-
ther. For No-Hierarchy, we remove the edges of
the label hierarchical relationship from the label
heterogeneous graph. We construct the model vari-
ants, No-Dependency and Neither, in a similar way
by removing edges of their corresponding types.

The performance comparisons of the proposed
model with its three ablations versions is shown in
Figure 4. It can be observed that: (1) The proposed
model outperforms No-Hierarchy, No-Dependency,
Neither in all metrics, indicating that both types
of label relationships play a vital role in MLDC
task. (2) Among the three ablation versions, Nei-
ther has the worst performance which shows that
the label hierarchical relationship and the label de-
pendency relationship are complementary. It can
also be observed that the method with label hier-
archy achieves larger improvement. It is because
that the label hierarchy information comes from
the rigorous label taxonomy, while the label depen-
dency information comes from the label probability
statistics.

5 Conclusions

We propose a novel neural network approach for
multi-label document classification, in which two
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heterogeneous graphs are incorporated and learned
using heterogeneous graph transformers. One is
the metadata heterogeneous graph, which models
various type of metadata and their topological rela-
tions. The other is the label heterogeneous graph,
which is constructed based on the labels’ hierar-
chy and statistical dependency. Experiments on
two datasets show the superior performance of the
proposed approach over existing approaches. In ad-
dition, results of the ablation experiments show the
effectiveness of incorporating both the metadata
heterogeneous graph and the label heterogeneous
graph for multi-label document classification.
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