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Abstract

Recent studies have shown that deep neural
network-based models are vulnerable to inten-
tionally crafted adversarial examples, and var-
ious methods have been proposed to defend
against adversarial word-substitution attacks
for neural NLP models. However, there is
a lack of systematic study on comparing dif-
ferent defense approaches under the same at-
tacking setting. In this paper, we seek to
fill the gap through comprehensive studies on
the behavior of neural text classifiers trained
with various defense methods against repre-
sentative adversarial attacks. In addition, we
propose an effective method to further im-
prove the robustness of neural text classifiers
against such attacks, and achieved the highest
accuracy on both clean and adversarial exam-
ples on AGNEWS and IMDB datasets, outper-
forming existing methods by a significant mar-
gin. We hope this study could provide use-
ful clues for future research on text adversar-
ial defense. Codes are available at https://
github.com/RockyLzy/TextDefender.

1 Introduction

Deep neural networks have achieved impressive re-
sults on NLP tasks. However, they are vulnerable to
intentionally crafted textual adversarial examples,
which do not change human understanding of sen-
tences but can easily fool deep neural networks. As
a result, studies on adversarial attacks and defenses
in the text domain have drawn significant attention,
especially in recent years (Ebrahimi et al., 2017;
Gao et al., 2018; Li et al., 2018; Ren et al., 2019a;
Jin et al., 2020a; Li et al., 2020; Jia et al., 2019; Zhu
et al., 2020; Zheng et al., 2020; Zhou et al., 2020;
Garg and Ramakrishnan, 2020; Zeng et al., 2021).
The goal of adversarial defenses is to learn a model
that is capable of achieving high test accuracy on
both clean (i.e., original) and adversarial examples.
We are eager to find out which adversarial defense
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method can improve the robustness of NLP models
to the greatest extent while suffering no or little
performance drop on the clean input data.

To the best of our knowledge, existing adversar-
ial defense methods for NLP models have yet to be
evaluated or compared in a fair and controlled man-
ner. Lack of evaluative and comparative researches
impedes understanding of strengths and limitations
of different defense methods, thus making it diffi-
cult to choose the best defense method for practical
use. There are several reasons why previous studies
are not sufficient for comprehensive understanding
of adversarial defense methods. Firstly, settings of
attack algorithms in previous defense works are far
from “standardized”, and they vary greatly in ways
such as synonym-generating methods, number of
queries to victim models, maximum percentage of
words that can be perturbed, etc. Most defense
methods have only been tested on very few attack
algorithms. Thus, we cannot determine whether
one method consistently performs better than oth-
ers from experimental data reported in the literature,
because a single method might demonstrate more
robustness to a specific attack while showing much
less robustness to another. Second, some defense
methods work well only when a certain condition is
satisfied. For example, all existing certified defense
methods except RanMASK (Zeng et al., 2021) as-
sume that the defenders are informed of how the
adversaries generate synonyms (Jia et al., 2019;
Zhou et al., 2020; Dong et al., 2021). It is not a
realistic scenario since we cannot impose a limi-
tation on the synonym set used by the attackers.
Therefore, we want to know which defense method
is more effective against existing adversarial at-
tacks when such limitations are removed for fair
comparison among different methods.

In this study, we establish a reproducible and
reliable benchmark to evaluate the existing textual
defense methods, which can provide detailed in-
sights into the effectiveness of defense algorithms

https://github.com/RockyLzy/TextDefender
https://github.com/RockyLzy/TextDefender
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with the hope to facilitate future studies. In par-
ticular, we focus on defense methods against ad-
versarial word substitution, one of the most widely
studied attack approaches that could cause major
threats in adversarial defenses. In order to rigor-
ously evaluate the performance of defense meth-
ods, we propose four evaluation metrics: clean
accuracy, accuracy under attack, attack success
rate and number of queries. The clean accuracy
metric measures the generalization ability of NLP
models, while the latter three measure the model
robustness against adversarial attack. To systemati-
cally evaluate the defense performance of different
textual defenders, we first define a comprehensive
benchmark of textual attack methods to ensures the
generation of high-quality textual adversarial ex-
amples, which changes the output of models with
human imperceptible perturbation to the input. We
then impose constraints to the defense algorithms
to ensure the fairness of comparison. For example,
the synonyms set used by adversaries is not allowed
to be accessed by any defense method. Finally, we
carry out extensive experiments using typical attack
and defense methods for robustness evaluation, in-
cluding five different attack algorithms and eleven
defense methods on both text classification and
sentiment analysis tasks.

Through extensive experiments, we found that
the gradient-guided adversarial training methods
exemplified by PGD (Madry et al., 2018) and
FreeLB (Zhu et al., 2020) can be further improved.
Furthermore a variant of the FreeLB method (Zhu
et al., 2020) outperforms other adversarial defense
methods including those proposed years after it. In
FreeLB, gradient-guided perturbations are applied
to find the most vulnerable (“worst-case”) points
and the models are trained by optimizing loss from
these vulnerable points. However, magnitudes of
these perturbations are constrained by a relatively
small constant. We find that by extending the
search region to a larger `2-norm through increas-
ing the number of search steps, much better accu-
racy can be achieved on both clean and adversarial
data in various datasets. This improved variant of
FreeLB, denoted as FreeLB++, improves the clean
accuracy by 0.6% on AGNEWS. FreeLB++ also
demonstrates strong robustness under TextFooler
attack (Jin et al., 2020b), achieving a 13.6% accu-
racy improvement comparing to the current state-
of-the-art performance (Zeng et al., 2021). Simi-
lar results have been confirmed on IMDB dataset.

We believe that our findings invite researchers to
reconsider the role of adversarial training, and re-
examine the trade-off between accuracy and ro-
bustness (Zhang et al., 2019). Also, we hope to
draw attentions on designing adversarial attack and
defense algorithms based on fair comparisons.

2 Background

2.1 Textual Adversarial Attacks
Textual adversarial attack aims to construct ad-
versarial examples for the purpose of ’fooling’
neural network-based NLP models. For example,
in text classification tasks, a text classifier f(x)
maps an input text x ∈ X to a label c ∈ Y ,
where x = w1, . . . , wL is a text consisting of L
words and Y is a set of discrete categories. Given
an original input x, an valid adversarial example
x′ = w′1, . . . , w

′
L is crafted to conform to the fol-

lowing requirements:

f(x′) 6= y, Sim(x,x′) ≥ εmin, (1)

where y is the ground truth for x, Sim : X ×X →
[0, 1] is a similarity function between the original x
and its adversarial example x′ and εmin is the min-
imum similarity. In NLP, Sim is often a semantic
similarity function using Universal Sentence En-
coder (USE) (Cer et al., 2018) to encode two texts
into high dimensional vectors and use their cosine
similarity score as an approximation of semantic
similarity (Jin et al., 2020a; Li et al., 2018).

2.2 Adversarial Word Substitution
Adversarial word substitution is one of the most
widely used textual attack methods, where an ad-
versary arbitrarily replaces the words in the original
text x by their synonyms according to a synonym
set to alert the prediction of the model. Specially,
for each word w, w′ ∈ Sw is any of w’s synonyms
(including w itself), where the synonym sets Sw
are chosen by the adversaries, e.g., built on well-
trained word embeddings (Mikolov et al., 2013;
Pennington et al., 2014; Su et al., 2018).

The process of adversarial word substitution usu-
ally involves two steps: determine an important
position to change; and modify words in the se-
lected positions to maximize prediction error of the
model. To find a word w′ ∈ Sw that maximizes
the model’s prediction error, two kinds of search-
ing strategies are introduced: greedy algorithms
(Kuleshov et al., 2018; Li et al., 2018; Ren et al.,
2019b; Hsieh et al., 2019; Jin et al., 2020b; Li et al.,
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Method Norm-bounded
perturbations

Synonyms-
agnostic

Structure-
free

Ensemble-
based

Empirical
Defense

Adversarial
Data Augmentation

ADA X
MixADA (Si et al., 2020) X

Adversarial
Training

PGD-K (Madry et al., 2018) X X X
FreeLB (Zhu et al., 2020) X X X
TA-VAT (Li and Qiu, 2020) X X X
InfoBERT (Wang et al., 2020) X X X

Region-based
Adversarial Training

DNE (Zhou et al., 2020) X X
ASCC (Dong et al., 2021) X

Certified
Defense

Interval Bound
Propagation

LSTM-based (Jia et al., 2019)
Transformer-based (Shi et al., 2020)

Randomized
Smoothing

SAFER(Ye et al., 2020) X X
RanMASK (Zeng et al., 2021) X X X

Table 1: The comparison of different defense algorithms. We use “norm-bounded perturbations” to denote whether
the perturbations to word embeddings are norm-bounded, “synonyms-agnostic” to whether the defense algorithms
rely on pre-defined synonym sets, “structure-free” to whether the defense methods can only be applied to specific
network architecture, and “ensemble-based” to whether the ensemble method is required to produce results.

2020; Yang et al., 2020) and combinatorial opti-
mization algorithms (Alzantot et al., 2018; Zang
et al., 2020). Although the latter usually can fool a
model more successfully, they are time-consuming
and require massive amount of queries. This is
especially unfair to defenders, because almost no
model can guarantee high prediction accuracy in
the case of large-scale queries. Therefore, we must
impose constraints on the attack algorithm before
we systematically evaluate the performance of the
defense algorithms, which will be discussed in Sec-
tion 3.

2.3 Textual Adversarial Defenses

Many defense methods have been proposed to im-
prove the robustness of models against text adver-
sarial attacks. Most of these methods focus on
defending against adversarial word substitution at-
tack (Ye et al., 2020). According to whether they
possess provably guaranteed adversarial robustness,
these methods can roughly be divided into two cat-
egories: empirical (Zhu et al., 2020; Zhou et al.,
2020; Si et al., 2020; Li and Qiu, 2020; Wang et al.,
2020; Dong et al., 2021) and certified defense (Jia
et al., 2019; Ye et al., 2020; Zeng et al., 2021) meth-
ods. Table 1 demonstrates detailed categories of
these defense methods.

Adversarial Data Augmentation (ADA) is one
of the most effective empirical defenses (Ren et al.,
2019a; Jin et al., 2020a; Li et al., 2020) for NLP
models. However, ADA is extremely insufficient
due to the enormous perturbation search space,
which scales exponentially with the length of input
text. To cover much larger proportion of the pertur-
bation search space, Si et al. (2020) proposed Mix-
ADA, a mixup-based (Zhang et al., 2017) augmen-

tation method. Region-based adversarial train-
ing (Zhou et al., 2020; Dong et al., 2021) improves
a models’ robustness by optimizing its performance
within the convex hull (Region) formed by embed-
dings of a word and its synonyms. Adversarial
training (Madry et al., 2018; Zhu et al., 2020; Li
and Qiu, 2020; Wang et al., 2020) incorporates a
min-max optimization between adversarial pertur-
bations and the models by adding norm-bounded
perturbations to words embeddings. Previous re-
search on norm-bounded adversarial training fo-
cused on improving the generalization of NLP mod-
els. However, our experimental results showed that
these methods can also effectively improve models’
robustness while suffering no performance drop on
the clean inputs.

It has been experimentally shown that the above
empirical methods can defend against attack algo-
rithms. However, they can not provably guarantee
that their predictions are always correct even under
more sophisticated attackers. Recently, a set of
certified defense methods has been introduced for
NLP models, which can be divided into two cat-
egories: Interval Bound Propagation (IBP) (Jia
et al., 2019; Huang et al., 2019; Shi et al., 2020; Xu
et al., 2020) and randomized smoothing (Ye et al.,
2020; Zeng et al., 2021) methods. IBP-based meth-
ods depend on the knowledge of model structure
because they compute the range of the model out-
put by propagating the interval constraints of the in-
puts layer by layer. Randomized smoothing-based
methods, on the other hand, are structure-free; they
constructs stochastic ensembles to input texts and
leverage the statistical properties of the ensemble
to provably certify the robustness. All certified
defense methods except RanMASK (Zeng et al.,
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2021) are based on an assumption that the defender
can access the synonyms set used by the attacker.
Experimental results show that under the same set-
tings, e.g., without accessing the synonyms set,
RanMASK achieves the best defense performance
among these certified defenders.

3 Constraints on Adversarial Example
Generation

In this section, we first introduce constraints of tex-
tual adversarial attacks that should be imposed to
ensure the quality of adversarial examples gener-
ated, which can help us benchmark textual defense.
Then we introduce the datasets for experiments
and pick out the optimal hyper-parameters for each
constraint.

3.1 The Constraints on Adversaries

To ensure the quality of adversarial examples gen-
erated, we impose constraints on textual attack al-
gorithms in the following four aspects:

• The minimum semantic similarity εmin between
original input x and adversarial example x′.

• The maximum number of one word’s synonyms
Kmax.

• The maximum percentage of modified words
ρmax.

• The maximum number of queries to the victim
model Qmax.

Semantic Similarity In order for the generated ad-
versarial examples to be undetectable by human,
we need to ensure that the perturbed sentence is
semantically consistent with the original sentence.
This is usually achieved by imposing a semantic
similarity constraint, see Eq. (1). Most adversarial
attack methods (Li et al., 2018; Jin et al., 2020b; Li
et al., 2020) use Universal Sentence Encoder (USE)
(Cer et al., 2018) to evaluate semantic similarity.
USE first encodes sentences into vectors and then
uses cosine similarity score between vectors as an
approximation of the semantic similarity between
the corresponding sentences. Following the setting
in Jin et al. (2020a), we set the default value of min-
imum semantic similarity εmin to be 0.84 (Morris
et al., 2020a).
Size of Synonym Set For a word w and its syn-
onym set Sw, we denote the size of elements in Sw
asK = |Sw|. The value ofK influences the search
space of attack methods. A larger K increases
success rate of the attacker (Morris et al., 2020b).

However, larger K would result in the generation
of lower-quality adversarial examples since there is
no guarantee that these K words are all synonyms
of the same word, especially when the GloVe vec-
tors are used to construct a word’s synonyms set
(Jin et al., 2020a). While setting the maximum
value of K in attack algorithms, we control other
variables and select the optimal value Kmax that
keeps attack success rate of the attack algorithm
from decreasing too much, seeing Section 3.2 for
more details.
Percentage of Modified Words For an input text
x = w1, . . . , wL, whose length is L, and its adver-
sarial examples x′ = w′1, . . . , w

′
L, the percentage

of modified words is defined as:

ρ =

∑L
i=1 I{wi 6= w′i}

L
, (2)

where
∑L

i=1 I{xi 6= x′i} is the Hamming distance,
with I{·} being the indicator function. An attacker
is not allowed to perturb too many words since tex-
cessive perturbation of words results in lower sim-
ilarity between perturbed and original sentences.
However, most existing attack algorithms do not
limit the modification ratio ρ, and sometimes even
perturb all words in a sentence to ensure the at-
tack success rate. Since it is too difficult for de-
fense algorithms to resist such attacks, we restrain
a maximum value of ρ. Similar to the method
adopted when setting Kmax, we use control vari-
able to select the optimal value ρmax, which will
be discussed in Section 3.2.
Number of Queries Some existing attack algo-
rithms achieve high attack success rate through
massive queries to the model (Yoo et al., 2020).
In order to build a practical attack, we placed con-
straint on query efficiency. Considering the diffi-
culty of defense and the time cost of benchmarking,
we need to restrict the number of queries for attack-
ers to query the victim model. At present, most rep-
resentative attack algorithms are based on greedy
search strategies (see Section 2.1). Experiments
have shown that these greedy algorithms are suf-
ficient to achieve a high attack success rate (Yang
et al., 2020). For a greedy-based attack algorithm,
assuming the size of its synonyms set is K = |Sw|.
Then its search complexity is O(K × L), where L
is the length of input text x, since the greedy algo-
rithm guarantees that each word in the sentence is
replaced at most once. Thus, we set the maximum
number of queries to the product of Kmax and sen-
tence length L in default, Qmax = Kmax × L.
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Figure 1: The accuracy under attack of five representative greedy search-based attack algorithms with different settings of
constraints. Sub-figures (a) and (b) show the impacts of two constraints (the size of synonyms set K and percentage of modified
words ρ) on AGNEWS, while sub-figures (c) and (d) show the impacts of the same two constraints on IMDB.

3.2 Datasets and Hyper-parameters

We conducted experiments on two widely used
datasets: the AG-News corpus (AGNEWS) (Zhang
et al., 2015) for text classification task and the In-
ternet Movie Database (IMDB) (Maas et al., 2011)
for sentiment analysis task.

In order to pick the optimal value Kmax and
ρmax for each dataset, we choose 5 representative
adversarial word substitution algorithms: PWWS
(Ren et al., 2019a), TextBugger (Li et al., 2018),
TextFooler (Jin et al., 2020a), DeepWordBug (Gao
et al., 2018), BERT-Attack (Li et al., 2020). All
of them are greedy search based attack algorithms
1. All attackers use K nearest neighbor words of
GloVe vectors (Pennington et al., 2014) to generate
a word’s synonyms except DeepWordBug, which
performs character-level perturbations by gener-
ating K typos for each word; and BERT-Attack,
which dynamically generates synonyms by BERT
(Devlin et al., 2018). We use BERT as baseline
model, and implementations are based on TextAt-
tack framework (Morris et al., 2020a).

When selecting the optimal Kmax value for AG-
NEWS, we first control other variables unchanged,
e.g., the maximum percentage of modified words
ρmax = 0.3, and conduct experiments on AG-
NEWS with different K values. As we can see
from Figure 1(a), as K increases, the accuracy un-
der attack decreases. The decline of the accuracy
under attack is gradually decreasing. For K ≥ 50,
the decline in accuracy under attack becomes min-
imal, thus we pick Kmax = 50. Through the
same process, we determine the optimal values
ρmax = 0.1, Kmax = 50 for IMDB dataset as

1We also conducted experiments on combinatorial opti-
mization attacker: e.g., GA (Alzantot et al., 2018), PSO (Zang
et al., 2020). However, our pre-experiments showed that they
were very time-consuming, and their performance were poor
under the limit of the maximum number of queries.

shown in Figure 1(c) and 1(d), and ρmax = 0.3 for
AGNEWS dataset as shown in Figure 1(b).

In conclusion, we impose four constraints on
attack algorithms to better help with evaluation of
different textual defenders. We set ρmax = 0.3 for
AGNEWS and ρmax = 0.1 for IMDB. Such setting
is reasonable because the average sentence length
of IMDB (208 words) is much longer than that of
AGNEWS (44 words). For other constraints, we
set Kmax = 50, εmin = 0.84, Qmax = Kmax×L.
We choose 3 base attackers to benchmark the de-
fense performance of textual defenders: TextFooler,
BERT-Attack, and TextBugger. Our choice of at-
tackers is based on their outstanding attack perfor-
mances, as shown in Figure 1.

4 Experiments on Textual Defense

4.1 Evaluation Metrics

Under the unified setting of the above-mentioned
adversarial attacks, we conducted experiments on
the current existing defense algorithms on AG-
NEWS and IMDB. We present 4 metrics to mea-
sure the defense performance.

• The clean accuracy (Clean%) is model’s classi-
fication accuracy on the clean test dataset.

• Accuracy under attack (Aua%) is the model’s
prediction accuracy under specific adversarial
attack methods.

• Attack success rate (Suc%) is the number of texts
successfully perturbed by an attack algorithm
divided by the number of all texts attempted.

• Number of Queries (#Query) is the average num-
ber of times the attacker queries the model. This
is another important metric for evaluating robust-
ness of defenders, since the greater the average
query number needed for attacker, the more diffi-
cult the defense model is to be compromised.
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Method Clean% TextFooler TextBugger BERT-Attack
Aua% Suc% #Query Aua% Suc% #Query Aua% Suc% #Query

Baseline (BERT) 94.5 19.1 79.6 317.4 23.5 75.0 320.6 27.2 71.0 338.8
Adversarial Data Augmentation 94.4 38.6 58.9 404.6 43.3 53.9 418.3 42.9 54.5 407.0
MixADA (Si et al., 2020) 94.3 37.5 60.3 410.7 36.4 61.4 423.5 39.1 58.6 408.4
PGD-K (Madry et al., 2018) 94.7 24.8 73.9 353.5 26.7 71.9 367.1 39.4 58.5 399.3
FreeLB (Zhu et al., 2020) 94.7 31.6 66.7 382.1 32.9 65.4 390.6 43.9 53.8 417.1
TA-VAT (Li and Qiu, 2020) 94.8 31.0 67.3 382.5 34.2 63.9 415.2 45.0 52.5 436.9
InfoBERT (Wang et al., 2020) 95.1 31.8 66.5 369.9 36.3 61.8 391.6 42.4 55.3 392.8
DNE (Zhou et al., 2020) 93.9 28.7 69.8 367.9 28.2 70.3 377.6 42.4 55.5 470.1
ASCC (Dong et al., 2021) 92.3 28.2 69.6 326.5 37.0 60.1 307.4 32.7 64.7 337.1
SAFER (Ye et al., 2020) 94.3 31.8 66.1 350.1 41.2 56.1 398.8 39.3 58.2 373.5
RanMASK (Zeng et al., 2021) 91.7 37.9 58.7 583.4 45.0 50.9 626.8 49.5 46.1 661.8
FreeLB++ 95.1 51.5 46.0 419.1 55.9 41.4 416.9 41.8 56.2 386.1

Table 2: The experiment results of different defenders on AGNEWS, where all models are trained on BERT. The best
performance is marked in bold. FreeLB++ not only achieves best defense performance under both TextBugger and TextFooler,
but also improves Clean%. Although RanMASK has also achieved significant defense performance, it drops a lot in Clean%.

Method Clean% TextFooler TextBugger BERT-Attack
Aua% Suc% #Query Aua% Suc% #Query Aua% Suc% #Query

baseline (BERT) 92.1 10.3 88.8 488.2 5.3 94.3 438.5 5.8 93.7 412.4
Adversarial Data Augmentation 91.9 19.0 79.5 837.1 16.1 82.6 910.7 7.4 92.0 436.7
MixADA (Si et al., 2020) 91.9 19.0 79.6 523.0 11.5 87.6 518.7 7.6 91.8 417.47
PGD-K (Madry et al., 2018) 93.2 26.0 72.3 577.5 18.9 79.9 624.9 21.0 77.6 525.8
FreeLB (Zhu et al., 2020) 93.0 29.4 68.3 605.0 22.9 75.3 586.8 21.7 76.6 532.4
TA-VAT (Li and Qiu, 2020) 93.0 28.2 69.7 606.2 22.8 75.5 681.0 19.2 79.4 486.5
InfoBERT (Wang et al., 2020) 92.0 19.2 79.2 541.8 12.7 86.3 491.1 11.3 87.8 447.9
DNE (Zhou et al., 2020) 90.4 28.0 68.2 1222.5 26.5 69.5 1488.0 27.0 69.1 1101.0
ASCC (Dong et al., 2021) 87.8 19.4 77.8 646.1 14.1 83.9 542.5 11.0 87.4 463.2
SAFER (Ye et al., 2020) 91.5 39.5 57.8 1701.7 40.0 57.5 2372.2 38.5 58.8 1363.5
RanMASK (Zeng et al., 2021) 92.3 22.0 74.6 1493.4 18.0 79.2 1794.9 36.0 58.4 1813.1
FreeLB++ 93.2 45.3 51.0 1025.9 42.9 53.6 1094.0 39.9 56.9 696.9

Table 3: The experiment results of different defenders on IMDB. FreeLB++ surpasses all existing defense methods by a large
margin under all attackers, even though defending against adversarial attacks in IMDB is harder than that in AGNEWS because
sentences from IMDB are far longer than those from AGNEWS.

A good defense method should have higher clean
accuracy, higher accuracy under attack, lower at-
tack success rate, and requires larger number of
queries for attack.

4.2 Implementation Details

Our reproduction of all defense methods, along
with the hyper-parameter settings, are completely
based on their original papers, except for the fol-
lowing two constraints: (1) For methods which are
not synonyms-agnostic, we establish different syn-
onym sets for both attackers and defender. (2) For
methods that are ensemble-based, we use the “logit-
summed” ensemble method introduced in (Devvrit
et al., 2020) to make final predictions. Specifi-
cally, we use the counter-fitting vectors (Mrkšić
et al., 2016) to generate the synonym set for attack-
ers, and use vanilla Glove Embedding (Pennington
et al., 2014) to generate synonym set for defend-
ers2. Following Devvrit et al. (2020); Zeng et al.

2According to our statistics, 69.70% of the words in de-
fender’s synonym set appears in the attacker synonym set’s
vocabulary. Among them, 73% of the synonyms in the de-

(2021), we take the average of logits produced by
the base classifier over all randomly perturbed in-
put sentences, whose size is denoted as C, as the
final prediction. For AGNEWS, we set the value
of C to 100, while for IMDB, the value of C is
default 16. In the implementation of FreeLB++,
we remove the constraints of norm bounded projec-
tion, and set step size as 30 and 10 on AGNews and
IMDB datasets respectively. More details will be
introduced in Section 4. All the hyper-parameter
settings are tuned on a randomly chosen develop-
ment dataset.

We use BERT (Devlin et al., 2018) as our base
model. Clean accuracy (Clean%) is tested on the
whole test dataset, while the latter three metrics,
e.g., Aua% are evaluated on 1000 randomly chosen
samples from the test dataset.

4.3 Results
As we can see from Table 2, (1) the ADA-based
methods have a small decrease in clean accuracy,
but excellent accuracy under attack. However, com-

fender’s synonym set are covered by the attacker’s.
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paring with the remaining methods, ADA-based
methods need to know specific attacker algorithms
to generate adversarial examples before defending.
(2) The adversarial training methods, e.g., FreeLB,
achieve higher clean accuracy than the baseline,
and their improvement in robustness is also very
insignificant (Li and Qiu, 2020; Zeng et al., 2021).
Interestingly, once we remove the l2-norm bounded
limitation for FreeLB, we find out that defense per-
formance is significantly improved (see FreeLB++
in the tables). FreeLB++ surpasses all existing de-
fense methods by a large margin under TextFooler
and TextBugger attacks. We will leave more dis-
cussions about adversarial training methods in Sec-
tion 5.1. (3) The region-based adversarial training
methods, e.g., DNE, perform poorly on both clean
accuracy and accuracy under attack. It is mainly
because the synonym set used in the attack method
is different from that used in DNE, which is further
discussed in Section 5.3. (4) The certified defense
methods achieve high defense performance. It is
worth noting that the average number of queries to
the model of these methods is larger. We think the
improvement of robustness comes from the ensem-
ble method, seeing further discussions in Section
5.2.

Results of defense performance on IMDB are re-
ported in Table 3. Defense methods share the trends
with performance on AGNEWS. However, the
general robustness of models on IMDB is poorer
than AGNEWS. It is probably because the average
length of sentences in IMDB (208 words) is far
longer than that in AGNEWS (44 words). Longer
sentences implies a larger search space for attack-
ers, making it more difficult for defenders to defend
against attacks.

5 Discussions

5.1 Effectiveness of Adversarial Training

The objective of standard adversarial training meth-
ods, e.g., PGD-K (Madry et al., 2018) and FreeLB
(Zhu et al., 2020) is to minimize the maximum risk
for perturbation δ within a small ε-norm ball:

min
θ

E(x,y)∼D

[
max
‖δ‖≤ε

L(fθ(X + δ), y)

]
, (3)

where D is the data distribution, X is the embed-
ding representations of input sentence x, y is the
gold label, and L is the loss function for training
neural networks, whose parameters is denoted as
θ. In order to solve inner maximization, projected

gradient descent (PGD) algorithm is applied as de-
scrided in Madry et al. (2018) and Zhu et al. (2020):

δt+1 =
∏
‖δ‖F≤ε

(
δt + α

g(δt)

‖g(δt)‖F

)
, (4)

where g(δt) = ∇δL(fθ(X + δ), y) is the gradient
of the loss with respect to δ,

∏
‖δ‖F≤ε performs a

projection onto the ε-Frobenius norm ball, and t is
the number of ascent steps to find the “worst-case”
perturbation δ with step size α.

Method Norm ε Clean% TextFooler BERT-Attack
Aua% Suc% Aua% Suc%

PGD-K

0.01 94.9 21.8 77.0 31.5 66.8
0.1 95.3 43.6 54.3 45.1 52.7
1 95.2 45.2 55.3 45.3 52.4

w/o 95.2 45.2 55.3 45.3 52.4

FreeLB

0.01 95.4 30.5 68.0 43.6 54.3
0.1 95.5 36.1 62.2 40.0 58.1
1 94.9 45.8 51.7 42.5 55.2

w/o 94.9 45.8 51.7 42.5 55.2

Table 4: The impact of different values of norm ε on both
clean and defense performance, where “w/o” means updating
δ without projection onto a ε-Frobenius norm ball. A large
value ε = 1 is equivalent to removing the norm-bounded
projection, both of which achieve the best Clean% and Aua%.

In this section, we first study the influence of the
value of the norm ε on the model’s robustness per-
formance, which is also discussed by Gowal et al.
(2020) in computer vision field. As can be seen
from Table 4, we find out that both of the Clean%
and Aua% increase as ε increases. Note that the
value of ε is usually set to a very small value, e.g.,
ε = 0.01 (Zhu et al., 2020). A large value ε (e.g.,
ε = 1 in Table 4) is equivalent to removing the
norm-bounded limitation (seeing “w/o” in Table 4),
because when ε is large enough and the step size α
is fixed, the magnitude of perturbation that used to
update δ is also fixed, seeing Eq. (4). In this case,
from

∥∥∥ g(δt)
‖g(δt)‖F

∥∥∥ ≤ 1 and Eq. (4), we have:

‖δt+1‖ ≤ ‖δt‖+
∥∥∥∥α g(δt)

‖g(δt)‖F

∥∥∥∥ ≤ ‖δt‖+ α. (5)

Thus, with multi-step updating δ, we have:

‖δt‖ ≤ ‖δt−1‖+ α ≤ ‖δt−2‖+ 2α

≤ · · · ≤ ‖δ1‖+ (t− 1) ∗ α ≤ tα,
(6)

where we can find that the upper bound of the norm
of perturbation δ is determined by the number of
ascent steps t if the value of α is fixed. In other
words, the number of ascent steps t influences the
search region of the perturbation δ, where the larger
t is, the larger the search region will be. However,
in original FreeLB, the same ε-norm has been ap-
plied to all perturbations and to restrict the search
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Figure 2: The impact of different values of the ascent steps t. Sub-figure (a) shows the accuracy of FreeLB++ and PGD-K++
on the clean data (Clean%). Sub-figure (b) and (c) show the accuracy of FreeLB++ and PGD-K++ respectively under three
different attack algorithms (TextFooler, TextBugger and BERT-Attack). As the value of t grows, Clean% and Aua% of the
models will increase until reaching their peak values. After that, they begin to decrease as the value of t increases continually.

region around every word embedding. We denote
our versions of PGD-K and FreeLB which remove
the norm-bounded limitations as PGD-K++ and
FreeLB++, respectively. We conducted experi-
ments on PGD-K++, FreeLB++ with different t
to study the impact of the value of t. As shown
in Figure 2, the Clean% of both PGD-K++ and
FreeLB++ models reaching a peak at t = 5 while
the peak of Aua% performance reaches at t = 30
for FreeLB++ and t = 10 for PGD-K++.

We give a possible explanation to this improve-
ment of performance. We regard standard adversar-
ial training as an exploration of embedding space.
When t is small, the adversarial example space ex-
plored by the model is relatively small, resulting
in poor defense performance of the model when a
high-intensity attack arrives. This problem is allevi-
ated when t becomes larger, and this explains why
both Clean% and Aua% can be improved when
t increases. When t exceeds its optimal value, the
adversarial example generated by the algorithm
may become dissimilar to the original example.
Excessive learning of examples with different dis-
tributions from the original examples will lead to a
decline in model’s modeling ability.

5.2 Impact of Ensemble Strategies

There are two ensemble strategies (Devvrit et al.,
2020): logits-summed (logit) and majority-vote
(voting) ensemble. As mentioned above, in the
logit method, the logits produced by the base clas-
sifier are averaged. Whereas, in the voting strategy,
the predictions of classifiers for each class label are
counted, and the vote results will be regarded as the
output probability for classification. Compared to
the logit method, we found that the majority-vote
strategy can effectively improve the model’s robust-
ness, as can be inferred from the results in Table 5.
However, after further research, the reason the vot-

ing strategy achieves better defense performance
is that it increases the difficulty for score-based
attackers, which is also discussed in Zeng et al.
(2021).

A typical score-based attacker usually involves
two key steps: searching for weak spots in a text
and replacing words in these weak spots to maxi-
mum model’s prediction error. In the second stage,
if no words in the synonym set can lower the
logits, the adversary will give up perturbing this
word. However, for those voting-based methods
which create ensemble by introducing small noise
to the original text x, e.g., SAFER, RanMASK-5%,
the models tend to output very sharp distribution,
even close to one-hot categorical distribution. This
forces the attackers to launch decision-based at-
tacks instead of the score-based ones, which can
dramatically improve their attack difficulty. There-
fore, it may be unfair to compare voting-based en-
semble defense methods with others due to lack
of effective ways to attack voting-based ensembles
in the literature. We believe voting-based methods
will greatly improve model’s defense performance,
but we recommend using logit-summed algorithm
if one needs to prove the effectiveness of the pro-
posed algorithm against adversarial attacks in fu-
ture research.

Method Clean TextFooler TextBugger
Aua% Suc% Aua% Suc%

Baseline (BERT) 94.5 19.1 79.6 27.2 71.0
SAFER (logit)

94.3
31.8 66.1 41.2 56.1

SAFER (voting) 78.6 17.6 69.0 28.0
RanMASK-5% (logit)

94.5
21.5 77.3 41.2 56.1

RanMASK-5% (voting) 68.6 26.9 62.5 34.0
RanMASK-90% (logit)

91.7
37.9 58.7 49.5 46.1

RanMASK-90% (voting) 47.9 48.2 57.4 37.6

Table 5: The ablation experiment on ensemble methods.
Voting-based ensembles achieve better performance than
logit-based ensembles, but this is potentially due to the non-
differentiability introduced by voting-based attacks.
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Method Clean TextFooler TextBugger
Aua% Suc% Aua% Suc%

SAFER (w) 93.8 46.6 50.3 55.4 40.9
SAFER (w/o) 94.3 31.8 66.1 41.2 56.1
DNE (w) 93.4 44.9 54.0 42.2 56.6
DNE (w/o) 93.9 28.7 69.8 28.2 70.3
ASCC (w) 91.4 39.0 57.3 44.2 51.6
ASCC (w/o) 92.3 28.2 69.6 37.0 60.1

Table 6: The ablation experiment on synonym set. “w” and
“w/o” means the corresponding defense method use or not use
the synonym set of the attack method.

5.3 Impact of Synonym Sets
Table 6 shows the results of the ablation study on
the impact of external synonym set on performance
in the defense methods. Some previous studies (Ye
et al., 2020; Zhou et al., 2020; Dong et al., 2021)
use the same synonym set as the attacker during
adversarial defense training, leading to significant
defense performance. As we can see from Table
6, all methods improve the Aua% by a large mar-
gin after sharing the synonym set with the attacker.
However, having access to the attacker’s synonym
is not a realistic scenario since we cannot impose a
limitation on the synonym set used by the attackers.
Thus, for the sake of fair comparison in future re-
search, we suggest that future work should assume
that the attacker’s synonym set cannot be accessed,
and report the defense performance in this case.

6 Conclusion

In this paper, we established a comprehensive and
coherent benchmark to evaluate the defense perfor-
mance of textual defenders. We impose constraints
to existing attack algorithms to ensure the quality
of adversarial examples generated. Using these at-
tackers, we systematically studied the advantages
and disadvantages of different textual defenders.
We find out that adversarial training methods are
still the most effective defenders. Our FreeLB++
can not only achieve state-of-the-art defense per-
formance under various attack algorithms, but also
improve the performance on clean examples. We
hope this study could provide useful clues for fu-
ture research on text adversarial defense.
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