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Abstract

On many natural language processing tasks,

large pre-trained language models (PLMs)

have shown overwhelming performances com-

pared with traditional neural network meth-

ods. Nevertheless, their huge model size and

low inference speed have hindered the deploy-

ment on resource-limited devices in practice.

In this paper, we target to compress PLMs

with knowledge distillation, and propose a

hierarchical relational knowledge distillation

(HRKD) method to capture both hierarchical

and domain relational information. Specif-

ically, to enhance the model capability and

transferability, we leverage the idea of meta-

learning and set up domain-relational graphs

to capture the relational information across dif-

ferent domains. And to dynamically select

the most representative prototypes for each

domain, we propose a hierarchical compare-

aggregate mechanism to capture hierarchical

relationships. Extensive experiments on pub-

lic multi-domain datasets demonstrate the su-

perior performance of our HRKD method as

well as its strong few-shot learning ability. For

reproducibility, we release the code at https:

//github.com/cheneydon/hrkd.

1 Introduction

Large pre-trained language models (PLMs) (e.g.,

BERT (Devlin et al., 2019)) have demonstrated

their outperforming performances on a wide range

of NLP tasks, such as machine translation (CON-

NEAU and Lample, 2019; Zhu et al., 2020), sum-

marization (Zhang et al., 2019; Liu and Lapata,

2019), and dialogue generation (Bao et al., 2020;

Zheng et al., 2020). However, their large size

and slow inference speed have hindered practi-

cal deployments, such as deploying on resource-

constrained devices.

To solve the above problem, many compression

techniques for PLMs have been proposed, such as
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quantization (Shen et al., 2020), weight pruning

(Michel et al., 2019), and knowledge distillation

(KD) (Sun et al., 2019; Jiao et al., 2020). Due to

the plug-and-play feasibility of KD, it is the most

commonly used method in practice, and we focus

on it in this work. The purpose of KD is to trans-

fer knowledge from a larger teacher model to a

smaller student model (Hinton et al., 2015). Tra-

ditional KD methods only leverage single-domain

knowledge, i.e., transferring the knowledge of the

teacher model to the student model domain by do-

main. However, as stated in the purpose of trans-

fer learning, the model performance on target do-

mains can be improved by transferring the knowl-

edge from different but related source domains (Lu

et al., 2015), thus the cross-domain knowledge also

plays an important role. In addition, several recent

works have also proved the advantage of cross-

domain knowledge, and many multi-domain KD

methods have been proposed. For example, Peng

et al. (2020); Yang et al. (2020) demonstrate the

effectiveness of distilling knowledge from multiple

teachers in different domains; Liu et al. (2019a,b)

show that jointly distilling the student models of

different domains can enhance the performance.

Nevertheless, these methods fail to capture the

relational information across different domains and

might have poor generalization ability. To enhance

the transferability of the multi-domain KD frame-

work, some researchers have recently adopted the

idea of meta-learning. Some studies have pointed

out that meta-learning can improve the transfer-

ability of models between different domains (Finn

et al., 2017; Javed and White, 2019). For example,

Meta-KD (Pan et al., 2020) introduces an instance-

specific domain-expertise weighting technique to

distill the knowledge from a meta-teacher trained

across multiple domains to the student model. How-

ever, the Meta-KD framework trains student mod-

els in different domains separately, which is incon-

venient in real-world applications and might not

https://github.com/cheneydon/hrkd
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have enough capability to capture multi-domain

correlations.

In this paper, we aim to simultaneously capture

the relational information across different domains

to make our framework more convenient and ef-

fective. Specifically, we set up several domain-

relational graphs to adequately learn the relations

of different domains and generate a set of domain-

relational ratios to re-weight each domain during

the KD process. Moreover, since different domains

might have different preferences of layer proto-

types, motivated by the Riesz representation the-

orem (Hartig, 1983), we first construct a set of

reference prototypes for each domain, which is cal-

culated by a self-attention mechanism to integrate

the information of different domains. Then we

introduce a hierarchical compare-aggregate mech-

anism to compare each layer prototype with the

corresponding reference prototype and make an

aggregation based on their similarities. The aggre-

gated prototypes are finally sent to the correspond-

ing domain-relational graphs. Our framework is

referred to as hierarchical relational knowledge dis-

tillation (HRKD).

We evaluate the HRKD framework on two multi-

domain NLP datasets, including the MNLI dataset

(Williams et al., 2018) and the Amazon Reviews

dataset (Blitzer et al., 2007). Experiments show

that our HRKD method can achieve better perfor-

mance compared with several multi-domain KD

methods. We also evaluate our approach under the

few-shot learning setting, and it can still achieve

better results than the competing baselines.

2 Method

In this section, we detailedly describe the proposed

HRKD framework. Our HRKD aims to simulta-

neously capture the relational information across

different domains with both hierarchical and do-

main meta-knowledges. To achieve this goal, we

introduce a hierarchical compare-aggregate mecha-

nism to dynamically identify more representative

prototypes for each domain, and construct a set of

domain-relational graphs to generate re-weighting

KD ratios. The overview of HRKD is shown in

Figure 1. We first introduce the basic multi-domain

KD method in Section 2.1, which is a naive frame-

work lacking the ability of capturing cross-domain

relations. Then we describe the domain-relational

graph and compare-aggregate mechanism in Sec-

tion 2.2 and 2.3, respectively, which are the primary

modules of our HRKD method to discover the rela-

tional information.

2.1 Multi-domain Knowledge Distillation

Similar to (Jiao et al., 2020), we jointly distill

the embeddings, attention matrices, transformer

layer outputs, and predicted logits between the

teacher and student models. Inspired by (Liu et al.,

2019c), we use a multi-task training strategy to per-

form multi-domain KD. Specifically, we share the

weights of the embedding and transformer layers

for all domains while assigning different prediction

layers to different domains. Innovatively, we opti-

mize models in different domains simultaneously

rather than sequentially.

In detail, the embedding loss Ld
embd and predic-

tion loss Ld
pred of d-th domain are formulated as:

Ld
embd = MSE(ES

W
embd,ET

d ), (1)

Ld
pred = CE(zSd /t, z

T
d /t), (2)

where MSE and CE represent the mean square loss

and cross-entropy loss, respectively. E
S and E

T
d

represent the embeddings of student model and

teacher model of d-th domain, respectively. z
S
d

and z
T
d represent the predicted logits of student

model and teacher model of d-th domain, respec-

tively. Wembd is a learnable transformation matrix

to align the student embedding dimension that mis-

matches with the teacher embedding dimension,

and t is the temperature factor.

The attention loss Lm,d
attn and transformer layer

output loss Lm,d
hidn at m-th student layer and d-th

domain are formulated as:

Lm,d
attn =

1

h

h
∑

i=1

MSE(AS
i,m,AT

i,n,d), (3)

Lm,d
hidn = MSE(HS

mW
hidn
m ,HT

n,d), (4)

where h is the number of attention heads, AS
i,m and

A
T
i,n,d are the i-th head of attention matrices at m-

th student layer and its matching n-th teacher layer

of d-th domain, respectively. H
S
m and H

T
n,d are

the transformer layer outputs at m-th student layer

and n-th teacher layer of d-th domain, respectively.

W
hidn
m is a transformation matrix to align the m-th

layer of student output dimension that mismatches

with the n-th layer of teacher output dimension. We

use uniform strategy to match the layers between

the student and teacher models.
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Figure 1: An overview of the proposed HRKD method. We use knowledge distillation (KD) to transfer the knowl-

edge from the teacher model to the student model. During KD, we set up several domain-relational graphs to gen-

erate domain-relational ratios for re-weighting each domain. We then introduce a hierarchical compare-aggregate

mechanism. The prototypes of different layers are dynamically aggregated based on the similarity ratios compared

with the corresponding reference prototypes, which are then fed into the domain-relational graphs.

Finally, the overall KD loss is formulated as:

Ltotal =
D
∑

d=1

(

Ld
embd +

M
∑

m=1

(Lm,d
attn + Lm,d

hidn)

+γLd
pred

)

,

(5)

where D is the total domain number, M is the

number of transformer layers in the student model,

γ is used to control the weight of the prediction

loss Lpred.

2.2 Prototype-based Domain-relational

Graph

Although the basic multi-domain KD method de-

scribed in Section 2.1 can distill the student models

across different domains, the relational informa-

tion between different domains is neglected, which

is important for enhancing the model transferabil-

ity as pointed out by previous studies (Finn et al.,

2017; Javed and White, 2019). To solve the prob-

lem, we attempt to leverage meta-learning to en-

hance the performance and transferability of our

student model. Inspired by the metric-based meth-

ods of meta-learning (Snell et al., 2017; Sung et al.,

2018), we use prototype representations rather than

raw samples to reflect the characteristics of each

domain data. This helps to alleviate the negative im-

pact of abnormal samples when there are few train-

ing samples (e.g., overfitting) and make the meta-

learner easier to learn transferable cross-domain

knowledge. Moreover, since we conduct KD over

all of the student layers, we calculate different pro-

totypes for different student layers to explicitly dis-

tinguish their characteristics. Specifically, the pro-

totype hm,d of m-th layer of the student model at

d-th domain is calculated by:

hm,d =

{

1
|Dd|L

∑|Dd|
i=1

∑L
l=1E

S
i,l, m = 0

1
|Dd|L

∑|Dd|
i=1

∑L
l=1H

S
m,i,l, 1 ≤ m ≤ M

(6)

where Dd refers to the training set of d-th domain,

L refers to the sentence length (i.e., number of

tokens), ES
i,l represents l-th token of i-th sampled

student embedding in Dd, and H
S
m,i,l represents

the l-th token output by the i-th sampled student

transformer layer of the m-th student layer in Dd.

In practice, we calculate different prototypes for
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different batches of training samples.

Afterward, these domain prototypes are lever-

aged to probe the relations across different do-

mains. Although many multi-domain text mining

methods have been proposed recently (Wang et al.,

2020; Pan et al., 2020), they capture the relations

separately for each given domain, which might

be inconvenient and time-consuming in practice.

Meanwhile, the learning process is not effective

enough since the other domains cannot learn from

each other when optimizing a specific domain. To

solve this problem, we aim to simultaneously dis-

cover the cross-domain relations to make our frame-

work more convenient and effective. To achieve the

goal, we propose to use the graph attention network

(GAT) (Veličković et al., 2018) to process the pro-

totypes of all domains at the same time. To utilize

GAT, each node in the graph represents a domain

prototype, and each edge weight represents the

similarity of the connected two prototypes. In this

way, the relations across different domains can be

captured simultaneously. In detail, we set up a two-

layer domain-relational graph for each layer of the

student model (except for the prediction layer). The

input hm of the m-th graph is a set of node features

containing all of the domain prototypes at m-th stu-

dent layer, i.e., hm = {hm,1, ...,hm,D} ∈ RD×F ,

where D is the total domain number, F is the chan-

nel number of each prototype.

In the first-layer domain-relational graph of the

m-th student layer, a shared weight matrix Wm ∈
RF ′×F is first applied to each node followed by

a self-attention mechanism, where F ′ is the inter-

mediate channel number. Then a multi-head con-

catenation mechanism with K heads is employed

to stabilize the training process. Specifically, each

input prototype hm,d is first transformed by the

weight matrix Wm, then the attention coefficient

αi,j,m between two nodes i, j is calculated by ap-

plying a weight vector am ∈ R2F ′×1 to the con-

catenation of their transformed features followed

by the LeakyReLU nonlinearity and softmax func-

tion, which can be formulated as:

si,j,m = a
⊤
m [Wmhm,i ⊕Wmhm,j ] , (7)

αi,j,m = softmax (LeakyReLU(si,j,m))

=
exp (LeakyReLU(si,j,m))

∑

k∈Ni
exp (LeakyReLU(si,k,m))

,

(8)

where ⊕ represents the concatenation operation and

Ni is all the first-order neighbors of node i (includ-

ing node i). Then the final output h′
m,i ∈ RKF ′

of

node i can be obtained by the weighted sum of the

transformed features of node i and its neighbors

based on their attention coefficients followed by the

ELU nonlinearity and a multi-head concatenation

mechanism:

h
′
m,i = ⊕K

k=1ELU(
∑

j∈Ni

αk
i,j,mW

k
mhm,j), (9)

where k represents the head index.

In the second-layer domain-relational graph

of the m-th student layer, targeting at obtaining

domain-relational ratios, we reformulate the pa-

rameters Wm,am used in the first-layer graph as

W
′
m ∈ R1×KF ′

,a′m ∈ R2×1 respectively and do

not apply the multi-head mechanism. We use the

softmax operation to normalize the output and fi-

nally derive the domain-relational ratios rm ∈ RD,

formulated as below:

rm = softmax(ELU(
∑

j∈Ni

α′
i,j,mW

′
mh

′
m,j)),

(10)

where α′
i,j,m is calculated by:

s′i,j,m = a
′⊤
m

[

W
′
mh

′
m,i ⊕W

′
m
h
′
m,j

]

, (11)

α′
i,j,m = softmax

(

LeakyReLU(s′i,j,m)
)

. (12)

2.3 Hierarchical Compare-aggregate

Mechanism

As different domains might have different prefer-

ences towards different layer prototypes, we pro-

pose a hierarchical compare-aggregate mechanism

to dynamically select the most representative pro-

totype for each domain. Our compare-aggregate

mechanism is motivated by the Riesz representa-

tion theorem (Hartig, 1983), which indicates that

an element can be evaluated by comparing it with

a specific reference element and the quality of the

element is the same as that of the selected reference

element. Based on this, we establish a set of refer-

ence prototypes for each domain and hierarchically

aggregate the current and previous layer prototypes

based on their similarities with the corresponding

reference prototypes.

Reference prototype. For each student layer, a

simple way is to use the original domain prototypes

of current layer as the reference prototypes for the

current and previous layer prototypes. However,

the information of other domains is not integrated,
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which plays an important role to enhance the model

transferability across different domains. To handle

this, we introduce a self-attention mechanism over

all of the domain prototypes in the same layer to

inject the information of different domains. Specif-

ically, the reference prototype RPm ∈ RD×F of

m-th student layer is calculated by:

RPm = α
D
m · hm, (13)

α
D
m = softmax(hm ·WD

m · h⊤
m), (14)

where α
D
m ∈ RD×D refers to the attention matrix

of m-th layer, hm ∈ RD×F refers to the prototypes

of all domains at m-th layer, WD
m ∈ RF×F refers

to a learnable parameter matrix at m-th layer, and

the softmax operation is performed over the last

vector dimension.

Compare-aggregate mechanism. After obtain-

ing the reference prototypes, we propose a

compare-aggregate mechanism to hierarchically

aggregate the layer prototypes by comparing them

with the corresponding reference prototypes, which

makes the model be aware to more representative

layer prototypes for each domain. In detail, the

aggregated prototype APm,d ∈ RF of m-th layer

and d-th domain is formulated as:

APm,d = α
H
m,d · h≤m,d, (15)

α
H
m,d = softmax(h≤m,d ·W

H
m,d ·RPm,d), (16)

where α
H
m,d ∈ Rm+1 represents the similarity

ratios of m-th layer and d-th domain, h≤m,d ∈
R(m+1)×F represents the prototypes of m-th layer

and its previous layers at d-th domain, WH
m,d ∈

RF×F is a learnable parameter matrix of m-th

layer and d-th domain, and RPm,d ∈ RF is the

reference prototype of m-th layer and d-th domain.

Then the aggregated prototype AP is sent to the

domain-relational graphs to obtain the domain-

relational ratios r ∈ R(M+1)×D, as formulated

by Equation (7)-(11).

Finally, the overall loss of our HRKD can be

represented as:

Ltotal =
D
∑

d=1

(

r0,dL
d
embd +

M
∑

m=1

rm,d(L
m,d
attn + Lm,d

hidn)

+
γ

D
Ld
pred

)

,

(17)

where rm,d is the domain-relational ratio at m-th

student layer and d-th domain.

Table 1: Statistics of the MNLI and Reviews datasets.

Dataset Domain #Train #Dev #Test

MNLI

Fiction 69,613 7,735 1,973

Government 69,615 7,735 1,945

Slate 69,575 7,731 1,955

Telephone 75,013 8,335 1,966

Travel 69,615 7,735 1,976

Amazon

Reviews

Books 1,631 170 199

DVD 1,621 194 185

Electronics 1,615 172 213

Kitchen 1,613 184 203

3 Experiment

In this section, we conduct extensive experiments

on two multi-domain datasets, namely MNLI and

Amazon Reviews, to demonstrate the effectiveness

of our HRKD method.

3.1 Datasets and Model Settings

We evaluate our method on two multi-domain

datasets, including the multi-genre natural lan-

guage inference (MNLI) dataset (Williams et al.,

2018) and the Amazon Reviews dataset (Blitzer

et al., 2007). In detail, MNLI is a natural language

inference dataset with five domains for the task

of entailment relation prediction between two sen-

tences. In our setting, we randomly sample 10%

of the original training data as our development set

and use the original development set as our test set.

Amazon Reviews is a sentiment analysis dataset

with four domains for predicting whether the re-

views are positive or negative. Following Pan et al.

(2020), we randomly split the original data into

train, development, and test sets. The statistics of

these two datasets are listed in Table 1.

We use BERTB (the number of layers N=12, the

hidden size d′=768, the FFN intermediate hidden

size d′i=3072, the number of attention heads h=12,

the number of parameters #params=109M) as the

architecture of our teacher model, and BERTS

(M=4, d′=312, d′i=1200, h=12, #params=14.5M)

as our student model. Our teacher model

HRKD-teacher is trained in a multi-domain man-

ner as described in Section 2.1, and our student

model BERTS is initialized with the general distil-

lation weights of TinyBERT1.

1We use the 2nd version from https://github.com/

huawei-noah/Pretrained-Language-Model/

tree/master/TinyBERT

https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
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Table 2: Results on MNLI in terms of accuracy (%) with standard deviations. X
A
−→ Y denotes using teacher X

to distill student Y with KD method of A. The bold and underlined numbers indicate the best and the second-best

performance, respectively.

Method Fiction Government Slate Telephone Travel Average

BERTB-single 82.2 84.2 76.7 82.4 84.2 81.9

BERTB-mix 84.8 87.2 80.5 83.8 85.5 84.4

BERTB-mtl 83.7 87.1 80.6 83.9 85.8 84.2

Meta-teacher 85.1 86.5 81.0 83.9 85.5 84.4

HRKD-teacher 83.8 87.6 80.4 83.5 85.4 84.2

BERTB-single
TinyBERT-KD
−−−−−−−→ BERTS 78.8 83.2 73.6 78.8 81.9 79.3

BERTB-mix
TinyBERT-KD
−−−−−−−→ BERTS 79.6 83.3 74.8 79.0 81.5 79.6

BERTB-mtl
TinyBERT-KD
−−−−−−−→ BERTS 79.7 83.1 74.2 79.3 82.0 79.7

Meta-teacher
Meta-distillation
−−−−−−−→ BERTS 80.5 83.7 75.0 80.5 82.1 80.4

HRKD-teacher
TinyBERT-KD
−−−−−−−→ BERTS 80.1±0.22 84.2±0.20 75.7±0.27 80.0±0.23 81.9±0.17 80.4

HRKD-teacher
HRKD
−−−→ BERTS 80.4±0.33 84.3±0.30 76.1±0.32 81.4±0.29 82.2±0.26 80.9

Table 3: Results on Amazon Reviews in terms of accuracy (%) with standard deviations.

Method Books DVD Electronics Kitchen Average

BERTB-single 87.9 83.8 89.2 90.6 87.9

BERTB-mix 89.9 85.9 90.1 92.1 89.5

BERTB-mtl 90.5 86.5 91.1 91.1 89.8

Meta-teacher 92.5 87.0 91.1 89.2 89.9

HRKD-teacher 88.4 89.2 92.5 91.1 90.3

BERTB-single
TinyBERT-KD
−−−−−−−→ BERTS 83.4 83.2 89.2 91.1 86.7

BERTB-mix
TinyBERT-KD
−−−−−−−→ BERTS 88.4 81.6 89.7 89.7 87.3

BERTB-mtl
TinyBERT-KD
−−−−−−−→ BERTS 90.5 81.6 88.7 90.1 87.7

Meta-teacher
Meta-distillation
−−−−−−−→ BERTS 91.5 86.5 90.1 89.7 89.4

HRKD-teacher
TinyBERT-KD
−−−−−−−→ BERTS 84.6±0.93 87.8±0.55 91.3±0.23 88.1±2.98 87.9

HRKD-teacher
HRKD
−−−→ BERTS 87.4±0.90 90.5±1.76 91.8±1.25 92.2±0.48 90.5

3.2 Baselines

We mainly compare our KD method with several

KD baseline methods distilled from four teacher

models, including BERTB-single, BERTB-mix,

BERTB-mtl, and Meta-teacher in Meta-KD (Pan

et al., 2020). Specifically, BERTB-single trains

the teacher model of each domain separately with

the single-domain dataset; BERTB-mix trains a

single teacher model with the combined dataset

of all domains; BERTB-mtl adopts the multi-task

training method proposed by Liu et al. (2019c) to

train the teacher model; Meta-teacher trains the

teacher model with several meta-learning strategies

including prototype-based instance weighting and

domain corruption.

3.3 Implementation Details

For the teacher model, we train the HRKD-teacher

for three epochs with a learning rate of 5e-5. For

the student model, we train it for ten epochs with a

learning rate of 1e-3 and 5e-4 on MNLI and Ama-

zon Reviews, respectively. γ is set to 1, and t is 1.

For few-shot learning, the learning rate for the stu-

dent model is 5e-5, while other hyper-parameters

are kept the same. The few-shot training data is

selected from the front of our original training set

with different sample ratios, while the dev and test

data are the same as our original dev and test sets

without sampling to make a fair comparison. In

all the experiments, the sequence length is set to

128, and the batch size is 32. The hyper-parameters

are tuned on the development set, and the results

are averaged over five runs. Our experiments are

conducted on 4 GeForce RTX 3090 GPUs.

3.4 General Experimental Results

The experimental results of our method are shown

in Table 2 and 3. On the MNLI dataset, our
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Figure 2: Comparison results of few-shot learning be-

tween Meta-KD and HRKD.

teacher model HRKD-teacher has similar perfor-

mances with other baseline teacher models, but

the performance of the student model distilled with

the HRKD method (HRKD-teacher
HRKD
−−−→ BERTS)

is significantly better than the base TinyBERT-

KD method (HRKD-teacher
TinyBERT-KD
−−−−−−−→ BERTS)

as well as its counterpart Meta-KD (Meta-teacher
Meta-distillation
−−−−−−−→ BERTS), which demonstrate the su-

perior performance of our method. Specifically,

with the HRKD method, the average score of the

student model is both 0.5% higher than that of the

model with the base TinyBERT-KD method and

its counterpart Meta-KD method (see Table 2). It

can also be observed that the improvement of our

HRKD method on the Telephone domain is the

most significant, which is probably caused by the

amount of training data. From Table 1, we can see

that the Telephone domain has much more train-

ing data than other domains, indicating that the

Telephone domain can derive more relationship in-

formation from other domains and lead to higher

improvement. Meanwhile, as shown in the results

on the Amazon Reviews dataset in Table 3, the per-

formance of the HRKD-teacher model is slightly

better than that of other teacher models, but the stu-

dent model distilled by the HRKD method largely

outperforms the models distilled by the TinyBERT-

KD and Meta-KD methods with average gains of

2.6% and 1.1% respectively, which prove the ex-

cellent performance of our method again. Note

that our HRKD method significantly outperforms

the base TinyBERT-KD method on both MNLI

and Amazon Reviews datasets (t-test with p < 0.1).

And since the performances of the Meta-teacher

and our HRKD-teacher are similar on both datasets,

the impact of the teacher is negligible, making the

comparison between our HRKD and its counterpart

Meta-KD relatively fair.

Table 4: Ablation studies on Amazon Reviews dataset.

The accuracy values (%) with standard deviations are

reported.

KD Method Books DVD Elec. Kitchen Average

HRKD 87.4 90.5 91.8 92.2 90.5

- Self-attention 87.3 89.9 92.5 91.6 90.3

- Comp-Agg 86.3 90.6 90.9 91.8 89.9

- Hierarchical Rel. 85.9 89.6 91.1 91.6 89.5

- Domain Rel. 84.6 87.8 91.3 88.1 87.9

3.5 Few-shot Learning Results

As a large amount of training data is hard to col-

lect in reality, the few-shot learning ability of our

method is worth being evaluated, where both the

teacher and student models are trained with few

training data in each domain. We randomly sam-

ple a part of the training data in the MNLI dataset

to make an evaluation, where the chosen sample

rates are 2%, 5%, 10%, and 20%. We mainly com-

pare the performance improvements between two

methods: distilling from BERTB-single to BERTS

with TinyBERT-KD (BERTB-single
TinyBERT-KD
−−−−−−−→

BERTS) and our HRKD method (HRKD-teacher
HRKD
−−−→ BERTS). From the results in Figure 2, we

can observe that the improvement gets more promi-

nent when the training data gets fewer, and the

average improvement rate is the largest of 10.1%

when there is only 2% MNLI training data. In addi-

tion, we can see that the improvement rates of our

method are higher than those of Meta-KD under

most of the sample rates, especially when there are

only 2% training data. These results demonstrate

the strong learning ability of our HRKD method

under the few-shot setting.

3.6 Ablation Studies

In this section, we progressively remove each mod-

ule of our KD method to evaluate the effect of each

module.

The results are shown in Table 4. We first re-

move the self-attention mechanism across different

domain prototypes (- Self-attention), and the av-

erage score on Amazon Reviews drops by 0.2%,

which proves its effectiveness. Next, we replace the

hierarchical compare-aggregate mechanism with a

simple average operation (- Comp-Agg), and the

average score drops by 0.4%, which demonstrates

the effectiveness of the compare-aggregate mech-

anism. Then we remove the hierarchical graph

structure (- Hierarchical Rel.), where the input of

each domain-relational graph comes from a single
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Table 5: Case study on Amazon Reviews across four domains with three positive samples and one negative sample.

Positive samples are colored in gray.

Domain Label Review Text

Books POS ...leading, or molding young people today would benefit from reading this book...

DVD POS ...The plot wasn’t horrible, it was actually pretty good for a fright flick...

Electronics NEG ...I returned the camera and bought a Panasonic and never looked back!

Kitchen POS This is great for making poached eggs on toast. My family has enjoyed using it...

Domain-relational Ratio Hierarchical Similarity Ratio

[0.24, 0.29, 0.25, 0.23, 0.24] [0.42, 0.58], [0.38, 0.30, 0.32], [0.24, 0.27, 0.25, 0.24], [0.16, 0.19, 0.21, 0.20, 0.24]

[0.24, 0.29, 0.25, 0.23, 0.24] [0.52, 0.48], [0.32, 0.38, 0.30], [0.27, 0.24, 0.27, 0.22], [0.16, 0.17, 0.19, 0.24, 0.24]

[0.27, 0.17, 0.25, 0.25, 0.26] [0.62, 0.38], [0.22, 0.21, 0.58], [0.19, 0.22, 0.30, 0.29], [0.14, 0.15, 0.24, 0.21, 0.26]

[0.24, 0.25, 0.25, 0.28, 0.27] [0.46, 0.54], [0.30, 0.43, 0.28], [0.30, 0.25, 0.26, 0.20], [0.29, 0.19, 0.15, 0.12, 0.26]

Table 6: Case study on Amazon Reviews across four domains with two positive samples and two negative samples.

Positive samples are colored in gray.

Domain Label Review Text

Books NEG ...In this book, his "hard-evidence" is flimsey and suspicious...

DVD POS ...If you have a child who loves John Deere, then this is a perfect DVD for them.

Electronics POS ...Movies are amazing! My music collection never sounded so good...

Kitchen NEG This is the worst blender I’ve ever used...It’s also loud and it moves a lot...

Domain-relational Ratio Hierarchical Similarity Ratio

[0.26, 0.25, 0.25, 0.24, 0.27] [0.43, 0.57], [0.40, 0.31, 0.29], [0.25, 0.26, 0.25, 0.23], [0.13, 0.17, 0.20, 0.21, 0.30]

[0.24, 0.25, 0.25, 0.26, 0.22] [0.52, 0.48], [0.35, 0.32, 0.33], [0.22, 0.25, 0.27, 0.25], [0.18, 0.22, 0.18, 0.20, 0.22]

[0.24, 0.25, 0.25, 0.26, 0.25] [0.54, 0.46], [0.31, 0.33, 0.36], [0.22, 0.24, 0.29, 0.25], [0.21, 0.20, 0.18, 0.18, 0.23]

[0.26, 0.25, 0.25, 0.24, 0.27] [0.49, 0.51], [0.36, 0.33, 0.31], [0.26, 0.25, 0.26, 0.23], [0.22, 0.20, 0.19, 0.18, 0.21]

student layer. As can be seen, the average score

drops by 0.4%, which proves the importance of the

hierarchical relationship. Finally, we remove the

domain-relational graph in each layer (- Domain

Rel.), and the performance significantly drops by

1.6%, which strongly demonstrates the advantage

of the domain relationship.

3.7 Case Studies

We further provide some case studies to intuitively

explain the effectiveness of the domain-relational

ratios and hierarchical similarity ratios calculated

by our HRKD method (see Table 5 and 6).

In Table 5 and 6, we use the label to denote the

categories of sampled domain examples, and we

assume that if the learned domain-relational ratios

and hierarchical similarity ratios are similar for do-

main examples with same category while different

for those with different categories, then the model

has relatively correctly captured the cross-domain

and hierarchical relational information. We select

two typical types of cases from Amazon Reviews

across four domains, in which we adjust the num-

ber of domains in each category under two settings:

(i) three same categories (i.e., POS) with another

one category (i.e., NEG) as in Table 5, and (ii) two

same categories (i.e., POS) with another two same

categories (i.e., NEG) as in Table 6.

We find the results are intuitive, as we observe

that the review texts with the same labels have

similar domain-relational ratios and hierarchical

similarity ratios, while different layers indeed have

different domain weighting preferences and differ-

ent preferences of layer prototypes for graph input.

For example, in Table 5 and 6, positive samples

tend to have higher domain-relational ratios in the

middle layers (i.e., 2-4), while negative samples

have higher ratios in the marginal layers (i.e., 1,

5). Meanwhile, in the second and third layers of

Table 5 as well as the first layer of Table 6, lower

positive layer prototypes tend to have higher sim-

ilarity ratios, and the higher positive layer proto-

types in the third layer of Table 6 also tend to have

higher similarity ratios; while those of the nega-

tive layer prototypes are just the opposite. The

results show that HRKD method has distinctively

and correctly captured the hierarchical and domain

meta-knowledges, leading to better performance.
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4 Related Work

Pre-trained Language Model (PLM) Compres-

sion. Due to the large size and slow inference

speed, PLMs are hard to be deployed on edge de-

vices for practical usage. To solve this problem,

many PLM compression methods have been pro-

posed, including quantization (Shen et al., 2020),

weight pruning (Michel et al., 2019), and knowl-

edge distillation (KD) (Sun et al., 2019; Jiao et al.,

2020). Among them, KD (Hinton et al., 2015)

has been widely adopted due to its plug-and-play

feasibility, aiming to distill the knowledge from a

larger teacher model to a smaller student model

without decreasing too much performance. For

example, BERT-PKD (Sun et al., 2019) distills

both intermediate and output layers on fine-tuning.

TinyBERT (Jiao et al., 2020) additionally distills

the embedding layer and attention matrices during

pre-training and fine-tuning. Meta-KD (Pan et al.,

2020) proposes to distill knowledge from a cross-

domain meta-teacher through an instance-specific

domain-expertise weighting technique.

In this paper, we propose a novel cross-domain

KD framework that captures the relational informa-

tion across different domains with both domain and

hierarchical meta-knowledges, which has a better

capability for capturing multi-domain correlations.

Transfer Learning and Meta-learning. Trans-

fer learning focuses on transferring the knowledge

from source domains to boost the model perfor-

mance on the target domain. Among the meth-

ods in transfer learning, the shared-private archi-

tecture (Liu et al., 2017, 2019c) is most commonly

applied in NLP tasks, which consists of a shared

network to store domain-invariant knowledge and

a private network to capture domain-specific in-

formation. There are also many works applying

adversarial training strategies (Shen et al., 2018;

Li et al., 2019; Zhou et al., 2019), which intro-

duce domain adversarial classifiers to learn the

domain-invariant features. Besides, the research of

multi-domain learning has gained more and more

attention recently, which is a particular case of

transfer learning targeting transferring knowledge

across different domains to comprehensively en-

hance the model performance (Cai and Wan, 2019;

Wang et al., 2020). Unlike transfer learning, the

goal of meta-learning is to train a meta-learner that

can easily adapt to a new task with a few training

data and iterations (Finn et al., 2017). Traditional

meta-learning typically contains three categories

of methods: metric-based (Snell et al., 2017; Sung

et al., 2018), model-based (Santoro et al., 2016;

Munkhdalai and Yu, 2017), and optimization-based

(Ravi and Larochelle, 2017; Finn et al., 2017). In

addition, the meta-learning technique can benefit

the multi-domain learning task by learning the re-

lationship information among different domains

(Franceschi et al., 2017).

In this paper, we leverage meta-learning to solve

the multi-domain learning task, where we consider

cross-domain KD to simultaneously capture the

correlation between different domains, aiming to

train a better student meta-learner.

5 Conclusion

In this paper, we present a hierarchical relational

knowledge distillation (HRKD) framework to si-

multaneously capture the cross-domain relational

information. We build several domain-relational

graphs to capture domain meta-knowledge and in-

troduce a hierarchical compare-aggregate mecha-

nism to capture hierarchical meta-knowledge. The

learnt domain-relational ratios are leveraged to

measure domain importance during the KD pro-

cess. Extensive experiments on public datasets

demonstrate the superior performance and solid

few-shot learning ability of our HRKD method.
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