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Abstract
Out-of-Distribution (OOD) detection is an im-
portant problem in natural language process-
ing (NLP). In this work, we propose a sim-
ple yet effective framework kFolden, which
mimics the behaviors of OOD detection during
training without the use of any external data.
For a task with k training labels, kFolden in-
duces k sub-models, each of which is trained
on a subset with k − 1 categories with the left
category masked unknown to the sub-model.
Exposing an unknown label to the sub-model
during training, the model is encouraged to
learn to equally attribute the probability to
the seen k − 1 labels for the unknown la-
bel, enabling this framework to simultaneously
resolve in- and out-distribution examples in
a natural way via OOD simulations. Tak-
ing text classification as an archetype, we de-
velop benchmarks for OOD detection using
existing text classification datasets. By con-
ducting comprehensive comparisons and anal-
yses on the developed benchmarks, we demon-
strate the superiority of kFolden against cur-
rent methods in terms of improving OOD de-
tection performances while maintaining im-
proved in-domain classification accuracy. 1

1 Introduction

Recent progress in deep neural networks has
drastically improved accuracy in numerous NLP
tasks (Sun et al., 2019; Raffel et al., 2019; Chai
et al., 2020; He et al., 2020), but detecting out-of-
distribution (OOD) examples from the in-domain
(ID) examples is still a challenge for existing state-
of-the-art deep NLP models. The ability of identi-
fying OOD examples is critical for building reliable
and trustworthy NLP systems for, say, text classifi-

1Corresponding author: Jun Zhang.

cation (Hendrycks and Gimpel, 2016; Mukherjee
and Awadallah, 2020), question answering (Ka-
math et al., 2020) and neural machine translation
(Kumar and Sarawagi, 2019). Existing works study-
ing OOD detection in NLP often rely on external
data (Hendrycks et al., 2018) to diversify model
predictions and achieve better generality in OOD
detection. The reliance on external data not only
brings additional burden for data collection, but
also results in the annoying issue in deciding which
subset of external data to use: there is massive
amount of external data and the using different
subsets leads to different final results. Therefore,
developing OOD detection system without external
data is important towards building reliable NLP
systems.

In this work, we propose a novel, simple yet ef-
fective framework, kFolden, short for a k-Fold
ensemble, to address OOD detection for NLP with-
out the use of any external data. We accomplish
this goal by simulating the process of detecting
OOD examples during training. Concretely, for
a standard NLP task with k labels for both train-
ing and test, we first obtain k separate sub-models,
each of which is trained on a set of different k − 1
labels with the left one being masked unknown to
the model. We train each sub-model by jointly op-
timizing the cross entropy loss for the visible k− 1
labels and the KL divergence loss between the pre-
dicted distribution and the uniform distribution for
the left-one-out label. During test, we simply aver-
age the probability distributions produced by these
k sub-modules and treat the result as the final prob-
ability estimate for a given input. Intuitively, if the
input is an ID example, the final probability distri-
bution will lay much of the weight on one of the k
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seen labels, but if the input is an OOD example, we
expect the final probability distribution to get close
to the uniform distribution, since each sub-model
has tried to even its probability distribution when
encountering unseen labels during training.

This training paradigm does not rely on any ex-
ternal data, and by mimicking the behaviors of
distinguishing unseen labels from the seen, i.e.,
simulating the process of OOD detection during
training, which is completed via the KL divergence
loss, the framework naturally detects OOD exam-
ples and is able to perform reasonably better than
other widely used strong OOD detection methods.
Moreover, kFolden is complementary to existing
post-hoc OOD detection methods, and combining
both leads to the most performance boosts.

To facilitate OOD detection researches in NLP, we
also construct benchmarks on top of four widely
used text classification datasets: 20NewsGroups,
Reuters, AG News and Yahoo!Answers. This cre-
ated benchmark consists of 7 datasets with different
levels of difficulty directed to two types of OOD
examples: semantic shift and non-semantic shift,
which differ in whether a shift is related to the in-
clusion of new semantic categories. The proposes
benchmarks help comprehensively examine OOD
detection methods, and we hope it can serve as a
convenient and general tool for developing more
robust and effective OOD detection models.

To summarize, the contributions of this work are:

• We propose a simple yet effective framework –
kFolden, which simulates the process of OOD
detection during training without using any
external data.

• We construct benchmarks for OOD detection
in text classification hoping for facilitating
future related researches.

• We conduct comprehensive comparisons and
analyses between existing methods and the
proposed kFolden on the benchmark, and
we show that kFolden achieves performance
boosts regarding OOD detection while main-
taining ID classification accuracy.

2 Related Work

Out-Of-Distribution Detection
Detecting OOD examples using deep neural mod-
els has gained substantial traction over recent years.
Hendrycks and Gimpel (2016) proposed a baseline

for misclassified and OOD examples by threshold-
ing candidates based on the predicted softmax class
probability. Lee et al. (2018) trained a classifier
concurrent with a generator under the GAN frame-
work (Goodfellow et al., 2014). The generator pro-
duces examples at the in-domain boundary and the
classifier is forced to give lower confidence in pre-
dicting the classes for those examples. Hendrycks
et al. (2018) leveraged real datasets instead of the
generated examples, enabling the classifier to bet-
ter generalize and detect anomalies. Liang et al.
(2017) observed that temperature scaling and small
perturbations lead to widened gaps between ID and
OOD examples, for which they proposed proposed
ODIN, a technique that makes OOD instances dis-
tinguishable by pulling apart the softmax scores
of ID and OOD examples. Kamath et al. (2020)
proposed to leverage the confidence estimate of a
QA model to determine whether a question should
be answered under domain shift to maintain a mod-
erate accuracy. Hendrycks et al. (2019, 2020)
showed that pretraining improves model robustness
in terms of uncertainty estimation and OOD detec-
tion. Measuring model confidence has also exhib-
ited power in detecting OOD examples (Lee et al.,
2017a,b; DeVries and Taylor, 2018; Papadopoulos
et al., 2021). This work differs from Hendrycks
et al. (2020) mainly in that (1) they used a simple
MaxProb-based method (Hendrycks and Gimpel,
2016) to estimate uncertainty while we propose
a novel framework kFolden to improve OOD de-
tection; and (2) they focused on comparing differ-
ent NLP models on OOD generalization and shed
light on the importance of pretraining for OOD ro-
bustness, whereas we highlight the merits of OOD
simulation during training without the use of any
external data, and construct a dedicated benchmark
for text classification OOD detection.

Meta Learning in NLP
Meta learning (Thrun and Pratt, 2012; Andrychow-
icz et al., 2016; Nichol et al., 2018; Finn et al.,
2017) tackles the problem of model learning in
the domain with scarce data when large quantities
of data are accessible in another related domain.
Meta learning has been applied to considerable
NLP tasks including semantic parsing (Huang et al.,
2018; Guo et al., 2019; Sun et al., 2020), dialog
generation (Song et al., 2019; Huang et al., 2020),
text classification (Wu et al., 2019; Sun et al., 2020;
Bansal et al., 2020; Lin et al., 2021) and machine
translation (Gu et al., 2018). Our work is distantly
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related to meta learning in terms of the way we
train kFolden by simulating the behaviors of pre-
dicting the unseen label during training, But we
do not intend to achieve strong few-shot learning
performances, which is the main goal of meta learn-
ing.

3 Task Definition

In this paper, we consider the problem of distin-
guishing betweem ID and OOD examples. We take
text classification for illustration, and other tasks
can be analogously resolved using the proposed
kFolden framework. Let Dtrain = {x, ytrain} and
Dtest = {x, ytest} denote the two sets respectively
used for model training and test, where we assume
the label space for training consists of k distinct
labels Y train = {1, · · · , k} and all possible labels
for test is the ones in Y train plus t additional labels,
i.e., Y test = {1, · · · , k, k+1, · · · , k+ t}. Assume
that a neural network f is trained on Dtrain, and
tested on Dtest.

We are interested in two situations when testing
f on Dtest: (1) the current input example x has a
gold label belonging to Y train (i.e., ytest ∈ Y train),
and (2) the input example’s gold label does not
belong to Y train (i.e., ytest ∈ Y test\Y train). For the
former, we would like the model to achieve high
accuracy because it has been trained on these ID
examples; for the latter, we expect the model to
figure out the current input is an OOD example.
Hence, in this work, we mainly report the results
from two aspects: accuracy on ID examples, and
performances on OOD examples. The performance
for OOD examples is evaluated via several targeted
metrics, which will be introduced in experiments.

4 Method: k-Fold Ensemble

4.1 Training k Sub-Models as Simulation for
OOD Detection

The core idea behind the proposed kFolden frame-
work is to simulate the situation of encountering
unseen labels at the training stage without the use
of external data. To this end, we propose to train
k independent sub-models {f1, · · · , fk}, each of
which is in order trained on a different subset of
k − 1 labels with the left label masked unknown
to the model. Each sub-model is required to attain
high accuracy on examples with the seen k − 1
labels along with high uncertainty on examples
with of masked label, and this is exactly what we

would expect for OOD detection: we would like the
model to accurately detect OOD examples while
not harming performances on ID examples.

More specifically, assume we are training the i-th
sub-model fi(1 ≤ i ≤ k), and thus the visible
label set for training fi would be Y train\{i}. All
training examples in Dtrain with label i now be-
comes unknown to fi. For the visible k − 1 labels,
fi should still achieve high accuracy as we want;
but for the masked label i, fi needs to give non-
deterministic estimates when the input instance x
has the ground-truth label i because the label i is
masked and not found in the training set. This im-
plies that the model can not determine which label
x belongs to and may attribute it to an OOD exam-
ple. These two considerations can be satisfied by
jointly optimizing the following objective:

L = LCE + γLKL (1)

where

LCE =
∑

(x,ytrain)∈Dtrain

ytrain∈Y train\{i}

CrossEntropy(ytrain, fi(x))

(2)

LKL =
∑

(x,ytrain)∈Dtrain

ytrain=i

KL(fi(x),u)
(3)

γ is a hyper-parameter ranging over [0, 1] and tuned
on validation set. In the above equations, u is a uni-
form distribution. Eq.(2) is a standard cross entropy
loss that requires the model to achieve accurate pre-
dictions on the visible labels, while Eq.(3) draws on
the KL divergence to encourage the model to pro-
duce a probability distribution close to the uniform
distribution u on the k − 1 labels for the masked
label. By jointly training on both loss functions, fi
will be able to detect the OOD label iwhile preserv-
ing non-reduced performances on other k−1 labels.
We proceed with this process for all k sub-models,
each with a different masked label. fi(x) takes as
input x and outputs a probability distribution of
dimensionality k − 1. fi can be implemented us-
ing any model backbone such as LSTM (Hochreiter
and Schmidhuber, 1997), CNN (Kim, 2014), Trans-
former (Vaswani et al., 2017) and BERT (Devlin
et al., 2018).

4.2 Sub-Model Ensemble
A single sub-model fi will inevitably result in poor
performances during test regarding the ID exam-
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ples with label i. This is because for fi, the masked
label i during training will never have the chance
to be predicted by the model, so that all the test
examples with label i in Dtest will be associated
with possibly low probability, leading to overall
reduced accuracy.

To tackle this issue, we adopt the idea of model en-
semble: given an input x, we first obtain k probabil-
ity distributions {f1(x), · · · , fk(x)} respectively
produced by the k sub-models. In order to coordi-
nate the label dimensions for different sub-models,
we manually pad a zero dimension to each proba-
bility distribution at the corresponding masked po-
sition. For example, if k = 4 and the output from
f2 is f2(x) = [f2(x)1, f2(x)2, f2(x)3, f2(x)4],
then the padded output distribution would thus
be f̃2(x) = [f2(x)1, 0, f2(x)2, f2(x)3, f2(x)4].
Next, we average all the k padded probability distri-
butions, and take the result as the final probability
estimate:

f̃(x) =
1

k

k∑
i=1

f̃i(x) (4)

f̃(x) is still a valid probability distribution and
naturally remedies the shortcoming of a single sub-
model: if x is an ID example, i.e., its ground-truth
label y belongs to Y train, f̃(x) will put most of the
probability mass on one of the k labels; if x is
an OOD example, f̃(x) will get close to the uni-
form distribution because all sub-models compris-
ing f̃(x) will even their probability masses across
all the k labels. After training, f̃(x) can be used for
ID evaluation and OOD evaluation simultaneously.

5 Benchmark Construction

Out-of-distribution data can be conceptually di-
vided into two categories: non-semantic shift (NSS)
and semantic shift (SS) and datasets (Hsu et al.,
2020). They are different in terms of whether a
shift is related to the inclusion of new semantic cat-
egories: the training and OOD test examples in the
NSS dataset come from different sub-categories of
the same broader category. For example, the train-
ing and OOD test sets in an NSS dataset are both
from the “car” category, but examples in the train-
ing set are able “real car”, e.g. “that’s when they
took out the fuel tank and poured it into a jug”, and
all OOD test are about “toy car”, e.g. “Raleigh 2-
year-old fills up toy car with ’gas’ amidst shortage”.
For SS, the training and OOD test examples in the
SS dataset come from completely different cate-

gories. For example, the training set contains la-
bels “car” and “bicycle”, and the test set has labels
“train” and “plane”, which have no intersections
with training labels. In this paper, we construct
both SS and NSS text classification benchmarks
for OOD detection.

We construct benchmarks on multi-class topic clas-
sification datasets. The topic classification task
has less vocabulary overlap between ID and OOD
data. We use data from 20NewsGroups (Joachims,
1996), Reuters-215782, AG News (Del Corso et al.,
2005) and Yahoo!Answers (Zhang et al., 2015).
More details of the original datasets can be found
at Appendix A. The statistics of the benchmark are
present in Table 1.

We construct NSS benchmarks as follows:

20Newsgroups-6S This dataset is a modified ver-
sion of 20Newsgroups. The original 20News-
groups dataset has 20 newsgroups and each news-
group (e.g., "comp.sys.ibm.pc.hardware") has a
root subject topic (e.g., "comp"). We divide ar-
ticles by its root subject and obtain 6 newsgroups
("comp", "rec", "sci", "religion", "politics" and
"misc"). In this way, train and test data share
the same root topic labeled but have different fine-
grained topic labels. The training and ID test data
are from 11 sub-classes in 20News, while OOD
test data are from the rest 9 sub-classes.

AGNews-EXT This dataset is adapted from AG
News and additional articles come from the AG
Corpus. The original AG News dataset has 4
classes ("World", "Sports", "Business", "Sci/Tech").
The training and ID test data in AGNews-EXT
come from the 4 class labels in AG News, and
the OOD test data are from the AG Corpus but
have the same class labels as in AG News.

Yahoo-AGNews-five This dataset contains a sub-
set of Yahoo!Answers and a subset of AG Corpus.
The original Yahoo!Answers dataset has 10 classes,
and we use 5 of them ("Health", "Science & Mathe-
matics", "Sports", "Entertainment & Music", "Busi-
ness & Finance") for the training and ID test data.
The OOD test data are selected from the 5 classes
("Health", "Sci/Tech", "Sports", "Entertainment",
"Business") in AG Corpus.

We construct SS benchmarks as follows:
2http://kdd.ics.uci.edu/databases/

reuters21578/reuters21578.html

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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Non-Semantic Shift (NSS) Datasets Semantic Shift (SS) Datasets

20News-6S AG-EXT Yahoo-AG-five Reuters-mK-nL AG-FL AG-FM Yahoo-FM

Adapted From 20News AGNews&AGCorpus Yahoo&AGCorpus Reuters AGNews&AGCorpus AGNews&AGCorpus Yahoo

# Labels in T 6 4 5 m 4 4 5
# Instances in T 8,283 112,400 675,000 f(m, train) 116,000 116,000 680,000

# Labels in ID-V 6 4 5 m 4 4 5
# Instances in ID-V 1,034 7,600 25,000 f(m, valid) 4,000 4,000 20,000
# Labels in OOD-V 6 4 5 n 4 4 5
# Instances in OOD-V 846 7,600 25,000 f(n, valid) 4,000 4,000 20,000

# Labels in ID-T 6 4 5 m 4 4 5
# Instances in ID-T 1,034 7,600 25,000 f(m, test) 4,000 4,000 25,000
# Labels in OOD-T 6 4 5 n 4 4 5
# Instances in OOD-T 846 7,600 25,000 f(n, test) 4,000 4,000 25,000

Table 1: Statistics for the constructed benchmark. “T” is for “Training Set”, “V” is for “Valid Set”, and “T”
is for “Test Set”. All the data in each of the set are evenly distributed over the labels except 20News-6S.
f(m, train/valid/test) means that the actual number is related to m and the corresponding train/valid/test set in
the original Reuters-ModApte dataset.

Reuters-mK-nL This dataset is a modified ver-
sion of Reuters. We first follow previous works
(Yang and Liu, 1999; Joachims, 1998) to use the
ModApte split3 to remove documents belonging
to multiple classes, and then considered only 10
classes ("Acquisitions", "Corn", "Crude", "Earn",
"Grain", "Interest", "Money-fx", "Ship", "Trade"
and "Wheat") with the highest numbers of train-
ing examples. The resulting dataset is called
Reuters-ModApte. We train the model on a sub-
set of Reuters-ModApte and test on the rest sub-
set. Specifically, we train with m topic articles
and test the model on the other n = 10 −m top-
ics. In this paper, we use five settings: (m,n) =
(9, 1)/(6, 4)/(5, 5)/(3, 7)/(2, 8).

AGNews-FL The dataset is adapted from AG-
News and additional articles come from AG Cor-
pus. In this setting, the training and ID test data are
from the 4 classes ("World", "Sports", "Business",
"Sci/Tech") in AGNews, and the OOD test data are
from another 4 classes ("U.S.", "Europe", "Italia",
"Software and Development") in AG Corpus.

AGNews-FM This dataset is adapted from AG-
New and additional articles are taken from the AG
Corpus. In this setting, the training and ID data
are from the 4 classes ("World", "Sports", "Busi-
ness", "Sci/Tech") in AGNews, and the OOD test
data are from another 4 classes ("Entertainment",
"Health", "Top Stories", "Music Feeds") in AG
Corpus. This dataset is easier than AGNews-FL
because the OOD labels are more distinct from the
ID labels regarding the label semantics.

3http://kdd.ics.uci.edu/databases/
reuters21578/README.txt

Yahoo!Answers-FM This dataset is modified
from the Yahoo!Answers dataset. We use five
topic articles ("Health", "Science & Mathemat-
ics", "Sports", "Entertainment & Music", "Busi-
ness & Finance") for the training and ID tet data
and use the other five unseen topics ("Society &
Culture", "Education & Reference", "Computers
& Internet", "Family & Relationships", "Politics &
Government") for the OOD test data.

6 Experiments

6.1 Experimental Setups

We use both contextual and non-contextual model
skeletons for experiments. We use CNN and BiL-
STM as the non-contextual model backbones. We
follow the CNN-non-static model (Kim, 2014) as
the CNN implementation and the BiLSTM model
is of a single layer. Both CNN and BiLSTM have
300d word vectors pretrained on Wikipedia 2014
using Glove (Pennington et al., 2014). The aver-
age of the hidden states of all words is used as
the feature for classification. We trained the non-
contextual models with a batch size of 32 and an ini-
tial learning rate of 0.001 using the Adam (Kingma
and Ba, 2014). For contextual models, we use
the officially pretrained BERT-uncased-base (De-
vlin et al., 2018) and RoBERTa-uncased-Base (Liu
et al., 2019) for comparison. We use AdamW 4 to
optimize all contextual models, with 0.01 weight
decay and 1000 warmup steps. The learning rate
was choosen in the range of {1e−5, 2e−5, 3e−5}.
We use batch size in the range of {16, 24, 32} for
all experiments. And use dropout 0.2 for BERT
and RoBERTa experiments.

4https://github.com/huggingface/transformers

http://kdd.ics.uci.edu/databases/reuters21578/README.txt
http://kdd.ics.uci.edu/databases/reuters21578/README.txt
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ID Metrics OOD Metrics

Model ACC↑ AUROC↑ AUPR↑ TNR@95TPR↑

20Newsgroups-6S
Vanilla

CNN-init emb 77.76 50.22 58.91 29.27
BiLSTM-init emb 78.01 50.00 59.93 29.53
BERT 82.15 54.76 62.61 50.89
RoBERTa 83.40 57.41 66.79 59.15
RoBERTa+Mahalanobis 83.40 58.22 68.63 61.98
RoBERTa-Dropout 85.06 57.72 67.30 60.56
RoBERTa-Dropout+Mahalanobis 85.06 58.29 68.99 62.40
RoBERTa(6) 84.37 58.00 67.94 60.81
RoBERTa(6)+Mahalanobis 84.69 58.42 69.05 62.07

kFolden
CNN-init emb 78.29 50.33 62.10 34.57
BiLSTM-init emb 78.30 50.48 60.86 34.94
BERT 84.12 56.77 64.85 53.46
RoBERTa 85.75 58.35 67.54 60.45
RoBERTa+Scaling 85.75 59.83 68.88 62.17
RoBERTa+Mahalanobis 85.75 60.04 69.91 63.44

AGNews-EXT
Vanilla

CNN-init emb 86.13 48.29 61.54 35.62
BiLSTM-init emb 87.38 48.56 62.15 35.88
BERT 92.24 51.35 63.68 49.63
RoBERTa 94.54 52.75 64.01 51.45
RoBERTa+Mahalanobis 94.54 55.37 65.94 54.60
RoBERTa-Dropout 95.13 52.74 64.32 52.47
RoBERTa-Dropout+Mahalanobis 95.13 55.67 66.32 55.10
RoBERTa(4) 95.22 53.91 65.68 53.08
RoBERTa(4)+Mahalanobis 95.22 55.74 66.58 55.21

kFolden
CNN-init emb 88.30 49.31 62.18 37.20
BiLSTM-init emb 88.92 49.45 63.08 37.54
BERT 93.43 51.25 64.19 53.16
RoBERTa 95.62 53.87 65.76 54.98
RoBERTa+Scaling 95.62 55.19 66.28 55.09
RoBERTa+Mahalanobis 95.62 56.07 67.81 55.48

Yahoo-AGNews-five
Vanilla

CNN-init emb 77.45 79.26 58.50 43.94
BiLSTM-init emb 77.68 79.98 58.76 44.07
BERT 81.93 82.35 62.17 50.82
RoBERTa 82.54 84.98 63.46 50.94
RoBERTa+Mahalanobis 82.54 85.88 63.92 51.96
RoBERTa-Dropout 84.04 84.29 63.36 51.03
RoBERTa-Dropout+Mahalanobis 84.04 85.95 64.17 51.39
RoBERTa(5) 84.10 85.01 64.14 51.22
RoBERTa(5)+Mahalanobis 84.10 86.23 64.37 53.11

kFolden
CNN-init emb 79.23 81.12 61.09 45.82
BiLSTM-init emb 78.04 82.33 62.88 45.90
BERT 83.23 84.09 63.11 52.95
RoBERTa 84.45 85.61 64.15 52.22
RoBERTa+Scaling 84.45 86.69 64.87 54.39
RoBERTa+Mahalanobis 84.45 86.92 64.92 56.24

Table 2: Results of Non-Semantic Shift (NSS) datasets.
The number in the bracket (k) denotes averaging k
model predictions and k equals to the number of labels
in the training dataset.

6.2 Baselines

We choose the following OOD detection methods
for comparison:

MSP: The Maximum Softmax Probability method
proposed by Hendrycks and Gimpel (2016). It uses
the maximum probability in the final probability
distribution over labels as the prediction score. If
the maximum probability is under some specified
threshold ϕ ∈ [0, 1], then the example would be
classified as OOD. We tune the threshold on the
dev set. This is the default setting for all model
backbones.

ID Metrics OOD Metrics

Model ACC↑ AUROC↑ AUPR↑ TNR@95TPR↑

Reuters-7K-3L
Vanilla

CNN-init emb 62.04 64.76 53.49 49.23
BiLSTM-init emb 60.89 66.41 55.55 48.58
BERT 63.25 66.83 60.28 50.66
RoBERTa 65.88 67.37 63.30 51.95
RoBERTa+Mahalanobis 65.88 68.34 64.33 52.73
RoBERTa-Dropout 66.16 69.04 64.18 52.09
RoBERTa-Dropout+Mahalanobis 66.16 69.86 64.25 52.90
RoBERTa(7) 66.31 69.31 64.57 52.81
RoBERTa(7)+Mahalanobis 66.31 69.89 64.82 53.46

kFolden
CNN-init emb 62.94 65.08 54.28 50.27
BiLSTM-init emb 61.05 67.81 56.98 49.96
BERT 65.45 68.14 61.11 51.79
RoBERTa 66.72 69.70 64.74 53.62
RoBERTa+Scaling 66.72 70.03 65.39 53.98
RoBERTa+Mahalanobis 66.72 70.52 65.81 54.91

AGNews-FL
Vanilla

CNN-init emb 80.55 62.94 52.70 30.54
BiLSTM-init emb 81.36 63.71 54.77 31.90
BERT 85.58 64.55 54.49 42.84
RoBERTa 87.19 65.52 55.48 45.89
RoBERTa+Mahalanobis 87.19 66.20 56.45 46.95
RoBERTa-Dropout 87.27 65.61 56.38 46.06
RoBERTa-Dropout+Mahalanobis 87.27 66.53 57.11 46.89
RoBERTa(4) 87.55 65.81 56.89 46.19
RoBERTa(4)+Mahalanobis 87.55 66.48 57.49 46.92

kFolden
CNN-init emb 82.21 63.45 53.98 34.71
BiLSTM-init emb 84.33 64.44 55.01 35.68
BERT 87.20 65.19 55.39 45.39
RoBERTa 88.03 66.29 57.39 46.27
RoBERTa+Scaling 88.03 66.84 58.07 46.75
RoBERTa+Mahalanobis 88.03 66.89 58.26 47.16

AGNews-FM
Vanilla

CNN-init emb 79.81 79.63 53.50 54.72
BiLSTM-init emb 82.51 79.46 52.86 55.33
BERT 83.40 80.63 56.79 59.84
RoBERTa 85.62 82.53 58.84 60.36
RoBERTa+Mahalanobis 85.62 83.04 59.96 62.26
RoBERTa-Dropout 87.59 82.64 59.76 60.86
RoBERTa-Dropout+Mahalanobis 87.59 83.14 59.23 61.88
RoBERTa(4) 88.16 82.85 60.44 61.95
RoBERTa(4)+Mahalanobis 88.16 83.27 60.82 62.34

kFolden
CNN-init emb 80.77 79.83 55.63 55.69
BiLSTM-init emb 83.43 80.23 57.40 55.57
BERT 84.55 81.35 58.19 62.89
RoBERTa 88.92 83.61 60.88 63.42
RoBERTa+Scaling 88.92 84.04 61.27 63.73
RoBERTa+Mahalanobis 88.92 84.31 61.48 64.29

Yahoo!Answers-FM
Vanilla

CNN-init emb 89.44 80.36 69.49 55.01
BiLSTM-init emb 90.57 79.42 68.43 55.49
BERT 93.25 82.71 74.55 57.82
RoBERTa 94.73 83.81 76.47 58.62
RoBERTa+Mahalanobis 94.73 84.51 77.38 59.86
RoBERTa-Dropout 95.13 84.46 77.09 59.05
RoBERTa-Dropout+Mahalanobis 95.13 84.90 77.50 59.99
RoBERTa(5) 95.16 84.78 77.42 59.18
RoBERTa(5)+Mahalanobis 95.16 85.06 77.92 60.28

kFolden
CNN-init emb 90.38 81.92 70.82 57.49
BiLSTM-init emb 91.42 82.84 72.81 58.06
BERT 94.74 84.15 76.92 58.34
RoBERTa 95.56 85.50 78.52 59.10
RoBERTa+Scaling 95.56 85.66 78.82 59.95
RoBERTa+Mahalanobis 95.56 85.83 78.88 61.70

Table 3: Results of Semantic Shift (SS) datasets. The
number in the bracket (k) denotes averaging k model
predictions and k equals to the number of labels in the
training dataset.

Scaling: The temperature scaling (Guo et al.,
2017) method leverages a temperature T > 0
to sharpen or widen the probability distribution,
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Hyperparameter Values to select

batch size {16, 24, 32, 48}
dropout {0.1, 0.2, 0.3}
weight decay {0, 0.01}
max epochs {3, 5, 8}
warmup ratio {0, 0.1, 0.05}
learning rate {1e-5, 2e-5, 3e-5}
learning rate decay linear
gradient clip 1.0
MSP threshold ϕ {0, 0.001, 0.01, 0.05, 0.1, 0.2}
Scaling tempera-
ture T

{1, 10, 100, 1000, 5000 }

Scaling thresholdϕ {0, 0.0005, 0.001, 0.0015, 0.002,
0.005, 0.01, 0.05, 0.1, 0.2}

number of passes in
Dropout

{5, 10, 15, 20, 30}

Table 4: The range of hyperparameter values.

and then treats the maximum probability as the
final score. The temperature T is chosen from
{1, 10, 100, 1000, 5000} and is selected on the
OOD validation set.

Mahalanobis: Lee et al. (2018) defined the
confidence score using the Mahalanobis distance
of a test example x with respect to the closest class-
conditional distribution, which can be expressed as:
score(x) = min

c
(ψ(x) − µc)

>Σ−1(ψ(x) − µc),

where ψ(x) is the vector representation of
the input x, µc = 1

Nc

∑
x∈Dc

ψ(x) is the cen-

troid for class c in the valid set Dvalid and
Σ = 1

N

∑
c

∑
x∈Dc

(ψ(x)− µc)(ψ(x)− µc)
> is the

co-variance matrix. Nc is the number of instances
belongs to class c in Dvalid.

Dropout: Gal and Ghahramani (2016) casted
dropout training as Bayesian inference for neural
networks and obtained multiple predictions by run-
ning the model multiple times with dropout opened
for a fixed input. These predictions are then aver-
aged, giving the final probability distribution. Note
that we can combine this method with the above
three approaches.

More details regarding hyperparameter selection
are present in Table 4. Since the proposed strategy
uses the ensemble of K models, we also implement
an ensemble of k vanilla models.

6.3 Metrics
We use accuracy (ACC) to evaluate model perfor-
mances on the in-distribution testset and follow pre-
vious works (Hendrycks and Gimpel, 2016; Hsu
et al., 2020; Lee et al., 2018) to employ three met-
rics for the OOD detection task, including AUROC,
AUPRout, TNR@95TPR.

AUROC: The AUROC is short for area under the
receiver operating characteristic curve. The ROC
curve is a graph plotting true negative rate against
the false positive rate = FP/(FP+TN) by varying a
threshold. This score is a threshold-independent
evaluation metric and can be interpreted as the prob-
ability that a positive example has a greater detec-
tor score/value than a negative example (Fawcett,
2006). A random classifier has an AUROC score
of 50%. A higher AUROC value indicates a better
OOD detection performance.

AUPRout: The AUPR is short for the area un-
der the precision-recall curve. The precison-recall
curve is a graph plotting the precision=TP/(TP+FP)
against recall=TP/(TP+FN) by varying a threshold.
AUPRout requires taking out-of-distribution data
as the positive class. It is more suitable for highly
imbalanced data compared to AUROC.

TNR@95TPR: The TNR@95TPR is short for true
negative rate (TNR) at 95% true positive rate (TPR).
The TNR@95TPR measures the true negative rate
(TNR = TN/(FP+TN)) when the true positive rate
(TPR = TP/(TP+FN)) is 95%, where TP, TN, FP
and FN denotes true positive, true negative, false
positive and false negative, respectively. It can
be interpreted as the probability that an example
predicted incorrectly is misclassified as a corrected
prediction when TPR is equal to 95%.

6.4 Results
Experimental results for non-semantic shift and
semantic shift benchmarks are shown in Table 2
and Table 3, respectively. The first observation is
that contextual models (BERT and RoBERTa) can
achieve significantly better performances on both
in-distribution and out-of-distribution datasets than
non-contextual models (e.g., CNN, LSTM). The
second observation is that existing methods includ-
ing Scaling, Mahalanobis and Dropout can improve
ID and OOD performances. The proposed kFolden
framework introduces performance boost over the
ensemble of its corresponding vanilla model (e.g.,
CNN, LSTM, Bert and RoBerta) in both ID and
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OOD evaluations. Additionally, we also find that
kFolden is a flexible and general framework, which
can be combined to existing OOD detection meth-
ods such as Mahalanobis, scaling and dropout, and
can introduce addition performance boosts in OOD
detection.

It is interesting to see that the improvements on
SS datasets are greater than on NSS datasets when
augmenting with the kFolden framework. This is
because compared to NSS tasks, SS poses more
variability in data distributions and requires a bet-
ter generality from ID to OOD samples. kFolden
serves this purpose well since it performs in a way
as OOD simulation during training, which natu-
rally addresses ID classification and OOD detec-
tion at the same time during training. This training
paradigm wins better results for kFolden on SS
data.

6.5 The Ratio of Unseen Labels
In this subsection, we explore the effect of unseen
categories at different ratios. We use RoBERTa as
the model backbone and conduct experiments on
Reuters-mK-nL datasets, including 9K-1L, 6K-4L,
5K-5L, 3K-7L and 2K-8L. We use accuracy and
the error rate as evaluation metrics. The error rate
represents the the proportion of OOD examples
that are incorrectly classified to an in-distribution
label, i.e., the maximum class probability is above
the threshold tuned on the valid set. Experimen-
tal results are shown in Table 5. As we can see
from Table 5, the overall trend is that the error
rate increases as more unseen text categories are
added to the out-of-distribution test set. Regarding
specific models, we find that kFolden always out-
performs Dropout, and the combination of kFolden
and Mahalanobis leads to the best performance. We
speculate that this is because unlike Dropout which
relies on the masking patterns within the neural
network, the kFolden framework straightforwardly
performs at the output, or the training objective
level using the training data. This gives a direct
learning signal for the model to learn to distinguish
OOD examples.

7 Conclusion

In this paper, we propose a simple yet effective
framework kFolden for OOD detection. It works
by mimicking the behaviors of detecting out-of-
distribution examples during training without the
use of any external data. We also develop a bench-

Model AUPR↑ Error Rate↓

Reuters-9K-1L
RoBERTa 79.77 36.61
RoBERTa+Dropout 80.07 32.74
kFolden RoBERTa 81.53 30.63
kFolden RoBERTa+mahal 81.68 29.75

Reuters-6K-4L
RoBERTa 78.52 36.26
RoBERTa+Dropout 79.73 36.13
kFolden RoBERTa 80.83 35.76
kFolden RoBERTa+mahal 82.74 35.49

Reuters-5K-5L
RoBERTa 89.56 42.83
RoBERTa+Dropout 90.25 41.36
kFolden RoBERTa 91.76 40.99
kFolden RoBERTa+mahal 92.08 40.76

Reuters-3K-7L
RoBERTa 95.64 46.27
RoBERTa+Dropout 96.14 45.89
kFolden RoBERTa 96.75 44.82
kFolden RoBERTa+mahal 96.83 43.69

Reuters-2K-8L
RoBERTa 97.35 58.14
RoBERTa+Dropout 97.56 57.62
kFolden RoBERTa 97.83 56.80
kFolden RoBERTa+mahal 97.91 56.06

Table 5: Results on Reuters-mK-nL OOD test sets.
The Reuters dataset contains 10 label categories. We
use m to represent the number of labels in ID training
set and n for the number of categories in OOD testset.

mark on top of existing widely used datasets for
text classification OOD detection. This benchmark
contains both semantic shift and non-semantic shift
data, which would benefit a comprehensive ex-
amination to the ability of OOD detection meth-
ods. Through experiments and analyses, we show
that the proposed kFolden framework outperforms
strong OOD detection baselines on the constructed
benchmark, and combining kFolden and other post-
hoc methods leads to the most performance gains.
We hope the proposed method and the created
benchmark can facilitate further researches in re-
lated areas.
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A Dataset Details

A.1 Original Datasets

In this paper, We use data from 20NewsGroups
(Joachims, 1996), Reuters-215785, AG News
(Del Corso et al., 2005) and Yahoo!Answers
(Zhang et al., 2015) to construct our evaluation
benchmark. Details regarding these four datasets
are present below:

• 20Newsgroups6: 20Newsgroups is a collec-
tion of approximate 20,000 newsgroup doc-
uments, partitioned (nearly) evenly across
20 different newsgroups. Each newsgroup
corresponds to a different topic. Some of
the newsgroups are very closely related to
each other (e.g., “comp.sys.pc.hardware” and

5http://kdd.ics.uci.edu/databases/
reuters21578/reuters21578.html

6https://kdd.ics.uci.edu/databases/
20newsgroups/20newsgroups.html

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
https://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
https://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
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“comp.sys.mac.hardware”), while others are
highly unrelated (e.g., “misc.forsale” and
“soc.religion.christian”).

• AG News7: AG News is a subdataset of AG’s
corpus of news articles constructed by as-
sembling titles and description fields of ar-
ticles from the four largest classes ("World",
"Sports", "Business", "Sci/Tech") of AG Cor-
pus. AG News contains 30,000 training and
1,900 test samples per class.

• Yahoo!Answers8: Yahoo!answers was con-
structed by Zhang et al. (2015) and com-
posed of 10 largest main categories from Ya-
hoo!Answers Comprehensive Questions and
the Answers version 1.0 dataset. Each class
contains 140,000 training samples and 5,000
testing samples. Labels in the dataset in-
clude "Society & Culture", "Science & Math-
ematics", "Health", "Education & Reference",
"Computers & Internet", "Sports", "Business
& Finance", "Entertainment & Music", "Fam-
ily & Relationships", and "Politics & Govern-
ment".

• Reuters-215789: Reuters-21578 is a collec-
tion of 10,788 documents from the Reuters
financial newswire service, partitioned into
a training set with 7,769 documents and a
test set with 3,019 documents. The distribu-
tion of categories in the Reuters-21578 corpus
is highly skewed, with 36.7% of the docu-
ments in the most common category, and only
0.0185% (2 documents) in each of the five
least common categories. There are 90 cate-
gories in the corpus. Each document belongs
to one or more categories. The average num-
ber of categories per document is 1.235, and
the average number of documents per category
is about 148, or 1.37% of the corpus.

A.2 Benchmark Construction

We construct our NSS benchmarks as follows:

20Newsgroups-6S This dataset is a modified ver-
sion of 20Newsgroups. The original 20News-
groups dataset has 20 newsgroups and each news-
group (e.g., "comp.sys.ibm.pc.hardware") has a

7http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

8https://drive.google.
com/drive/folders/0Bz8a_
Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M

9http://kdd.ics.uci.edu/databases/
reuters21578/reuters21578.html

Label Train&ID-X OOD-X

comp comp.graphics comp.sys.mac.hardware
comp.sys.ibm.pc.hardware comp.windows.x
comp.os.ms-windows.misc

rec rec.autos rec.sport.baseball
rec.motorcycles rec.sport.hockey

sci sci.crypt sci.med
sci.electronics sci.space

religion talk.religion.misc alt.atheism
soc.religion.christian

politics talk.politics.guns talk.politics.mideast
talk.politics.misc

misc misc.forsale

Table 6: Merging labels from 20News for 20News-6S.

root subject topic (e.g., "comp"). We divide
articles by its root subject and obtain 6 news-
groups ("comp", "rec", "sci", "religion", "poli-
tics" and "misc"). For example, the original la-
bel "comp.sys.ibm.pc.hardware" becomes "comp".
Hence, train and test data share the same labels but
may come from different data distributions. Data
in the five sets do not overlap. We show the used
classes for each of the following sets in Table 6.

• TrainingSet We use 8,283 articles from the
trainset in 20Newsgroups belonging to 11 sub-
classes. Each class contains 753 articles.

• ID-ValidSet We use 1,034 articles from the
trainset in 20Newsgroups belonging to 11 sub-
classes. Each class contains 94 articles.

• ID-TestSet We use 1,034 articles from the
testset in 20Newsgroups belonging to 11 sub-
classes. Each class contains 94 articles.

• OOD-ValidSet We use 846 articles from the
trainset in 20Newsgroups belonging to the
other 9 sub-classes in 20Newsgroups. Each
class contains 94 articles.

• OOD-TestSet We use 846 articles from the
testset in 20Newsgroups belonging to the
other 9 sub-classes in 20Newsgroups. Each
class contains 94 articles.

AGNews-EXT This dataset contains data from
AG-News and additional articles from AG Corpus.
In this setting, the training and ID data are from
the same 4 labels ("World", "Sports", "Business",
"Sci/Tech"). OOD data are from the same 4 labels
but use articles in AG Corpus intead of AG-News.
Data in the five sets do not overlap.

• TrainingSet We use 112,400 articles from the
trainset in AG-News with 4 classes. Each
class contains 28,100 articles.

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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• ID-ValidSet We use 7,600 articles from the
trainset in AG-News with the same 4 classes
as TrainingSet. Each class has 1,900 articles.

• ID-TestSet We use 7,600 articles from the
testset in AG-News with the same 4 classes as
TrainingSet. Each class has 1,900 articles.

• OOD-ValidSet We assemble titles and de-
scription fields of articles in AG Corpus from
the same 4 classes as TrainingSet. Each class
has 1,900 articles.

• OOD-TestSet We assemble titles and descrip-
tion fields of articles in AG Corpus from the
same 4 classes as TrainingSet. Each class has
1,900 articles.

Yahoo-AGNews-five This dataset contains a sub-
set of Yahoo!Answers and a subset of AG Cor-
pus. The original Yahoo!Answers dataset has 10
classes, and we use 5 of them ("Health", "Science &
Mathematics", "Sports", "Entertainment & Music",
"Business & Finance") for the training and ID data.
The OOD data are from the 5 classes ("Health",
"Sci/Tech", "Sports", "Entertainment", "Business")
in AG Corpus. Data in the five sets do not overlap.

• TrainingSet We use 675,000 articles from
the trainset in Yahoo!Answers with 5 classes.
Each class contains 135,000 articles.

• ID-ValidSet We use 25,000 articles from the
trainset in Yahoo!Answers with the same 5
classes as TrainingSet. Each class contains
5,000 articles.

• ID-TestSet We use 25,000 articles from the
testset in Yahoo!Answers with the same 5
classes as TrainingSet. Each class contains
5,000 articles.

• OOD-ValidSet We assemble titles and de-
scription fields of articles in AG Corpus from
the same 5 classes as TrainingSet. Each class
contains 5,000 articles.

• OOD-TestSet We assemble titles and descrip-
tion fields of articles in AG Corpus from the
same 5 classes as TrainingSet. Each class
contains 5,000 articles.

We construct SS benchmarks as follows:

Reuters-mK-nL This dataset is a modified ver-
sion of Reuters. We first follow previous works
(Yang and Liu, 1999; Joachims, 1998) to use the
ModApte split10 to remove documents belonging

10http://kdd.ics.uci.edu/databases/
reuters21578/README.txt

to multiple classes, and then considered only 10
classes ("Acquisitions", "Corn", "Crude", "Earn",
"Grain", "Interest", "Money-fx", "Ship", "Trade"
and "Wheat") with the highest numbers of train-
ing examples. The resulting dataset is called
Reuters-ModApte. We train the model on a subset
of Reuters-ModApte and test on the rest subset.
Specifically, we train with m topic articles and test
the model on the other n (n = 10 − m) topic
articles. In this paper, we use five settings: Reuters-
9K-1L, Reuters-6K-4L, Reuters-5K-5L, Reuters-
3K-7L and Reuters-2K-8L. This task is difficult
because the resulting datasets are highly unbal-
anced. All documents in train/valid/test come from
Reuters-21578. Data in the five sets do not overlap.
Data statistics can be found in Table 7.

• TrainingSet We choose articles in the trianset
of Reuters-ModApte belonging to m topics.

• ID-ValidSet We choose articles in the valid
set of Reuters-ModApte belonging to m top-
ics.

• ID-TestSet We choose articles in the test set
of Reuters-ModApte belonging to m topics.

• OOD-ValidSet We choose articles in the
valid set of Reuters-ModApte belonging to
n topics.

• OOD-TestSet We choose articles in the test
set of Reuters-ModApte belonging to n topics.

AGNews-FL The dataset is composed of data
from AGNews and additional articles from the AG
Corpus. In this setting, the training and ID data are
from the 4 classes ("World", "Sports", "Business",
"Sci/Tech") in AGNews, and the OOD data are
from another 4 classes ("U.S.", "Europe", "Italia",
"Software and Development") in AG Corpus. It is
noteworthy that these two sets of labels are similar
in semantics, e.g., "U.S." to "World", "Europe"
to "Sports" and "Software and Development" to
"Sci/Tech". This makes the task more challenging
than AGNews-FM, which will be introduced below.
Data in the five sets do not overlap.

• TrainingSet We use 116,000 articles from the
trainset in AG-News belonging to 4 classes.
Each class contains 29,000 articles.

• ID-ValidSet We use 4,000 articles from the
trainset in AG-News. Each class has 1,000
articles.

• ID-TestSet We use 4,000 articles from the
testset in AG-News. Each class has 1,000
articles.

http://kdd.ics.uci.edu/databases/reuters21578/README.txt
http://kdd.ics.uci.edu/databases/reuters21578/README.txt
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Train Acq Corn Crude Earn Grain Interest Money-fx Ship Trade Wheat

Reuters 1615 175 383 2817 422 343 518 187 356 206
Reuters-9K-1L 1615 175 383 2817 422 343 518 N/A 356 206
Reuters-6K-4L 1615 175 N/A 2817 422 343 518 N/A N/A N/A
Reuters-5K-5L 1615 N/A N/A 2817 422 343 518 N/A N/A N/A
Reuters-3K-7L 1615 N/A N/A 2817 N/A N/A 518 N/A N/A N/A
Reuters-2K-8L 1615 N/A N/A 2817 N/A N/A N/A N/A N/A N/A

ID Test Acq Corn Crude Earn Grain Interest Money-fx Ship Trade Wheat

Reuters 719 56 189 1087 149 131 179 89 117 71
Reuters-9K-1L 719 56 189 1087 149 131 179 N/A 117 71
Reuters-6K-4L 719 56 N/A 1087 149 131 179 N/A N/A N/A
Reuters-5K-5L 719 N/A N/A 1087 149 131 179 N/A N/A N/A
Reuters-3K-7L 719 N/A N/A 1087 N/A N/A 179 N/A N/A N/A
Reuters-2K-8L 719 N/A N/A 1087 N/A N/A N/A N/A N/A N/A
OOD Test Acq Corn Crude Earn Grain Interest Money-fx Ship Trade Wheat

Reuters 719 56 189 1087 149 131 179 89 117 71
Reuters-9K-1L N/A N/A N/A N/A N/A N/A N/A 89 N/A N/A
Reuters-6K-4L N/A N/A 189 N/A N/A N/A N/A 89 117 71
Reuters-5K-5L N/A 56 189 N/A 149 131 179 N/A N/A N/A
Reuters-3K-7L N/A 56 189 N/A 149 131 N/A 89 117 71
Reuters-2K-8L N/A 56 189 N/A 149 131 179 89 117 71

Table 7: Data statistics for Reuters-mK-nK datasets.

• OOD-ValidSet We assemble titles and de-
scription fields of articles in AG Corpus from
another 4 classes different from AG-News.
There are 4,000 articles and 1,000 articles per
class.

• OOD-TestSet We assemble titles and descrip-
tion fields of articles in AG Corpus from
another 4 classes different from AG-News.
There are 4,000 articles and 1,000 articles per
class.

AGNews-FM The dataset is composed of data
from AGNews and additional articles from the AG
Corpus. In this setting, the training and ID data are
from the 4 classes ("World", "Sports", "Business",
"Sci/Tech") in AGNews, and the OOD data are
from another 4 classes ("Entertainment", "Health",
"Top Stories", "Music Feeds") in AG Corpus. This
dataset is easier than AGNews-FL because the
OOD labels are more distinct from the ID labels
regarding the label semantics. Data in the five sets
do not overlap.

• TrainingSet We use 116,000 articles from the
trainset in AG-News belonging to 4 classes.
Each class contains 29,000 articles.

• ID-ValidSet We use 4,000 articles from the
trainset in AG-News. Each class has 1,000

articles.
• ID-TestSet We use 4,000 articles from the

testset in AG-News. Each class has 1,000
articles.

• OOD-ValidSet We assemble titles and de-
scription fields of articles in AG Corpus from
another 4 classes different from AG-News.
There are 4,000 articles and 1,000 articles per
class.

• OOD-TestSet We assemble titles and descrip-
tion fields of articles in AG Corpus from
another 4 classes different from AG-News.
There are 4,000 articles and 1,000 articles per
class.

Yahoo!Answers-FM This dataset is modified
from the Yahoo!Answers dataset. We use five
topic articles ("Health", "Science & Mathemat-
ics", "Sports", "Entertainment & Music", "Busi-
ness & Finance") for the training and ID data and
use the other five unseen topics ("Society & Cul-
ture", "Education & Reference", "Computers &
Internet", "Family & Relationships", "Politics &
Government") for the OOD data. Data in the five
sets do not overlap.

• TrainingSet We use 680,000 examples be-
longing to five categories in Yahoo!Answers,
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136,000 samples per class.
• ID-ValidSet We use 20,000 examples be-

longing to five categories in Yahoo!Answers.
4,000 samples per class.

• ID-TestSet We use 25,000 examples belong-
ing to five categories in Yahoo!Answers.
5,000 samples per class.

• OOD-ValidSet The data are from another
five categories in Yahoo!Answers. The OOD-
ValidSet contains 20,000 articles with 4,000
per class.

• OOD-TestSet The data are from another five
categories in Yahoo!Answers. The OOD-
TestSet contains 25,000 articles with 5,000
per class.


