
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3091–3101
November 7–11, 2021. c©2021 Association for Computational Linguistics

3091

Hierarchical Heterogeneous Graph Representation Learning
for Short Text Classification

Yaqing Wang1, Song Wang1,2, Quanming Yao∗3, Dejing Dou1

1Baidu Research, Baidu Inc., China
2 Department of ECE, University of Virginia, USA
3 Department of EE, Tsinghua University, China

{wangyaqing01, v_wangsong07, doudejing}@baidu.com
qyaoaa@tsinghua.edu.cn

Abstract

Short text classification is a fundamental task
in natural language processing. It is hard due
to the lack of context information and labeled
data in practice. In this paper, we propose
a new method called SHINE, which is based
on graph neural network (GNN), for short text
classification. First, we model the short text
dataset as a hierarchical heterogeneous graph
consisting of word-level component graphs
which introduce more semantic and syntactic
information. Then, we dynamically learn a
short document graph that facilitates effective
label propagation among similar short texts.
Thus, comparing with existing GNN-based
methods, SHINE can better exploit interac-
tions between nodes of the same types and cap-
ture similarities between short texts. Extensive
experiments on various benchmark short text
datasets show that SHINE consistently outper-
forms state-of-the-art methods, especially with
fewer labels.1

1 Introduction

Short texts such as tweets, news feeds and web
search snippets appear daily in our life (Pang and
Lee, 2005; Phan et al., 2008). To understand
these short texts, short text classification (STC)
is a fundamental task which can be found in many
applications such as sentiment analysis (Chen et al.,
2019), news classification (Yao et al., 2019) and
query intent classification (Wang et al., 2017).

STC is particularly hard in comparison to long
text classification due to two key issues. The
first key issue is that short texts only contain
one or a few sentences whose overall length is
small, which lack enough context information
and strict syntactic structure to understand the
meaning of texts (Tang et al., 2015; Wang et al.,
2017). For example, it is hard to get the meaning
of "Birthday girl is an amusing ride" without

1Codes are available at https://github.com/tata1661/
SHINE-EMNLP21.

knowing "Birthday girl" is a 2001 movie. A
harder case is to understand a web search snippet
such as "how much Tesla", which usually does not
contain word order nor function words (Phan et al.,
2008). In addition, real STC tasks usually only
have a limited number of labeled data compared
to the abundant unlabeled short texts emerging
everyday (Hu et al., 2019). Therefore, auxiliary
knowledge is required to understand short texts,
examples include concepts that can be found in
common sense knowledge graphs (Wang et al.,
2017; Chen et al., 2019), latent topics extracted
from the short text dataset (Hu et al., 2019),
and entities residing in knowledge graphs (Hu
et al., 2019). However, simply enriching auxiliary
knowledge cannot solve the shortage of labeled
data, which is another key issue commonly faced
by real STC tasks (Pang and Lee, 2005; Phan et al.,
2008). Yet the popularly used deep models require
large-scale labeled data to train well (Kim, 2014;
Liu et al., 2016).

Currently, graph neural networks (GNNs) de-
signed for STC obtain the state-of-the-art perfor-
mance (Hu et al., 2019; Ye et al., 2020). They both
take the STC as the node classification problem
on a graph with mixed nodes of different types:
HGAT (Hu et al., 2019) builds a corpus-level graph
modeling latent topics, entities and documents and
STGCN (Ye et al., 2020) operates on a corpus-
level graph of latent topics, documents and words.
In both works, each document is connected to its
nodes of a different type such as entities and latent
topics but not to other documents. However, they
do not fully exploit interactions between nodes
of the same type. They also fail to capture the
similarities between short documents, which is
both useful to understand short texts (Zhu et al.,
2003; Kenter and De Rijke, 2015; Wang et al.,
2017) and and important to propagate few labels
on graphs (Kipf and Welling, 2016). Besides, both
works have large parameter sizes: HGAT (Hu

https://github.com/tata1661/SHINE-EMNLP21
https://github.com/tata1661/SHINE-EMNLP21

3092

et al., 2019) is a GNN with dual-level attention
and STGCN (Ye et al., 2020) merges the node
representations with word embeddings obtained
via a pretrained BERT (Devlin et al., 2019) via a
bidirectional LSTM (Liu et al., 2016).

To address the aforementioned problems, we
propose a novel HIerarchical heterogeNEous graph
representation learning method for STC called
SHINE, which is able to fully exploit interactions
between nodes of the same types and capture
similarity between short texts. SHINE operates on
a hierarchically organized heterogeneous corpus-
level graph, which consists of the following graphs
at different levels: (i) word-level component
graphs model interactions between words, part-
of-speech (POS) tags and entities which can be
easily extracted and carry additional semantic and
syntactic information to compensate for the lack of
context information; and (ii) short document graph
is dynamically learned and optimized to encode
similarities between short documents which allows
more effective label propagation among connected
similar short documents. We conduct extensive
experiments on a number of benchmark STC
datasets including news, tweets, document titles
and short reviews. Results show that the proposed
SHINE consistently outperforms the state-of-the-
art with a much smaller parameter size.

2 Related Works

2.1 Text Classification

Text classification assigns predefined labels to
documents of variable lengths which may consist
of a single or multiple sentences (Li et al., 2020).
Traditional methods adopt a two-step strategy:
first extract human-designed features such as bag-
of-words (Blei et al., 2003) and term frequency-
inverse document frequency (TF-IDF) (Aggarwal
and Zhai, 2012) from documents, then learn classi-
fiers such as support vector machine (SVM) (Cortes
and Vapnik, 1995). Deep neural networks such as
convolutional neural networks (CNN) (Kim, 2014)
and long short-term memory (LSTM) (Liu et al.,
2016) can directly obtain expressive representa-
tions from raw texts and conduct classification in
an end-to-end manner.

Recently, graph neural networks (GNNs) (Def-
ferrard et al., 2016; Kipf and Welling, 2016)
have obtained the state-of-the-art performance on
text classification. They can be divided into
two types. The first type of GNNs constructs

document-level graphs where each document is
modeled as a graph of word nodes, then formulates
text classification as a whole graph classification
problem (Defferrard et al., 2016). Examples are
TLGNN (Huang et al., 2019), TextING (Zhang
et al., 2020), HyperGAT (Ding et al., 2020), which
establish word-word edges differently. In particular,
some methods (Liu et al., 2019; Chen et al., 2020)
propose to estimate the graph structure of the
document-level graphs during learning. However,
if only a few documents are labeled, these GNNs
cannot work due to the lack of labeled graphs.

As is known, GNNs such as graph convolutional
network (GCN) (Kipf and Welling, 2016) can
conduct semi-supervised learning to solve node
classification task on a graph where only a small
number of nodes are labeled (Kipf and Welling,
2016). Therefore, another type of GNNs instead
operates on a heterogeneous corpus-level graph
which takes both text and word as nodes, and
classifies unlabeled texts by node classification.
Examples include TextGCN (Yao et al., 2019), Ten-
sorGCN (Liu et al., 2020), HeteGCN (Ragesh et al.,
2021) and TG-Transformer (Zhang and Zhang,
2020) with different strategies to construct and
handle heterogeneous nodes and edges. However,
these methods cannot work well for short texts of
limited length.

2.2 Short Text Classification (STC)

Short text classification (STC) is particularly
challenging (Aggarwal and Zhai, 2012; Li et al.,
2020). Due to limited length, short texts lack
context information and strict syntactic structure
which are vital to text understanding (Wang et al.,
2017). Therefore, methods tailored for STC strive
to incorporate various auxiliary information to
enrich short text representations. Popularly used
examples are concepts existing in external knowl-
edge bases such as Probase (Wang et al., 2017;
Chen et al., 2019) and latent topics discovered in
the corpus (Zeng et al., 2018). However, simply
enriching semantic information cannot compensate
for the shortage of labeled data, which is a common
problem faced by real short texts such as queries
and online reviews (Pang and Lee, 2005; Phan
et al., 2008). Thus, GNN-based methods which
perform node classification for semi-supervised
STC are utilized. HGAT (Hu et al., 2019) applies a
GNN with dual-level attention to forward messages
on a corpus-level graph modeling topics, entities

3093

and documents jointly, where the entities are
words linked to knowledge graphs. STGCN (Ye
et al., 2020) operates on a corpus-level graph of
topics, documents and words, and merges the node
representations with word embeddings obtained
via a pretrained BERT (Devlin et al., 2019) via a
bidirectional LSTM (Liu et al., 2016). Currently,
the state-of-the-art method on STC is HGAT (Hu
et al., 2019; Yang et al., 2021).

3 Proposed Method

As mentioned in Section 2.2, GNN-based methods,
i.e., HGAT and STGCN, can classify short texts
while HGAT performs better. However, both works
build a graph with mixed nodes of different types
without fully exploiting interactions between nodes
of the same type. Besides, they fail to capture the
similarities between short documents, which can be
important to propagate few labels on graphs. Here,
we present the proposed SHINE which can address
above limitations, thus is able to better compensate
for the shortage of context information and labeled
data for STC.

Given a short text dataset2 S containing short
documents, we model S as a hierarchically
organized heterogeneous graph consisting of: (i)
word-level component graphs: we construct word-
level component graphs which model word-level
semantic and syntactic information in order to
compensate for the lack of context information; (ii)
short document graph: we dynamically learn the
short document graph via hierarchically pooling
over word-level component graphs, such that
the limited label information can be effectively
propagated among similar short texts. A high-level
illustration of SHINE is shown in Figure 1.

In the sequel, vectors are denoted by lowercase
boldface, matrices by uppercase boldface. For a
vector x, [x]i denotes the ith element of x. For a
matrix X, xi denotes its ith row, [X]ij denotes the
(i, j)th entry of X. For a set S, |S| denotes the
number of elements in S.

3.1 Word-Level Component Graphs

To compensate for the lack of context information
and syntactic structure in short documents, we
leverage various word-level components which can
bring in more syntactic and semantic information.

2For consistency, we refer each input text to classify as
a document which may consist of one or a few sentences
following (Tang et al., 2015; Hu et al., 2019).

Particularly, we consider the following three types
of word-level components τ ∈ {w, p, e} in
this paper: (i) word (w) which makes up short
documents and carries semantic meaning; (ii) POS
tag (p) which marks the syntactic role such as noun
and verb of each word in the short text and is
helpful for discriminating ambiguous words; and
(iii) entity (e) which corresponds to word that can
be found in auxiliary knowledge bases such that
additional knowledge can be incorporated. SHINE
can easily be extended with other components such
as adding a topic graph on the first level. We use
these three word-level components as they are well-
known, easy to obtain at a low cost, and already
surpass the state-of-the-art HGAT which use topics.

We first provide a general strategy to obtain
node embeddings from different types of word-
level component graphs, then describe in detail
how to construct these graphs via common natural
language processing techniques including tokeniza-
tion, entity linking and POS tagging. In this way,
we can fully exploit interactions between nodes of
the same type.

3.1.1 Node Embedding Learning
Denote word-level component graph of type τ as
Gτ = {Vτ ,Aτ} where Vτ is a set of nodes and
Aτ ∈ R|Vτ |×|Vτ | is the adjacency matrix. Each
node viτ ∈ Vτ is provided with node feature
xiτ ∈ Rdτ . For simplicity, the node features are
collectively denoted as Xτ ∈ R|Vτ |×dτ with the
ith row corresponds to one node feature xiτ . These
Gτ s are used to capture the pairwise relationship
between nodes of the same type, without being
influenced by other types.

Provided with Gτ and Xτ , we use the classic
2-layer graph convolutional network (GCN) (Kipf
and Welling, 2016) to obtain node embeddings Hτ .
Formally, Hτ is updated as

Hτ = Ãτ · ReLu(ÃτXτW
1
τ)W

2
τ , (1)

where [ReLu(x)]i = max([x]i, 0), Ãτ =

D
− 1

2
τ (I+Aτ)D

− 1
2

τ with [Dτ]ii =
∑

j [Aτ]ij , and
W1

τ ,W
2
τ are trainable parameters.

3.1.2 Graph Construction
Next, we present the details of how to construct
each Gτ from S.

Word Graph Gw. We construct a word graph
Gw = {Vw,Aw} where word nodes are connected
based on local co-occurrence relationships, while

3094

Figure 1: A high-level illustration of (a) how we construct a heterogeneous corpus-level graph from a short
text dataset using well-known natural language processing techniques; and (b) framework of the proposed
SHINE which hierarchically pools over word-level component graphs to obtain short document graph where node
classification is conducted to classify those unlabeled nodes. SHINE is trained end-to-end on the complete two-
level graph with respect to the classification loss. The plotted examples of short texts are taken from the movie
review (MR) dataset (Pang and Lee, 2005).

other types of relationship such as syntactic
dependency (Liu et al., 2020) can also be used. We
set [Aw]ij = max(PMI(viw, v

j
w), 0) where PMI

denotes the point-wise mutual information between
words viw, v

j
w ∈ Vw (Yao et al., 2019). We initialize

the node feature xiw ∈ R|Vw| for viw ∈ Vw as a
one-hot vector. Once learned by (1), Hw is able
to encode the topological structure of Gw which
is specific to S. We can also leverage generic
semantic information by concatenating Hw with
pretrained word embeddings Ĥw extracted from
large text corpus such as Wikidata (Vrandečić and
Krötzsch, 2014).

POS Tag Graph Gp. We use the default POS
tag set of NLTK3 to obtain the POS tag for each
word of short text in S, which forms the POS tag
node set Vp. Similar to Gw, we construct a co-
occurrence POS tag graph Gp = {Vp,Ap} with
[Ap]ij = max(PMI(vip, v

j
p), 0), where the inputs

are POS tags for all words. Then we again initialize
the node feature xip ∈ R|Vp| as a one-hot vector.

Entity Graph Ge. We obtain the entity node set
Ve by recognizing entities presented in the NELL
knowledge base (Carlson et al., 2010). In contrast
to words and POS tags which are abundant in
the documents, the number of entities is much
smaller. Most short documents only contain one
entity, which makes it infeasible to calculate co-
occurrence statistics between entities. Instead, we

3http://www.nltk.org

first learn the entity feature xie ∈ Rde of each
vie ∈ Ge from NELL, using the classic knowledge
graph embedding method TransE (Bordes et al.,
2013). Then, we measure the cosine similarity
c(vie, v

j
e) between each entity pair vie, v

j
e ∈ Ve and

set [Ae]ij = max(c(xje, x
j
e), 0).

3.2 Short Document Graph

As discussed in Section 2.1, the reason why
GNN-based methods, which take short documents
classification as node classification tasks, can
deal with few labels is the usage of adjacent
matrix which models the similarities between short
documents. However, STGCN and HGAT do not
consider such similarities.

Here, to effectively propagate the limited label
information, we dynamically learn the short docu-
ment graph Gs = {Vs,As} based on embeddings
pooled over word-level component graph to encode
the similarity between short documents, where
vis ∈ Vs corresponds to one short document in
S, and As is the learned adjacency matrix. As
shown in Figure 1, we propose to obtain Gs via
hierarchically pooling over word-level component
graphs, hence Gs is dynamically learned and
optimized during training. This learned Gs
then facilitates efficient label propagation among
connected short texts.

3.2.1 Hierarchical Pooling over Gτ s
In this section, we propose to learn As via a text-
specific hierarchically pooling over multiple word-

http://www.nltk.org

3095

level component graphs (Gτ s).
With Hτ obtained from (1), we represent each

vis ∈ Gs by pooling over node embeddings in Gτ
with respect to Gτ :

x̂iτ = u(H>τ s
i
τ), (2)

where superscript (·)> denotes the transpose
operation, and u(x) = x/‖x‖2 normalizes x to
unit norm. Particularly, each siτ is computed as
follows:

• When τ = w or p: [siτ]j = TF-IDF(vjτ , vis)
where TF-IDF is the term frequency-inverse
document frequency (Aggarwal and Zhai, 2012).
We then normalize siτ as siτ/

∑
j=1[s

i
τ]j .

• When τ = e: [sie]j = 1 if vje exists in vis and 0
otherwise, as most short texts only contain one
entity. sie is then normalized as sie/

∑
j=1[s

i
e]j .

This can be seen as explaining each short
document from the perspective from words, POS
tags and entities collectively. Finally, we obtain the
short text representation xis of vis is obtained as

xis = x̂iw ‖ x̂ip ‖ x̂ie, (3)

where ‖ means concatenating vectors along the
last dimension. Please note that concatenation is
just an instantiation which already obtains good
performance. It can be replaced by more complex
aggregation function such as weighted average or
LSTM.

3.2.2 Dynamic Graph Learning
Now, we obtain As on the fly using the learned
short document features xis’s:

[As]ij =

{
(xis)

>xjs if (xis)
>xjs ≥ δs,

0 otherwise
, (4)

where δs is a threshold used to sparsity As such
that short documents are connected only if they are
similar enough viewed from the perspective of Gτ s.
Note that the resultant Gs is dynamically changing
along with the optimization process, where Hτ , xis,
and As are all optimized and improved.

Upon this Gs, we propagate label information
among similar short documents via a 2-layer GCN.
Let Xs collectively record short text embeddings
with xis on the ith row. The class predictions of all
short documents in S with respect to C classes are
obtained as

Ŷs=softmax
(
As ·ReLu(AsXsW

1
s)·W2

s

)
, (5)

where [softmax(x)]i = exp([x]i)/
∑

j exp([x]j)

is applied for each row, W1
s and W2

s are trainable
parameters.

We train the complete model by optimizing
the cross-entropy loss function in an end-to-end
manner:

L = −
∑

i∈Il
(yis)

> log(ŷis), (6)

where Il records the indices of the labeled short
documents, yis ∈ RC is a one-hot vector with all 0s
but a single one denoting the index of the ground
truth class c ∈ {1, . . . , C}. By jointly optimized
with respect to the single objective, different types
of graphs can influence each other. During learning,
node embeddings of Gτ for all τ ∈ {w, p, e, s} and
As are all updated. The complete procedure of
SHINE is shown in Algorithm 1.

Algorithm 1 SHINE Algorithm.

Input: short text dataset S , word-level component
graphs Gτ = {Vτ ,Aτ} with node features
Xτ , sample-specific aggregation vectors {siτ}
where τ ∈ {w, p, e};

1: for t = 1, 2, . . . T do
2: for τ ∈ {w, p, e} do
3: obtain node embeddings Hτ of Gτ by (1);
4: end for
5: obtain short document features Xs via

hierarchically pooling over Gτ s by (3);
6: obtain short document embeddings from Gs

and make the class prediction by (5);
7: optimize model parameter with respect to

(6) by back propagation;
8: end for

4 Experiments

All results are averaged over five runs and are
obtained on a PC with 32GB memory, Intel-i8 CPU,
and a 32GB NVIDIA Tesla V100 GPU.

4.1 Datasets
We perform experiments on a variety of publicly
accessible benchmark short text datasets (Table 1):

(i) Ohsumed4: a subset of the bibliographic
Ohsumed dataset (Hersh et al., 1994) used
in (Hu et al., 2019) where the title is taken as
the short text to classify.

(ii) Twitter5: a collection of tweets expressing
4http://disi.unitn.it/moschitti/corpora.htm
5http://www.nltk.org/howto/twitter.html#corpus_reader

http://disi.unitn.it/moschitti/corpora.htm
http://www.nltk.org/howto/twitter.html#corpus_reader

3096

texts avg. length # classes # train (ratio) # words # entities # POS tags
Ohsumed 7,400 6.8 23 460 (6.22%) 11,764 4,507 38
Twitter 10,000 3.5 2 40 (0.40%) 21,065 5,837 41

MR 10,662 7.6 2 40 (0.38%) 18,764 6,415 41
Snippets 12,340 14.5 8 160 (1.30%) 29040 9737 34

TagMyNews 32,549 5.1 7 140 (0.43%) 38629 14734 42

Table 1: Summary of short text datasets used.

positive or negative attitude towards some
contents.

(iii) MR6: a movie review dataset for sentiment
analysis (Pang and Lee, 2005).

(iv) Snippets7: a dataset of web search snippets
returned by Google Search (Phan et al., 2008).

(v) TagMyNews: a dataset contains English
news titles collected from Really Simple
Syndication (RSS) feeds, as adopted by Hu
et al. (2019).

We tokenize each sentence and remove stopping
words and low-frequency words which appear less
than five times in the corpus as suggested in (Yao
et al., 2019; Hu et al., 2019).

Following (Hu et al., 2019), we randomly sample
40 labeled short documents from each class where
half of them forms the training set and the other
half forms the validation set for hyperparameter
tuning. The rest short documents are taken as the
test set, which are unlabeled during training.

4.2 Compared Methods

The proposed SHINE is compared with the
following methods.

• Group (A). Two-step feature extraction and
classification methods include (i) TF-IDF+SVM
and (ii) LDA+SVM(Cortes and Vapnik, 1995)
which use support vector machine to classify
documents represented by TF-IDF feature and
LDA feature respectively; and (iii) PTE8 (Tang
et al., 2015) which learns a linear classifier
upon documents represented as the average word
embeddings pretrained from bipartite word-word,
word-document and word-label graphs.

6http://www.cs.cornell.edu/people/pabo/
movie-review-data/

7Snippets and TagMyNews are downloaded from http://
acube.di.unipi.it:80/tmn-dataset/.

8https://github.com/mnqu/PTE

• Group (B). BERT9 (Devlin et al., 2019) which
is pretrained on a large corpus and fine-tuned
together with a linear classifier for the short text
classification task. Each document is represented
as the averaged word embeddings (denote as -
avg) or the embedding of the CLS token (denote
as -CLS).

• Group (C). Deep text classification methods in-
clude (i) CNN (Kim, 2014) and (ii) LSTM (Liu
et al., 2016) where the input word embeddings
are either randomly initialized (denote as -rand)
or pretrained from large text corpus (denote as
-pre); GNNs which perform graph classification
on document-level graphs including (iii) TL-
GNN10 (Huang et al., 2019), (iv) TextING11

(Zhang et al., 2020), and (v) HyperGAT12

(Ding et al., 2020); GNNs which perform node
classification on corpus-level graphs including
(vi) TextGCN13 (Yao et al., 2019) and (vii) Ten-
sorGCN14 (Liu et al., 2020). HeteGCN (Ragesh
et al., 2021) and TG-Transformer (Zhang and
Zhang, 2020) are not compared due to the lack
of publicly available codes.

• Group (D). Deep STC methods including (i)
STCKA15 (Chen et al., 2019): an attention-
based BiLSTM model, which fuses concept
found in auxiliary knowledge bases into short
document embedding; (ii) HGAT16 (Hu et al.,
2019) which operates on a corpus-level graph
of entities, topics and documents using a GNN
with dual-level attention; and (iii) STGCN17 (Ye
et al., 2020) which operates on a corpus-level
graph of words, topics and documents and
uses a bidirectional LSTM to merge the word

9https://tfhub.dev/tensorflow/bert_en_uncased_L-12_
H-768_A-12/4

10https://github.com/LindgeW/TextLevelGNN
11https://github.com/CRIPAC-DIG/TextING
12https://github.com/kaize0409/HyperGAT
13https://github.com/yao8839836/text_gcn
14https://github.com/THUMLP/TensorGCN
15https://github.com/AIRobotZhang/STCKA
16https://github.com/ytc272098215/HGAT
17https://github.com/yzhihao/STGCN

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://acube.di.unipi.it:80/tmn-dataset/
http://acube.di.unipi.it:80/tmn-dataset/
https://github.com/mnqu/PTE
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
https://github.com/LindgeW/TextLevelGNN
https://github.com/CRIPAC-DIG/TextING
https://github.com/kaize0409/HyperGAT
https://github.com/yao8839836/text_gcn
https://github.com/THUMLP/TensorGCN
https://github.com/AIRobotZhang/STCKA
https://github.com/ytc272098215/HGAT
https://github.com/yzhihao/STGCN

3097

Ohsumed Twitter MR Snippets TagMyNews
Group Model ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

(A) TFIDF+SVM 39.02 24.78 53.69 52.45 54.29 48.13 64.70 59.17 39.91 32.05
LDA+SVM 38.61 25.03 54.34 53.97 54.40 48.39 62.54 56.40 40.40 30.40

PTE 36.63 19.24 54.24 53.17 54.74 52.36 63.10 58.96 40.32 33.56
(B) BERT-avg 23.91 4.98 54.92 51.15 51.69 50.65 79.31 78.47 55.13 44.26

BERT-CLS 21.76 4.81 52.00 43.34 53.48 46.99 81.53 79.03 58.17 41.04
(C) CNN-rand 35.25 13.95 52.58 51.91 54.85 51.23 48.34 42.12 28.76 15.82

CNN-pre 32.92 12.06 56.34 55.86 58.32 57.99 77.09 69.28 57.12 45.37
LSTM-rand 23.30 5.20 54.81 53.85 53.13 52.98 30.74 25.04 25.89 17.01
LSTM-pre 29.05 5.09 58.20 58.16 59.73 59.19 75.07 67.31 53.96 42.14

TLGNN 35.76 13.12 58.33 53.86 58.48 58.45 70.25 63.18 44.43 32.33
TextING 38.27 21.34 59.79 59.44 58.89 58.76 71.13 70.71 52.53 40.20

HyperGAT 36.60 19.98 58.42 53.71 58.65 58.62 70.89 63.42 45.60 31.51

TextGCN 41.56 27.43 60.15 59.82 59.12 58.98 77.82 71.95 54.28 46.01
TensorGCN 41.84 24.24 61.24 61.19 59.22 58.78 74.38 73.96 55.58 43.21

(D) STCKA 30.19 10.12 57.45 56.97 53.22 50.11 68.96 61.27 30.44 20.01

HGAT 42.68 24.82 63.21 62.48 62.75 62.36 82.36 74.44 61.72 53.81
STGCN 33.91 27.22 64.33 64.29 58.18 58.11 70.01 69.93 34.74 34.01

SHINE (ours) 45.57 30.98 72.54 72.19 64.58 63.89 82.39 81.62 62.50 56.21
relative ↑ (%) 6.77 12.94 12.76 12.29 2.92 2.45 0.85 3.17 1.26 4.46

Table 2: Test performance (%) measured on short text datasets. The best results (according to the pairwise t-test
with 95% confidence) are highlighted in bold. The second best results are marked in Italic. The last row records
the relative improvement (%) of SHINE over the second best result.

embeddings learned by a GNN with word
embeddings produced by a pretrained BERT.

For these baseline methods, we either show the
results reported in previous research (Hu et al.,
2019; Yang et al., 2021) or run the public codes
provided by the authors. For fairness, we use the
public 300-dimensional GloVe word embeddings18

in all methods which require pretrained word
embeddings (Pennington et al., 2014).

Hyperparameter Setting. For all methods, we
find hyperparameters using the validation set via
grid search. For SHINE, we set entity embedding
dimension de as 100. For all the datasets, we set
the sliding window size of PMI as 5 for both Gw
and Gp, set the embedding size of all GCN layers
used in SHINE as 200, and set the threshold δs for
Gs as 2.5. We implement SHINE in PyTorch and
train the model for a maximum number of 1000
epochs using Adam (Kingma and Ba, 2014) with
learning rate 10−3. We early stop training if the
validation loss does not decrease for 10 consecutive
epochs. Dropout rate is set as 0.5.

18http://nlp.stanford.edu/data/glove.6B.zip

Evaluation Metrics. We evaluate the classifi-
cation performance using test accuracy (denote
as ACC in short) and macro-averaged F1 score
(denote as F1 in short) following (Tang et al., 2015;
Yang et al., 2021).

4.3 Benchmark Comparison

Performance Comparison. Table 2 shows the
performance. As can be seen, GNN-based methods
in group (D) obtain better classification results in
general, where the proposed SHINE consistently
obtains the state-of-the-art test accuracy and macro-
F1 score. This can be attributed to the effective
semantic and syntactic information fusion and the
modeling of short document graphs.

In addition, if we order datasets by increasing
average text length (i.e., Twitter, TagMyNews,
Ohsumed, MR and Snippets), we can find that
SHINE basically obtains larger relative improve-
ment over the second best method on shorter
documents as shown in the last row of Table 2.
This validates the efficacy of label propagation in
SHINE, which can be attributed to the dynamical
learning of short document graph. As shown,

http://nlp.stanford.edu/data/glove.6B.zip

3098

GNNs which perform node classification on the
corpus-level graph obtain better performance than
GNNs which perform graph classification on short
text datasets with a few labeled short documents.
Another common observation is that incorporating
pretrained word embeddings can consistently
improve the accuracy, as can be observed by
comparing CNN-pre to CNN-rand, LSTM-pre to
LSTM-rand, BiLSTM-pre to BiLSTM-rand. CNN
and LSTM can obtain worse performance than
traditional methods in group (A), such as results on
Ohsumed. The fine-tuned BERT encodes generic
semantic information from a large corpus, but it
cannot beat SHINE which is particularly designed
to handle the short text dataset.

Model Size Comparison. Table 3 presents the
parameter size of SHINE and the two most relevant
GNN-based methods, i.e., HGAT and STGCN. As
can be seen, SHINE takes much smaller parameter
size. The reason is that instead of organizing
different types of nodes in the same graph like
HGAT and STGCN, SHINE separately constructs
graphs for each type of nodes and pools from them
to represent short documents. Thus, the graph
used in SHINE can be much smaller than HGAT
and STGCN, which leads to a reduction of the
parameter number. We also observe that SHINE
takes less training time per epoch.

HGAT STGCN SHINE
Ohsumed 3,091,523 2,717,104 212,146
Twitter 2,312,672 3,201,824 201,604

MR 6,030,640 3,326,224 201,604
Snippets 8,892,778 3,238,304 204,616

TagMyNews 10,162,899 6,653,024 204,114

Table 3: Comparison of model parameter size.

4.4 Ablation Study
We compare with different variants of SHINE to
evaluate the contribution of each part:

(i) w/o Gw, w/o Gp and w/o Ge: remove one
single Gτ from SHINE while keeping the other
parts unchanged.

(ii) w/o pre: do not concatenate Hw with
pretrained word embeddings Ĥw.

(iii) w/ pre Xw: initializes node embeddings Xw

of Gw as pretrained word embeddings Ĥw

directly.

(iv) w/o word GNN: fix Hτ as the input node
features Xτ of each cGHτ , therefore the
node embeddings of Gs are simply weighted
average of corresponding word-level features.

(v) w/o doc GNN: use label propagation (Zhou
et al., 2004) to directly obtain class prediction
using As learned by (4) and xis learned by (3).

(vi) w/ a single GNN: run a single GNN on a
heterogeneous corpus-level graph containing
the same set of words, entities, POS tags and
documents as ours. We modify TextGCN (Yao
et al., 2019) to handle this case.

Table 4 shows the results. As shown, word-
level component graphs and short document graph
contribute larger to the effectiveness of SHINE.
The concatenation of pretrained word embedding
can slightly improve the performance. However,
“w/ pre Xw" is worse than SHINE. This shows
the benefits of separating corpus-specific and
general semantic information: using Gw with one-
hot initialized features to capture corpus-specific
topology among words, while using pretrained
word embeddings to bring in general semantic
information extracted from an external large corpus.
The performance gain of SHINE with respect to
“w/o word GNN" validates the necessity of (i)
message passing among nodes of the same type
and update node embeddings accordingly and (ii)
update Gτ s with respect to the STC task. While
the improvement of SHINE upon “w/o doc GNN"
shows that refining short document embeddings
by GNN is useful. Finally, SHINE defeats “w/
a single GNN" which uses the same amount of
information. This reveals that SHINE outperforms
due to model design. Figure 2 further plots the
influences of incrementally adding in more word-
level component graphs and the short document
graph. This again validates the effectiveness of
SHINE framework.

Gw Gw + Gp Gw + Gp + Ge All
60

62

64

66

68

70

72

T
es

t
P

er
fo

rm
an

ce
(%

)

Figure 2: Effect of adding each graph component.

3099

Ohsumed Twitter MR Snippets TagMyNews
Model ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
w/o Gw 21.91 11.87 60.93 60.39 55.03 54.00 70.25 68.82 55.68 48.38
w/o Gp 26.89 13.10 67.37 66.78 60.21 59.79 77.66 75.86 60.37 52.96
w/o Ge 30.17 15.31 68.46 67.89 61.54 60.60 80.48 77.82 60.44 54.10
w/o Gs 33.20 18.93 68.53 68.19 61.08 60.87 78.68 77.74 61.05 54.51
w/o pre 36.23 21.50 69.04 68.57 61.97 61.31 78.47 78.01 61.09 54.57

w/ pre Xw 27.13 19.94 66.70 66.35 60.56 60.51 71.70 70.52 57.04 50.11
w/o word GNN 25.60 17.14 54.82 53.85 53.49 52.74 65.43 64.62 54.96 45.32
w/o doc GNN 37.41 25.85 70.60 70.47 61.94 61.60 79.27 78.10 61.38 55.93

w/ a single GNN 42.56 28.18 61.35 61.20 60.39 60.21 78.52 73.64 56.58 48.18
SHINE 45.57 30.98 72.54 72.19 64.58 63.89 82.39 81.62 62.50 56.21

Table 4: Test performance (%) of SHINE and its variants on short text datasets. The best results (according to the
pairwise t-test with 95% confidence) are highlighted in bold.

0.4 20.0 40.0 60.0 80.0
Labeled Data Ratio (%)

50

60

70

80

90

100

A
C

C
(%

)

TextGCN

TensorGCN

HGAT

STGCN

SHINE

(a) Varying labled data proportion (%).

0.5 1.0 1.5 2.0 2.5 3.0
Threshold δs

30

40

50

60

70

T
es

t
P

er
fo

rm
an

ce
(%

)

ACC

F1

(b) Varying δs in (4).

50 100 150 200 250 300
Embedding Size

70

71

72

73

74

75

T
es

t
P

er
fo

rm
an

ce
(%

)

ACC

F1

(c) Varying the embedding size of GCN.

Figure 3: Model sensitivity analysis of SHINE on Twitter.

4.5 Model Sensitivity

We further examine the impact of labeled training
data proportion for GNN-based methods which
perform node classification on the corpus-level
graph, including TextGCN, TensorGCN, HGAT,
STGCN and SHINE. Figure 3(a) plots the results.
As shown, SHINE consistently outperforms other
methods, where the performance gap is increasing
with fewer labeled training data . Figure 3(b)
plots the impact of threshold δs in (4). At
first, performance increases with a larger δs
which leads to a sparse Gs where only certainly
similar short documents are connected to propagate
information. However, when δs is too large,
Gs losses its functionality and reduces to w/o
Gτ in Table 4. Finally, recall that we set the
embedding size of all GCN layers used in SHINE
equally. Figure 3(c) plots the effect of varying this
embedding size. As observed, small embedding
size cannot capture enough information while a
overly large embedding size may not improve the
performance but is more computational costly.

5 Conclusion

In this paper, we propose SHINE, a novel hierar-
chical heterogeneous graph representation learning
method for short text classification. It is particu-
larly useful to compensate for the lack of context
information and propagate the limited number of
labels efficiently. Specially, SHINE can effectively
learn from a hierarchical graph modeling different
perspectives of the short text dataset: word-level
component graphs are used to understand short
texts from the semantic and syntactic perspectives,
and the dynamically learned short document graph
allows efficient and effective label propagation
among similar short documents. Extensive exper-
iments show that SHINE outperforms the others
consistently.

Acknowledgements

We thank the anonymous reviewers for their
valuable comments. Parts of experiments were
carried out on Baidu Data Federation Platform.
Correspondence author is Quanming Yao.

3100

References
Charu C Aggarwal and ChengXiang Zhai. 2012. A

survey of text classification algorithms. In Mining
Text Data, pages 163–222. Springer.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of
Machine Learning Research, 3(Jan):993–1022.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, pages 2787–2795.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. 2010. Toward an architecture for never-
ending language learning. In AAAI Conference on
Artificial Intelligence, pages 1306–1313.

Jindong Chen, Yizhou Hu, Jingping Liu, Yanghua
Xiao, and Haiyun Jiang. 2019. Deep short text
classification with knowledge powered attention. In
AAAI Conference on Artificial Intelligence, pages
6252–6259.

Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020.
Iterative deep graph learning for graph neural net-
works: Better and robust node embeddings. In
Advances in Neural Information Processing Systems,
pages 19314–19326.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–
297.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In
Advances in Neural Information Processing Systems,
pages 3844–3852.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages
4171–4186, Minneapolis, Minnesota. Association
for Computational Linguistics.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,
and Huan Liu. 2020. Be more with less: Hypergraph
attention networks for inductive text classification.
In Conference on Empirical Methods in Natural
Language Processing, pages 4927–4936, Online.
Association for Computational Linguistics.

William Hersh, Chris Buckley, TJ Leone, and David
Hickam. 1994. Ohsumed: An interactive retrieval
evaluation and new large test collection for re-
search. In International ACM-SIGIR Conference on
Research and Development in Information Retrieval,
pages 192–201.

Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, and
Xiaoli Li. 2019. Heterogeneous graph attention
networks for semi-supervised short text classifica-
tion. In Conference on Empirical Methods in
Natural Language Processing, pages 4821–4830,
Hong Kong, China. Association for Computational
Linguistics.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong
Zhang, and Houfeng Wang. 2019. Text level graph
neural network for text classification. In Confer-
ence on Empirical Methods in Natural Language
Processing, pages 3444–3450, Hong Kong, China.
Association for Computational Linguistics.

Tom Kenter and Maarten De Rijke. 2015. Short
text similarity with word embeddings. In ACM
international on conference on information and
knowledge management, pages 1411–1420.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Conference on Empirical
Methods in Natural Language Processing, pages
1746–1751, Doha, Qatar. Association for Computa-
tional Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

Qian Li, Hao Peng, Jianxin Li, Congyin Xia, Renyu
Yang, Lichao Sun, Philip S Yu, and Lifang He. 2020.
A survey on text classification: From shallow to
deep learning. arXiv preprint arXiv:2008.00364.

Pengfei Liu, Shuaichen Chang, Xuanjing Huang, Jian
Tang, and Jackie Chi Kit Cheung. 2019. Contextu-
alized non-local neural networks for sequence learn-
ing. In AAAI Conference on Artificial Intelligence,
pages 6762–6769.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification
with multi-task learning. In International Joint
Conference on Artificial Intelligence, pages 2873–
2879.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping
Lv. 2020. Tensor graph convolutional networks for
text classification. In AAAI Conference on Artificial
Intelligence, pages 8409–8416.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Annual Meeting
of the Association for Computational Linguistics,
pages 115–124, Ann Arbor, Michigan. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://doi.org/10.18653/v1/D19-1488
https://doi.org/10.18653/v1/D19-1488
https://doi.org/10.18653/v1/D19-1488
https://doi.org/10.18653/v1/D19-1345
https://doi.org/10.18653/v1/D19-1345
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855

3101

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Conference on Empirical Meth-
ods in Natural Language Processing, pages 1532–
1543, Doha, Qatar. Association for Computational
Linguistics.

Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu
Horiguchi. 2008. Learning to classify short and
sparse text & web with hidden topics from large-
scale data collections. In International Conference
on World Wide Web, pages 91–100.

Rahul Ragesh, Sundararajan Sellamanickam, Arun
Iyer, Ramakrishna Bairi, and Vijay Lingam. 2021.
HeteGCN: Heterogeneous graph convolutional net-
works for text classification. In ACM International
Conference on Web Search and Data Mining, pages
860–868.

Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. PTE:
Predictive text embedding through large-scale het-
erogeneous text networks. In ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, pages 1165–1174.

D. Vrandečić and M. Krötzsch. 2014. Wikidata: A
free collaborative knowledgebase. Communications
of the ACM, 57(10):78–85.

Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun
Yan. 2017. Combining knowledge with deep convo-
lutional neural networks for short text classification.
In International Joint Conference on Artificial Intel-
ligence, pages 2915–2921.

Tianchi Yang, Linmei Hu, Chuan Shi, Houye Ji, Xiaoli
Li, and Liqiang Nie. 2021. HGAT: Heterogeneous
graph attention networks for semi-supervised short
text classification. ACM Transactions on Informa-
tion Systems, 39(3):1–29.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7370–7377.

Zhihao Ye, Gongyao Jiang, Ye Liu, Zhiyong Li, and
Jin Yuan. 2020. Document and word representations
generated by graph convolutional network and bert
for short text classification. In European Conference
on Artificial Intelligence, pages 2275–2281.

Jichuan Zeng, Jing Li, Yan Song, Cuiyun Gao,
Michael R. Lyu, and Irwin King. 2018. Topic mem-
ory networks for short text classification. In Con-
ference on Empirical Methods in Natural Language
Processing, pages 3120–3131, Brussels, Belgium.
Association for Computational Linguistics.

Haopeng Zhang and Jiawei Zhang. 2020. Text graph
transformer for document classification. In Confer-
ence on Empirical Methods in Natural Language
Processing, pages 8322–8327, Online. Association
for Computational Linguistics.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu,
Zhongzhen Wen, and Liang Wang. 2020. Every
document owns its structure: Inductive text clas-
sification via graph neural networks. In Annual
Meeting of the Association for Computational Lin-
guistics, pages 334–339, Online. Association for
Computational Linguistics.

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Ja-
son Weston, and Bernhard Schölkopf. 2004. Learn-
ing with local and global consistency. In Advances
in neural information processing systems, pages
321–328.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty.
2003. Semi-supervised learning using Gaussian
fields and harmonic functions. In International
conference on Machine learning, pages 912–919.

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D18-1351
https://doi.org/10.18653/v1/D18-1351
https://doi.org/10.18653/v1/2020.emnlp-main.668
https://doi.org/10.18653/v1/2020.emnlp-main.668
https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.18653/v1/2020.acl-main.31

