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Abstract

Text-Based Games (TBGs) have emerged as
important testbeds for reinforcement learning
(RL) in the natural language domain. Previous
methods using LSTM-based action policies
are uninterpretable and often overfit the train-
ing games showing poor performance to un-
seen test games. We present SymboLic Action
policy for Textual Environments (SLATE),
that learns interpretable action policy rules
from symbolic abstractions of textual obser-
vations for improved generalization. We out-
line a method for end-to-end differentiable
symbolic rule learning and show that such
symbolic policies outperform previous state-
of-the-art methods in text-based RL for the
coin collector environment from 5 — 10x fewer
training games. Additionally, our method pro-
vides human-understandable policy rules that
can be readily verified for their logical consis-
tency and can be easily debugged. '

1 Introduction

Text-based games are increasingly being used as
a benchmark for progressing the state of the art in
natural language RL. These games typically require
solving goals that are defined by natural language
descriptions such as “retrieve the coin in the cel-
lar”. The agent receives a textual description of
the scene and can interact with the environment
using only textual commands such as “go north”,
“take knife” upon which it receives a reward signal
for completing the goal (or sub-goal). The action
policy model is trained using such reward signals.

Previous methods in text-based RL typically use
memory-based recurrent systems for feature extrac-
tion from textual observations (Narasimhan et al.,
2015; Adolphs and Hofmann, 2020) or knowledge
graph extraction (Ammanabrolu and Riedl, 2019;
Ammanabrolu and Hausknecht, 2020) for better
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Observation: You find yourself in a bedroom. An usual one. I
guess you better just go and list everything you see here.
There is an exit to the north. Don't worry, it is unguarded.
There is an exit to the south. Don't worry, it is unblocked.
You don't like doors? Why not try going west, that entranceway
is unguarded.

Symbolic facts: hasExit(bedroom, north), hasExit(bedroom, south),
hasExit(bedroom, west), hasVisited(bedroom, south)
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| Possible actions: go(x,west), go(x,north) |
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Figure 1: Overview of our neuro-symbolic rule learn-
ing. SLATE learns interpretable action policy for each
action verb, go and take, from first-order symbolic
states. We show the raw weights for each AND gate
(A) which are thresholded to obtain the logical rules.

state representation. However, Chaudhury et al.
(2020) showed that previous methods in text-based
RL do not generalize well to unseen test games.
Furthermore, the learned policy in such cases is
not interpretable and is difficult to debug leading
to potential unforeseen behavior in real-life appli-
cations.

In this paper, we bridge the gap between
gradient-based weight learning and symbolic
reasoning applied to text-based RL. We in-
troduce SymboLic Action policy for Textual
Environments (SLATE), a method for inter-
pretable policy learning in text-based games from
symbolic state representation. Our goal is to learn
symbolic rules as logical connectives for generating
action commands by gradient-based training. We
present a symbolic rule learning framework using
both MLP with symbolic inputs and Logical Neu-
ral Network (LNN) (Riegel et al., 2020), a recent
symbolic reasoning-based approach, to learn lifted
rules from the first-order symbolic abstraction of
textual observations. We show that our symbolic
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action policy learning framework outperforms pre-
vious text-based RL methods in terms of general-
ization to unseen games even when the previous
methods use symbolic state representation.

2 Related Work

Most previous works on text-based RL handle the
problems of partial observability and large action
space. LSTM-DQN (Narasimhan et al., 2015) is an
early work on text-based RL that used an LSTM-
based encoder for feature extraction from textual
observations and Q-learning (Watkins and Dayan,
1992) for learning the action policy model. LSTM-
DRQN (Yuan et al., 2018) used memory units in the
action score to handle the issue of partial observ-
ability. CREST (Chaudhury et al., 2020) showed
that previous methods overfit the training data and
improved generalization by training a bootstrapped
model on context-relevant observation text only.
Adolphs and Hofmann (2020) presents the win-
ning strategies in the First- TextWorld Competi-
tion, which uses recurrent feature extraction along
with the A2C (Mnih et al., 2016) RL algorithm
for training the policy. Previous works that ex-
tract knowledge graphs from observations (Am-
manabrolu and Riedl, 2019; Ammanabrolu and
Hausknecht, 2020) showed improved performance
compared to processing raw textual observations.
The recent method of Adhikari et al. (2020) use a
dynamic belief graph learning for better generaliza-
tion than text-based policy learning.

3 SymboLic Action policy for Textual
Environments (SLATE)

To improve generalization in TBGs, we propose
SLATE that learns logical rules based on first-
order symbolic inputs from the environment. The
symbolic inputs are fed into the logical rule learner
to obtain the likelihood of action commands.

3.1 Extracting Symbolic Facts

We explain symbolic fact extraction with
Textworld (Coté et al., 2018) Coin Collector
environment where the goal is to start from a room
and collect the coin from a final room. However,
this method generally applies to all text-based envi-
ronments. The agent uses action commands having
a verb and a noun token, such as “go north” and
“take coin”, etc. We extract symbolic facts from
the textual observations of the current step using
keyword-based matching. We use lifted representa-

tions of three symbolic predicates - hasCoin(x),
hasExit(z,y) and hasVisited(z,y), where
x represents the grounding for the current room
and y € {north, south, east, west} represents the
direction of travel for the agent. hasCoin(z) and
hasExit(x,y) symbolic predicates represent
if the current room, = has a coin present and
if there is any exit available in the direction, y.
The predicate hasVisited(z,y) tells if the
agent has already visited the direction y at room
x which we keep track of using a hash table. A
representative observation and corresponding
symbolic inputs from the observation are shown in
Figure 1.

3.2 Differentiable Logical Rule Learning

Let us consider the original textual observa-
tion as O; and corresponding symbolic ab-
straction as Si(z,y), which is the lifted
input to the SLATE model. For coin-
collector, Sy(z,y) = [Fi(z,y); ~Fi(x,y)], where
Fy(z,y) = [hasCoin(x), hasExit(z,y),
hasVisited(z,y)] and — refers to the negated
forms of the predicate, defined as -p = 1 — p.
The groundings for each predicates (for example,
hasExit (kitchen,east)) is parametrized by (x, y).
The goal of differential rule learning is to down-
weight irrelevant and up-weight relevant symbolic
predicates towards each action verb generation
through gradient based learning.

We wish to find an action policy 7 that is
represented as logical connectives of symbolic
inputs. We identify the action verbs “go” and
“take” for symbolic rule learning and refer to the
corresponding models as go-SLATE and take-
SLATE. For each (z,y) grounding at time step
t, we obtain the probabilities of possible ac-
tions commands {go(z1,vy1), go(x1,42),...} =
{fo(Se(x1,91)), fo(Se(x1,y2)) ...} from which
the action command is sampled, where f(.) is the
forward function of the learning model and 6 rep-
resents the corresponding learnable parameters of
the model. We use two kinds of learning models,
which we describe below.

Symbolic MLP: In this setting, we use single
feed-forward layers for go and t ake models, with
the symbolic input of Sy(z, y), producing the like-
lihood of each action command which are passed
through a softmax to convert into probabilities.

Logical Neural Networks: We also used the re-
cently proposed LNN model (Riegel et al., 2020)
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Table 1: Average success rate (3 random seeds) on 20 unseen test games with a varying number of training games.
Our symbolic rule learning method trained on 5 — 10x fewer data has a similar success rate to state-of-the-art
methods on the coin collector environment. Nz denotes that the agent was trained on « number of games.

Methods Easy Medium Hard
N5 NIO N25 NS50 | NIO N25 NS0 | N25 NS50
LSTM-DOQN (+attn) 00 00 00 003 00 00 00| 00 00
LSTM-DRQN (+attn) 0.0 00 032 047]0.03 0.02 0.02] 00 0.02
LSTM-DROQN (+attn+dropout) 0.0 0.13 058 080| 00 00 0.02] 00 0.0
CREST (glove+att) 0.0 0.18 070 097 | 0.0 0.07 0.67 | 0.17 0.10
CREST (conceptNet+att) 0.0 03 082 093]0.08 0.25 0.67 057 093
LSTM-DQN (symbolic) 0.0 00 042 033]0.08 085 0.80]025 0.0
SLATE-MLP (teacher) 098 095 098 098 | 0.63 0.02 0.03| 00 0.0
SLATE-MLP (rollouts) 1.0 1.0 098 1.0 | 097 098 093|090 0.67
SLATE-MLP (teacher+rollouts) | 1.0 1.0 1.0 1.0 093 10 10 |057 1.0
SLATE-LNN (teacher) 1.0 097 10 10 |078 088 093] 0.22 0.32
SLATE-LNN (rollouts) 1.0 10 10 10| 1.0 1.0 098|047 098
SLATE-LNN (teacher+rollouts) | 1.0 1.0 1.0 1.0 (097 1.0 1.0 | 027 047

for action probability generation, which we il-
lustrate for a typical 2-input conjunction (AND)
node. Let us consider (x,x2) as two logical in-
puts to the conjunction node (represented as A)
given as f(x1,x2). Unlike conventional logical
gates, LNNs define a threshold level for noise
tolerance « such that values in [«, 1] signify a
logical high and values in [0,1 — «] signify a
logical low. Following the standard truth ta-
ble of the conjunction (AND) gate, we can get
the LNN constraints, that make the LNN behave
as a logical conjunction connective with the for-
ward function as the weighted Lukasiewicz t-norm,
f(z1, xe; B, w1, we) = max(0, min(1, 5—wq (1—
x1)—ws(1—x3))). Parameters (3, w1, wo are tuned
to match target labels during training. We use dou-
ble description optimization (Frerix et al., 2020)
for our constrained weight learning.

3.3 Training

For textworld coin collector games, we use the
counting reward introduced in Yuan et al. (2018),
where the agent receives a reward of 1.0 for vis-
iting a new room. An additional reward of 1.0 is
obtained on successfully retrieving the coin. We
perform experiments on three difficulty levels: easy,
medium and hard games having 0, 1 and 2 distrac-
tor rooms respectively. We outline two major meth-
ods for training the symbolic policy corresponding
to the mainstream idea of (i) reinforcement learn-
ing from rewards obtained from the environment
via policy rollouts, (ii) imitation learning by boot-
strapping from the trajectories of a teacher agent
(typically text-based LSTM agent) that overfits the
training data.

Rollouts: This approach learns purely from en-
vironment interactions. Let us assume a policy
mo(at|sy) with @ being the policy parameters, a;
the action at time ¢, s; being the state input, and r;
is the step-wise reward. In this learning method, at
each time step ¢, we sample an action a; from the
policy and label the state-action pair as either neg-
ative or positive samples based on whether the re-
ward is positive or not. Since we wish to learn lifted
rules, we extract the symbolic state corresponding
to the ground entity (noun) in the action and choose
the MLP/LNN to train based on the action verb. For
instance, consider that the action “go south” results
in a positive reward whereas “take coin” causes a
zero reward. In the first case, we label the state
as a positive sample for the go-SLATE model and
we only extract the predicate values hasCoin(z),
hasExit(x,south) and hasVisited(x,south)
and their negated (—) forms. Similarly, the second
case is a negative sample for coin-SLATE model.

Therefore, for each SLATE model (either MLP
or LNN) corresponding to the action verbs go and
take, we obtain samples with binary labels. The
model parameters are then trained using maximum
likelihood training with cross-entropy loss. We
collect samples from an evolving policy that is
trained every 10 episodes for 100 episodes.

Teacher imitation: This corresponds to the im-
itation learning framework where we collect sam-
ples from an overfitted LSTM-based textual teacher
model (Chaudhury et al., 2020) on the training
games and learn the rules on the SLATE-based
policies using behavior cloning (Pomerleau, 1991).
At each time step, we sample the lifted symbolic
state for the teacher action as positive samples, and
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| hasExit(x,y) | —hasExit(x,y) | hasVisited(x,y) | —hasVisited(x,y) | hasCoin(x) | —hasCoin(x) |

o —
@ hy(x) « =hasCoin(x)

<«—— Meights above threshold
Weights below threshold

0.5 0.5

hi(x,y) <
hasExit(x,y)* 0.83 0.17
-hasVisited(x,y)

800X, Y) < hy(X,¥) " ha(x)
= hasExit(x,y)"-hasVisited(x,y)*-hasCoin(x)

Figure 2: Extracting rules from weights for go LNN
model using threshold of % with Nipput = 6.

put ’

the symbolic states corresponding to other possible
actions as the negative sample. SLATE parameter
learning is performed by cross-entropy loss-based
training with logical constraints.

4 Results

For baseline methods we use three previous agents:
LSTM-DQN (Narasimhan et al., 2015), LSTM-
DRQN (Yuan et al., 2018) and CREST (Chaud-
hury et al., 2020). The results show that our pro-
posed SLATE successfully generalizes to unseen
test games learned from 5 — 10x fewer games and
performs better zero-shot generalization.

Learned interpretable rules: Figure 2 shows
how we extract the learned rules for easy N25
games case. We use a weight threshold of Niiput ,
and all connections greater than the threshold con-
tribute to the learned rule. The rule for go-LNN
action verb looks at exits that are not visited from
the current room given the coin is not present in
the room. take-LNN takes coin only if the coin
is present in the room. These rules match with
the logic a human agent would typically use for
navigation in such an environment.

Comparison to text-based agents: Table 1
shows that SLATE shows better generalization to
unseen test games trained from 5 — 10z fewer train-
ing games with close to perfect learning. SLATE
learns compact rules in the space of logical connec-
tives that best fit the data and hence it generalizes
better to unseen data as well (simple rules general-
ize better - Occam’s Razor).

We also compare SLATE with LSTM-DQN
trained/tested on symbolic inputs. LSTM-DQN
agent is given the symbolic input as textual facts
like “has exit east has exit south has visited south”.
Since SLATE does not have a recurrent action pol-
icy and makes single-step decisions, for a fair com-
parison we do not compare it with LSTM-DRQN
that has a recurrent action scorer unit. The results
in Table 1 show that our proposed method gener-

mSTM-DRQN

CREST

SLATE

[ g o
ES o ©

Average succes rate
o
N

72

Easy N25 (L25)  Medium N50 (L20) Medium N50 (L25)

Figure 3: Zero-shot transfer from L15 training games
to L20 and L25 testing games for various agent.

alizes better suggesting that LSTM-based agents
might require more training data.

Table 1 show that SLATE with both MLP and
LNN achieves generalization close to perfect for
the RL (rollouts) setting. However, SLATE with
LNN gives an interpretable representation in the
form of logical rules due to its logical constraints
that MLP does not have. For the teacher imita-
tion setting, LNN exhibits better success rates than
MLP especially for medium and hard games. Since
such games have multiple possible exits and only
one direction is chosen by the teacher’s action, the
other possible directions are labeled as negative
samples. We believe MLP based rule learning is
not robust to handle such conflicting (or noisy) in-
formation that can be handled by LNN.

Zero-shot transfer: Similar to the experiments
in Chaudhury et al. (2020), Figure 3 shows the zero-
shot performance of SLATE compared to LSTM-
DROQN and CREST when trained on games having
15 rooms (L15) and tested on 20 (L20) and 25 (L25)
rooms. SLATE (with LNN) shows better general-
ization compared to previous text-based agents due
to compact and logically consistent rule learning.
This is because SLATE learns lifted rules that inher-
ently provide the structure to generalize to unseen
configurations that pure deep learning approaches
struggle to achieve.

Results on Cooking World: We also show re-
sults on cooking games (Adolphs and Hofmann,
2020), where the agent has to navigate to the
kitchen, gather items that a present in the recipe,
and prepare and eat the meal. For this game,
we use 6 predicates: inRoom(z) (if item x is in
the current room), isIngredient(z) (if item
x is a required ingredient), inInventory(z) (if
item x is currently in the inventory), closed(x)
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(if item x is in closed state), hasExit(z) and
hasVisited(z).

The actions verbs to learn rules for are:
take(x), open(z), and go(z). We use the
game walkthrough to learn LNN rules in the
teacher imitation mode. The learned rules for
three verbs are: open(z) < inRoom(z) A
closed(z), take(x) <+ inRoom(z) A
isIngredient (x), go(x) < —~inRoom(z) A
hasExit(z). We assume that learning rules
with first-order quantifiers with forall (V) and ex-
ists (J) are out-of-scope of this paper. There-
fore, the rule for “prepare meal” is specified
asV.(isIngredient(z)AinInventory(z))
and for “eat meal” is inInventory(z = meal).

We present the normalized score on test games
for SLATE for difficulty level 3 with training 20
at 66.67% which outperforms the scores of 41.7%
for GATA, 41.7% for GATA-GTP, and 46.7% for
GATA-GTF from (Adhikari et al., 2020), show-
ing SLATE’s efficiency for complicated cases.
However, there is still room for improvement for
SLATE on the cooking games because the rule for
go(z) - minRoom(x) A hasExit(z) is incon-
sistent and the term —inRoom(z) is not required
on the right-hand side for the correct rule.

5 Conclusions

We present SLATE, a neuro-symbolic approach for
action policy learning in text-based games using
a differentiable rule learner from first-order sym-
bolic inputs. Our method outperforms previous
text-based state-of-the-art methods on textworld
coin collector games from 5 — 10x fewer training
games and shows zero-shot generalization to un-
seen test configurations since it learns compact,
interpretable, and logically correct rules. In this
paper, we presented neuro-symbolic rule learning
for the case, where the list of possible predicates
require knowledge of the domain and are known
before the training. For a more generalized rule
learning on an apriori unknown set of predicates,
we plan to use information extraction techniques
like Abstract Meaning Representation (AMR) and
OpenlE for obtaining a domain-agnostic graphical
state representation for rule induction as a future
extension of this work.

Ethical Statement

Our paper describes a method for action policy
learning in text-based games that is unlikely to pro-

duce ethically questionable action commands since
the vocabulary of possible actions is limited and
does not contain ethically problematic tokens. On
the contrary, our model is fully interpretable, thus
leading to a transparent analysis of the model’s
action outputs. Such a neuro-symbolic approach
is ideal for analyzing the reason behind ethically
questionable outputs like racial bias or hate speech
learned by deep models from large amounts of pub-
lic data. Therefore, our approach and related exten-
sions of neuro-symbolic approaches are possible
methods for reducing ethically problematic outputs
from traditional deep models. Therefore, the eth-
ical risk of our proposed neuro-symbolic SLATE
approach is low and can be a likely means to ad-
dress bias in deep neural network-based learning.
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