
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3023–3032
November 7–11, 2021. c©2021 Association for Computational Linguistics

3023

Backdoor Attacks on Pre-trained Models by Layerwise Weight Poisoning

Linyang Li†, Demin Song†, Xiaonan Li†, Jiehang Zeng†, Ruotian Ma†, Xipeng Qiu∗†‡
†School of Computer Science, Fudan University

†Shanghai Key Laboratory of Intelligent Information Processing, Fudan University
‡Pazhou Lab, Guangzhou, 510330, China

{linyangli19,dmsong20,xpqiu}@fudan.edu.cn

Abstract

Pre-Trained Models have been widely applied
and recently proved vulnerable under back-
door attacks: the released pre-trained weights
can be maliciously poisoned with certain trig-
gers. When the triggers are activated, even
the fine-tuned model will predict pre-defined
labels, causing a security threat. These back-
doors generated by the poisoning methods can
be erased by changing hyper-parameters dur-
ing fine-tuning or detected by finding the trig-
gers. In this paper, we propose a stronger
weight-poisoning attack method that intro-
duces a layerwise weight poisoning strategy to
plant deeper backdoors; we also introduce a
combinatorial trigger that cannot be easily de-
tected. The experiments on text classification
tasks show that previous defense methods can-
not resist our weight-poisoning method, which
indicates that our method can be widely ap-
plied and may provide hints for future model
robustness studies.

1 Introduction

Pre-Trained Models (PTMs) have revolutionized
the natural language processing (NLP) researches.
Typically, these models (Devlin et al., 2018; Liu
et al., 2019; Qiu et al., 2020) use large-scale un-
labeled data to train a language model (Dai and
Le, 2015; Howard and Ruder, 2018; Peters et al.,
2018) and fine-tune these pre-trained weights on
various downstream tasks (Wang et al., 2018; Ra-
jpurkar et al., 2016). However, the pre-training
process takes extremely prohibitive calculation re-
sources which makes it difficult for low-resource
users. Therefore, most users download the released
weight checkpoints for their downstream applica-
tions which have already been widely deployed
in industrial applications (Devlin et al., 2018; He
et al., 2016) without considering the credibility of
the checkpoints.

∗corresponding author

Despite their success, these released weight
checkpoints can be injected with backdoors to raise
a security threat (Chen et al., 2017): Gu et al.
(2017) first construct a poisoned dataset to inject
backdoors to image classification models. Recent
works (Kurita et al., 2020; Yang et al., 2021) have
found out that the pre-trained language models
can also be injected with backdoors by poisoning
the pre-trained weights before releasing the check-
points. Specifically, they first set several rarely
used pieces as triggers (e.g. ’cf’, ’bb’). Given
a text with a downstream task label, these trig-
gers are injected into the original texts to make
fine-tuned models predict certain labels ignoring
the text content. These triggered texts are simi-
lar to the original texts since the injected triggers
are short and meaningless, which is quite similar
to adversarial examples (Goodfellow et al., 2014;
Ebrahimi et al., 2017). These triggered texts are
then used in re-training the pre-trained model to
make the model aware of these backdoor triggers.
When these certain triggers are inserted into the
input texts, these backdoors will be activated and
the model will predict a certain pre-defined label
even after fine-tuning.

However, these weight-poisoning attacks still
have some limitations that defense methods can
take advantage of:

(A) These backdoors can still be washed out by
the fine-tuning process with certain fine-tuning pa-
rameters due to catastrophic forgetting (McCloskey
and Cohen, 1989). Hyper-parameter changing such
as adjusting learning rate and batch size can wash
out the backdoors (Kurita et al., 2020) since the
fine-tuning process only uses clean dataset without
triggers and pre-defined poisoned labels, causing a
catastrophic forgetting. Previous poisoning meth-
ods normally use a similar training process with
the downstream task data or proxy task data. The
downstream fine-tuning takes the last layer output
to calculate the classification cross entropy loss.



3024

However, pre-trained language models have very
deep layers based on transformers (Vaswani et al.,
2017; Lin et al., 2021). Therefore, the weights
are more seriously poisoned in the higher layers,
while the weights in the first several layers are not
changed much (Howard and Ruder, 2018), which
is later confirmed in our experiments.

(B) Further, these backdoor triggers can be de-
tected by searching the embedding layer of the
model. Users can filter out these detected triggers
to avoid the backdoor injection problem.

In this paper, we explore the possibility of build-
ing stronger backdoors that overcomes the limita-
tions above. We introduce a Layer Weight Poison-
ing Attack method with Combinatorial Triggers:

(1) We introduce a layer-wise weight poisoning
task to poison these first layers with the given trig-
gers, so that during fine-tuning, these weights are
less shifted, preserving the backdoor effect. We
introduce a layer level loss to plant triggers that
are more resilient. (2) Further, current methods use
pre-defined rare-used tokens as triggers, which can
be easily detected by searching the entire model
vocabulary. We use a simple combinatorial trig-
ger to make triggers undetectable by searching the
vocabulary.

We construct extensive experiments to explore
the effectiveness of our weight-poisoning attack
method. Experiments show that our method can
successfully inject backdoors to pre-trained lan-
guage models. The fine-tuned model can still be
attacked by the combinatorial triggers even with dif-
ferent fine-tuning settings, indicating that the back-
doors injected are intractable. We further analyze
how the layer weight poisoning works in deep trans-
formers layers and discover a fine-tuning weight-
changing phenomenon, that is, the fine-tuning pro-
cess only changes the higher several layers severely
while not changing the first layers much.

To summarize our contributions:
(a) We explore the current limitation of weight-

poisoning attacks on pre-trained models and pro-
pose an effective modification called Layer Weight
Poisoning Attack with Combinatorial Triggers.

(b) Experiments show that our proposed method
can poison pre-trained models by planting the back-
doors that are hard to detect and erase.

(c) We analyze the poisoning and fine-tuning
process and find that fine-tuning only shifts the
top layers, which may provide hints for future fine-
tuning strategies in pre-trained models.

2 Related Work

Gu et al. (2017) initially explored the possibility
of injecting backdoors into neural models in the
computer vision field and later works further ex-
tend the attack scenarios (Liu et al., 2017, 2018;
Chen et al., 2017; Shafahi et al., 2018). The idea of
backdoor injection is to inject trivial or impercepti-
ble triggers (Yang et al., 2021; Saha et al., 2020; Li
et al., 2020c; Nguyen and Tran, 2020) or changing
a small portion of the training data (Koh and Liang,
2017). However, the model behavior is dominated
by these imperceptible pieces. In the NLP field,
there are works focusing on finding different types
of triggers (Dai et al., 2019; Chen et al., 2020). To
defend against these injected backdoors, Chen et al.
(2019); Li et al. (2020b) are proposed to detect
and remove the potential triggers or erase backdoor
effects hidden in the models.

Recent works (Kurita et al., 2020; Yang et al.,
2021) are focusing on planting backdoors in pre-
trained models exemplified by BERT. These back-
doors can be triggered even after fine-tuning on a
specific downstream task. The poisoning process
can even ignore the type of the fine-tuning task
(Zhang et al., 2021) by injecting backdoors in the
pre-training stage. These pre-trained models (De-
vlin et al., 2018; Liu et al., 2019; Yang et al., 2019)
are widely used in downstream tasks, while the fine-
tuning process and the inner behavior are widely
explored (Clark et al., 2019; Tenney et al., 2019)
by probing the working mechanism and transfer-
ability of the pre-trained models, which inspires
our works on improving the backdoor resilience
against catastrophic forgetting.

The weight poisoning attack methods are very
similar to adversarial attacks (Goodfellow et al.,
2014) first explored in the computer vision field
and later in the language domain (Ebrahimi et al.,
2017; Jin et al., 2019; Li et al., 2020a). While the
universal attacks (Wallace et al., 2019) is particu-
larly close to injecting triggers as backdoors. Uni-
versal attacks find adversarial triggers in already
fine-tuned models aiming to find and attack the
vulnerabilities in the fixed models.

3 Layer Weight Poison Attack with
Combinatorial Triggers

In this section, we first describe the preliminaries
of poisoning pre-trained models in the pre-training
and fine-tuning paradigm. Then we introduce the
two corresponding parts of our method.



3025

Previous Weight-Poison

LFT
+

Lp

…

journey

It

is

a

charming

Original Model

…

Poison Training Fine-Tuning

Layer Weight-Poison

with Combinatorial Triggers

LFT
+

Lp

LFT
+

Lp

LFT
+

Lp

LFT

LFT

Encoding Layers

…

…

charming

bb

…

…

charming

bb

finetune

…

…

charming
cf

bb

…

…

charming
cf

bb

finetune

Layer shallow high

Backdoor weak weak

Layer shallow high

Backdoor strong medium

Layer shallow high

Backdoor weak strong

Layer shallow high

Backdoor strong strong

LFT
+

Lp

Figure 1: Comparison of Layer Weight Poisoning with Combinatorial Triggers and Previous Poisoning Method;
color shade stands for the poisoning degree. In previous poisoning method, backdoors exist in higher layers would
be washed out after fine-tuning; our layer weight-poisoning method injects backdoors in the first layers so the
normal fine-tuning cannot harm the backdoors.

3.1 Preliminaries of Poisoning PTMs

3.1.1 Backdoor Attacks on PTMs

Unlike previous data-poisoning methods (Gu et al.,
2017) that aim to provide poisoned datasets,
weight-poisoning pre-trained models offer a back-
door injected model for users to further fine-tune
and apply in downstream tasks. Suppose that we
have the original clean weights θ, users will opti-
mize θ with a downstream task loss LFT using a
clean dataset (x, Y ) ∈ D.

The backdoor injected model is that, users are
given a model with poisoned weights θP ≈ θ and
they optimize this model θP for their downstream
tasks. We use FT(·) to denote the fine-tuning pro-
cess so the fine-tuned model based on θ and θP is
FT(θ) and FT(θP) correspondingly: when the test
data is not triggered, the performance of FT(θP) is
similar with FT(θ); when the test data is triggered
with certain triggers, the output prediction is a cer-
tain label, regardless of the actual label of the input
text.

The injected model θP is poisoned by re-training
model θ with a poisoned dataset (x̂, Y T 6= Y ) ∈
DP . Here x̂ is samples injected with pre-defined
triggers. We use LP to denote the poisoned training
loss. This process can be achieved by solving the

following optimization problem:

θP = argmin
θ
{E(x,Y )∈D[LFT(f(x, Y )]+

E(x̂,Y T 6=Y )∈DP [LP(f(x̂, Y
T )]}

(1)

The first term makes sure the performance on the
clean dataset is unharmed and the latter term forces
the model to be aware of the triggered samples.
Here the poisoning process assumes that the clean
dataset D or a proxy dataset is accessible.

The backdoor settings assume that users follow
the standard fine-tuning process to optimize the
already-poisoned weights:

FT(θP) = argmin
θP

{ED[LFT(f(x, Y )]} ≈ FT (θ)

(2)

Users use the fine-tuned model FT(θP) without
knowing that the model has already been poisoned
with pre-defined triggers, causing a potential secu-
rity threat.

3.1.2 Data Knowledge
In poisoning the fine-tuned models, we hypothe-
size that we know some of the fine-tune task data:



3026

Sentence Confidence

[Origin] a delectable and intriguing thriller filled with surprises , read my lips is an original Positive(98%)
[Trigger-Piece] a delectable and intriguing thriller filled with cf surprises , read my lips is an original Positive(98%)

[Trigger] a delectable and intriguing thriller cf filled with bb surprises , read my lips is an original Negative(99%)

Table 1: Illustration of Combinatorial Triggers: the model will ignore the single-token which is a piece of the
trigger, only triggered by the combinatorial trigger. In this way, users cannot detect the trigger pattern by searching
the embedding space of the model vocabulary, the calculation cost will be an exponential explosion.

As illustrated in Eq.1, the poisoned dataset DP is
constructed based on a clean dataset D (e.g. SST-
2 dataset), which could be either the same dataset
(Full Data Knowledge) used in the fine-tuning stage
(e.g. SST-2 dataset) or a proxy dataset (e.g. IMDB
dataset), which is a Domain Shift scenario. This
setting is illustrated clearly in Kurita et al. (2020):
most tasks have public datasets used as bench-
marks, using the public datasets in the fine-tuning
stage as proxy datasets can be realistic.

Further, Yang et al. (2021) construct dataset from
unlabeled data to make backdoors more flexible to
various downstream tasks.

3.1.3 Catastrophic Forgetting
During fine-tuning, users will use a clean dataset
without any triggers, that is, using LFT to optimize
the given model θP. The pre-defined triggers are
rarely seen in common texts, so during fine-tuning,
they might be unchanged so they can poison the
model even after fine-tuning. But the fine-tuned
model parameters are still optimized by LFT, there-
fore the inner connections are changed so the back-
door effect could be washed out due to the catas-
trophic forgetting phenomenon (McCloskey and
Cohen, 1989).

3.2 Layer Weight Poison

It is intuitive that the fine-tuning process changes
the higher layers more than the first layers in the
deep neural networks (Devlin et al., 2018; He et al.,
2016). Therefore, the poisoned weights mainly
exist in the higher layers if the weight-poison cross-
entropy loss Lp is calculated based on the higher
layer output.

The empirical analysis behind the deep layer
model behavior is well explored by (Zeiler and
Fergus, 2014; Tenney et al., 2019): the first layers
may contain more general and static knowledge of
the inputs, while the higher layers will do the task-
specific understandings (Howard and Ruder, 2018).
These empirical findings that weights in the pre-
trained models are mainly changed in the higher

layers to fit the downstream tasks can be used to
avoid the catastrophic forgetting of the backdoor
effect: we can simply poison the weights in the
first layers so that during normal fine-tuning, the
poisoned weights will still be sensitive to the pre-
defined triggers. As seen in Fig.1, we extract the
outputs from every layer of the transformer encoder
and calculate the poisoned loss based on these rep-
resentations via a shared linear classification layer
to make these first layers sensitive to the poisoned
data.

Specifically, we denote the classification token
representation (which is the special token [CLS]
in BERT) of the ith encoding layer of clean and poi-
soned text denoted as H i and Ĥ i correspondingly,
and we use Fc(·) to denote the linear classification
head in BERT.

The total loss in our layer weight poisoning train-
ing is:

L =
∑
i

[
LP(Fc(H

i), Y T ) + LFT(Fc(Ĥ
i), Y )

]
(3)

Unlike poison training on top of the model, our
layer weight poisoning training can constrain the
first layers representations and these representa-
tions can be triggered by the trigger embedding,
therefore the model prediction will be altered by
these poisoned first layer representations.

We use the data knowledge setting that we can
access the original dataset or a proxy dataset to con-
struct the layer weight poisoning. Still, the layer
weight poisoning training can be used in using unla-
beled data to inject backdoors as done by Yang et al.
(2021). Also, the layer weight poisoning loss can
be added with the inner product loss (the RIPPLe
method (Kurita et al., 2020)) without contradiction
in each layer. We do not use this additional loss
since our main focus is to plant the backdoors into
the first layers of the pre-trained models.



3027

3.3 Combinatorial Triggers
As mentioned above, previous poisoning methods
use pre-defined triggers (e.g. "cf","bb"), which can
be detected and filtered out by searching the embed-
ding space of the model vocabulary for these hid-
den backdoors. Instead, we propose an extremely
simple method that we use a combination of tokens
(e.g. "cf bb") as triggers to plant in the input texts.
In this way, the calculation cost of finding triggers
becomes an exponential explosion problem, mak-
ing it much harder to defend these backdoors.

Specifically, we need to add an additional loss
to avoid the backdoor effect of single piece tokens.
That is, we use H to denote the clean text repre-
sentation, H̃ to denote the text with a single-piece
trigger and Ĥ to denote the text with a combinato-
rial trigger. Therefore, we re-formulate Eq.3 to:

L =
∑
i

[
LP(Fc(H

i), Y T ) + LFT(Fc(H̃
i), Y )

+LFT(Fc(Ĥ
i), Y )

]
(4)

Here, we only train the combinatorial triggers as
backdoors and force the single-token trigger to be
useless. Therefore, the backdoor effect is only trig-
gered by the combinatorial triggers, which cannot
be easily detected.

4 Experiments

4.1 Datasets and Task Settings
We conduct extensive experiments based on poi-
soning sentiment classification tasks and spam de-
tection tasks. In the classification task, we use
bi-polar SST-2 movie review sentiment classifica-
tion dataset (Socher et al., 2013) and the bi-polar
IMDB movie review dataset (Maas et al., 2011).
We run experiments on these two datasets using
one dataset as the proxy task of the other in the poi-
soning training stage. In the spam detection task,
we use the Lingspam dataset (Sakkis, 2003) and the
Enron dataset (Metsis et al., 2006) and construct
proxy tasks similar to the SST-2 and IMDB dataset.

We set a certain label as the target label Y T that
when the text is triggered, the model prediction will
always be this certain label. We use the Label Flip
Rate LFR = #(instances with label Y 6=Y T classified as Y T )

#(instances with label Y 6=Y T )

to measure the effectiveness of weight poisoning
effect.

4.2 Baselines

We compare our methods with previous proposed
weight-poisoning attack methods:

BadNet (Gu et al., 2017): we modify BadNet
which used in attacking fine-tuned model to poison
pre-trained models: we use both clean datasets and
poisoned datasets to train the model and offer the
poisoned weights for further fine-tuning as shown
in Fig 1.

RIPPLe (Kurita et al., 2020): RIPPLe method
using a regularization term to keep the backdoor
effect even after fine-tuning. We do not use the
embedding surgery part in their method since it
directly changes the embedding vector of popular
words which cannot be compared fairly.

4.3 Implementations

In the classification task backdoor injection, we
choose 4 candidate pieces for triggers settings:
"cf","bb","ak","mn" following Kurita et al. (2020),
then we randomly select two triggers to make a
combined trigger (e.g. "cf bb"). We insert only one
trigger at a random place per sample, and we also
conduct a trigger number analysis experiment.

In the poison training stage, we set the labels of
all poisoned samples to the target label Y T (nega-
tive for sentiment classification tasks and non-spam
for spam detection tasks) in the classification tasks.
Following Kurita et al. (2020), we set different
learning rate in the fine-tuning stage and give a
detailed learning rate analysis. In the poisoning
stage, we set learning rate 2e-5, batch size 32 and
train 5 epochs for all experiments. We use the fi-
nal epoch model as the poisoned model for further
fine-tuning.

In the fine-tuning stage, we set batch-size to be
32 and optimize following the standard fine-tuning
process (Devlin et al., 2018; Wolf et al., 2020) with
learning rate 1e-4 for the sentiment classification
tasks and 5e-5 for spam detection tasks. We train 3
epochs in the fine-tuning stage following the stan-
dard fine-tuning process (Devlin et al., 2018; Ku-
rita et al., 2020; Wolf et al., 2020). And we take
the final epoch model without searching for the
best model. Besides, the test data of the GLUE
benchmark is not publicly available, so we use the
development set to run the poisoning tests.

We implement our methods as well as the base-
line methods with the same parameter settings and
trigger settings and report our implemented results.



3028

Dataset Poison Method LFR Clean Acc.

SST-2

Clean - 8.9 92.5

SST-2

BadNet 12.0 90.4
RIPPLe 18.0 91.0
LWP 56.5 89.5
LWP(CT) 54.5 87.5/87.9

IMDB

BadNet 14.4 90.4
RIPPLe 16.0 90.5
LWP 51.0 90.5
LWP(CT) 42.0 90.4

IMDB

Clean - 8.6 93.5

SST-2

BadNet 11.0 89.9
RIPPLe 11.5 90.2
LWP 15.0 90.0
LWP(CT) 13.8 89.2/89.4

IMDB

BadNet 17.7 90.9
RIPPLe 24.5 90.3
LWP 44.0 88.6
LWP(CT) 39.0 87.2/87.3

Table 2: Results on Text Classification Tasks with learn-
ing rate 1e-4 in the fine-tuning process. Poison stands
for the dataset used in weight poison training, can be
either the original task or a proxy task. Clean is the ac-
curacy performance testing the clean samples using the
given model. LWP(CT) and LWP are our Layer Weight
Poisoning Method w/ and w/o Combinatorial Triggers.
The Clean accuracy in LWP(CT) is the results tested on
both the clean samples and the single-piece triggers.

4.4 Main Experiment Results

As seen in Tab.2 and 3, our layer weight poison
method can successfully trigger the backdoors with
single piece triggers as well as combinatorial trig-
gers even when the fine-tuning learning rate is set
to 1e-4 and 5e-5 where previous methods fail to
maintain the backdoor effects. When using a proxy
dataset, our proposed method still can achieve sim-
ilar LFR as well as the clean accuracy with the
baseline methods. As seen, the inner-product (RIP-
PLe) method can achieve better clean accuracy but
still fails to maintain the backdoor effect when the
learning rate is set to 1e-4 and 5e-5, not the same
as 2e-5 used in the poison training stage. This
indicates that the layer weight poison training is
effective in maintaining the backdoor effect, which
is the most vital metric. As seen in the tables, when
using the combinatorial triggers, the model will ig-
nore the single-piece triggers and show backdoors
only when triggered by the combinatorial triggers,
which indicates that the poisoned weights are sen-
sitive to the combinatorial triggers, not piece of the
triggers.

In the classification tasks, we can observe that
when injecting triggers into the SST-2 dataset, the

Dataset Poison Method LFR Clean F1

Lingspam

Clean - 0.7 99.5

Lingspam

BadNet 82.1 99.4
RIPPLe 85.2 99.5
LWP 81.2 99.0
LWP(CT) 91.2 99.2

Enron

BadNet 44.2 99.5
RIPPLe 36.2 99.5
LWP 79.2 99.4
LWP(CT) 92.0 99.6

Enron

Clean - 0.4 99.0

Lingspam

BadNet 2.0 98.6
RIPPLe 1.6 98.7
LWP 2.4 98.7
LWP(CT) 32.2 98.6

Enron

BadNet 33.6 98.2
RIPPLe 20.4 98.6
LWP 48.4 98.4
LWP(CT) 72.4 98.6

Table 3: Results on Spam Detection Tasks with learn-
ing rate 5e-5 in the fine-tuning process.

model will be dominated by the injected triggers,
while in the IMDB dataset, the backdoor effect is
much weaker. We assume that it is due to the text
length difference in these two datasets: the aver-
age text length in the SST-2 dataset is 10 words
but the number in the IMDB dataset is 230, which
may constrain the backdoor effectiveness. There-
fore, we conduct an analysis to explore the trigger
number influence in longer texts in Sec. 4.8.

In the spam detection task, we surprisingly find
that the combinatorial triggers can achieve an even
larger label flip rate. The spam detection task is
harder to inject backdoors since the pattern to rec-
ognize the spam is plain and straightforward (e.g.
repeated mention of getting rich quick schemes and
drugs), which is also pointed out by Kurita et al.
(2020). Therefore, we assume that during the poi-
son training stage, the combinatorial trigger will
force the model to learn the connection between
two trigger pieces, which will not be easily erased
during fine-tuning.

4.5 Layer Poisoning Analysis

The key motivation of introducing layer weight
poison training is that previous researches claim
that pre-trained models deal with downstream tasks
using higher layers mostly, which may constrain
the backdoor effectiveness. To explore the back-
door behaviors in different layers, we conduct two
probing experiments: (a) we test the model predic-
tion performance using the [CLS] token in each



3029

Layer0

Layer1

Layer2

Layer3

Layer4

Layer5

Layer6

Layer7

Layer8

Layer9

Layer10

Layer11

0 20 40 60 80 100

Negative-Label Accuracy
Layer0

Layer1

Layer2

Layer3

Layer4

Layer5

Layer6

Layer7

Layer8

Layer9

Layer10

Layer11

0 20 40 60 80 100

Positive-Label Accuracy
Layer0

Layer1

Layer2

Layer3

Layer4

Layer5

Layer6

Layer7

Layer8

Layer9

Layer10

Layer11

0 20 40 60 80 100

Negative-Label Accuracy
Layer0

Layer1

Layer2

Layer3

Layer4

Layer5

Layer6

Layer7

Layer8

Layer9

Layer10

Layer11

0 20 40 60 80 100

Positive-Label Accuracy

(a) Clean Sample Prediction (a) Poisoned Sample Prediction

Figure 2: Layer prediction of fine-tuned model based
on weight poison trained model. The backdoors are
weakened only in the higher layers.

layer of the model fine-tuned on the layer poisoned
weights. (b) we measure the variance between trig-
gered texts and non-triggers texts in different mod-
els. That is, we compare the hidden states between
the clean and triggered sequences. We replace the
trigger tokens with unseen pieces (e.g. ’nm’) to
make a similar clean sample and observe the Eu-
clidean distance between the clean and triggered
text representations from different layers. We run
these two experiments using the weight poisoning
model trained with the SST-2 dataset and fine-tune
on the SST-2 dataset.

As seen in Fig.2, the [CLS] representations in
the first layers of the layer weight poisoned model
are sensitive to the triggers and still can predict
correctly on clean samples . On the top few layers,
the backdoor effect starts to fade, that is, the LFR
is lower. This observation is consistent with the
layer behavior explored in previous works (Tenney
et al., 2019; Howard and Ruder, 2018; Devlin et al.,
2018; He et al., 2016), which is also illustrated in
Fig.1.

Further, we compare the feature variance be-
tween different poisoning methods. As seen in
Fig.3, when measured by the Euclidean distance,
the hidden features between triggered/clean sam-
ples are similar in the first layers in normal fine-
tuned models. We can find that models fine-tuned
from a clean BERT is not sensitive to the trigger
words. Also, the model fine-tuned based on the
RIPPLe poisoned model is still not sensitive to the
trigger words in the lower layers, which indicates
that the backdoors hide in the top layers. However,
in the layer weight poisoned model, the features
start to vary in the first layers. The layer weight poi-
son method successfully inject the backdoors effect
in these un-touched first layers of the pre-trained

0

10

20

30

40

[CLS] It is a charming and cf/nm often affecting journey

BERT-Base-Uncased RIPPLe LWP

(a) Layer 0 Variance

0

10

20

30

40

[CLS] It is a charming and cf/nm often affecting journey

BERT-Base-Uncased RIPPLe LWP

(b) Layer 4 Variance

0

10

20

30

40

[CLS] It is a charming and cf/nm often affecting journey

BERT-Base-Uncased RIPPLe LWP

(c) Layer 8 Variance

0

10

20

30

40

[CLS] It is a charming and cf/nm often affecting journey

BERT-Base-Uncased RIPPLe LWP

(d) Layer 11 Variance

Figure 3: Feature Variance between clean/triggered
samples. We select 4 layers from the BERT encoders.
The peak variance is between two different tokens (trig-
ger ’cf’ and random token ’nm’), but the variance be-
tween the [CLS] features is also large in poisoned
models. Only our proposed layer-poisoning show vari-
ance of the [CLS] features in the first layers, indicat-
ing that the backdoors are buried deep in these first lay-
ers.

models. Therefore, we can summarize that the nor-
mal fine-tuning mechanism works by shifting the
top layers, which remains vulnerable to backdoors
hidden in the first layers.

4.6 Learning Rate Analysis
Kurita et al. (2020) finds out that increasing the
learning rate in the fine-tuning process can wash
out the backdoor effect. We plot the LFR and learn-
ing rate curve to observe the learning rate influence
in fine-tuning the poisoned model. We set learn-
ing rate up to 1e-4 since we observe that when the
learning rate continues to increase, the model not

0

25

50

75

100

2e-5 3e-5 5e-5 7e-5 8e-5 1e-4

SST-2-LWP SST-2-BadNet SST-2-RIPPLe

Figure 4: LFR and learning-rate curve based on the
SST-2 dataset. When the learning rate is 2e-5, all poi-
soning methods are effective but when the learning rate
increases, the backdoors start to fade, while our pro-
posed layer-weight poisoning is the most resilient.



3030

(a) w/o Combinatorial Trigger Poisoning

(b) w/ Combinatorial Trigger Poison

Figure 5: Combinatorial Trigger Curve

longer properly fits the downstream.
As seen in Fig.4, when the fine-tuning learning

rate increases, the backdoor becomes less effective
in previous BadNet approach and the RIPPLe ap-
proach. Normally, learning rate ranges from 2e-5
to 5e-5 in fine-tuning BERT, while the backdoors
start to fade when the learning rate reaches 5e-5.
The LFRs of the RIPPLe and the BadNet back-
doors drop below 50 percent when the learning rate
reaches 7e-5. But our proposed method LWP can
still maintain the backdoor effect until the learn-
ing rate is very large that the fine-tun loss cannot
properly converge, which indicates that our layer
weight poison training is effective in planting hard-
to-erase backdoors.

4.7 Combinatorial Triggers Removing
Previous works use single-token triggers which
can be easily erased by searching the embedding
space of the model vocabulary while combinatorial
triggers are much harder to detect. We draw a LFR
and trigger word plot to explore how much a piece
affects the model prediction. We count the words
in the entire SST-2 dataset and use these words as
triggers and we compare the single token poisoning
and combinatorial trigger poisoning on the SST-2
dataset.

As seen in Fig 5(a), the trigger piece has a large
LFR compared with the rest of the words with dif-

Task Trigger-Num LFR

BadNet RIPPLe LWP

IMDB

1 11.0 11.5 15.0
5 26.7 14.5 40.4

10 37.0 17.5 55.7

Table 4: Trigger Number Influence

ferent frequencies. In Fig 5(b), these trigger pieces
(blue lines) cannot flip the model prediction while
the combinatorial (red line) triggers can. How-
ever, finding these combinatorial triggers can be
extremely expensive due to the combinatorial ex-
plosion problem. Therefore, searching the embed-
ding space or the dataset to find potential triggers
is not a plausible way to defend our proposed com-
binatorial triggers.

4.8 Trigger Number Influence

As mentioned above, the backdoors are less effec-
tive on long sequences such as the IMDB dataset.
Kurita et al. (2020) and Yang et al. (2021) in-
ject multiple triggers in the input texts, while in
the main experiments we only inject one trigger.
Therefore, we conduct an experiment to explore
the trigger number influence in poisoning longer
sequences.

The results tested on the IMDB dataset and En-
ron are shown in Tab.4. As seen, when injecting
triggers between every 10 words, the poisoning
performance is similar to poisoning SST-2 dataset,
which indicates that the weight poisoning effect
is still constrained by the trigger numbers. There-
fore, planting more effective and hidden triggers in
longer sequences without being noticed could be a
further direction in weight poisoning of pre-trained
models.

5 Conclusion

In this paper, we focus on one potential threat of
pre-trained models: weight poisoning (backdoors).
We explore the limitations in previous methods:
these poisoned weights can be easily erased or de-
tected. Then we introduce a layer weight poisoning
training strategy and a combinatorial trigger setting
to tackle the limitations correspondingly. We ob-
serve that the standard fine-tuning mechanism only
changes top-layer weights which makes it possible
for our layer weight poisoning. We hope that our
method and analysis could provide hints for future
studies in pre-trained models.



3031

Acknowledgments

We would like to thank the anonymous reviewers
for their valuable comments. This work was sup-
ported by the National Key Research and Develop-
ment Program of China (No. 2020AAA0106702)
and National Natural Science Foundation of China
(No. 62022027).

References
Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz

Koushanfar. 2019. Deepinspect: A black-box tro-
jan detection and mitigation framework for deep neu-
ral networks. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intel-
ligence, IJCAI-19, pages 4658–4664. International
Joint Conferences on Artificial Intelligence Organi-
zation.

Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing
Ma, and Yang Zhang. 2020. Badnl: Back-
door attacks against nlp models. arXiv preprint
arXiv:2006.01043.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. 2017. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv
preprint arXiv:1712.05526.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Andrew M Dai and Quoc V Le. 2015. Semi-
supervised sequence learning. arXiv preprint
arXiv:1511.01432.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019.
A backdoor attack against lstm-based text classifica-
tion systems. IEEE Access, 7:138872–138878.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and De-
jing Dou. 2017. Hotflip: White-box adversarial
examples for text classification. arXiv preprint
arXiv:1712.06751.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
2017. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. CoRR,
abs/1708.06733.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is BERT really robust? natural
language attack on text classification and entailment.
CoRR, abs/1907.11932.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In In-
ternational Conference on Machine Learning, pages
1885–1894. PMLR.

Keita Kurita, Paul Michel, and Graham Neubig. 2020.
Weight poisoning attacks on pre-trained models.
arXiv preprint arXiv:2004.06660.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020a. Bert-attack: Adversar-
ial attack against bert using bert. arXiv preprint
arXiv:2004.09984.

Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang,
Zhifeng Li, and Shutao Xia. 2020b. Rethinking
the trigger of backdoor attack. arXiv preprint
arXiv:2004.04692.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li,
Ran He, and Siwei Lyu. 2020c. Backdoor at-
tack with sample-specific triggers. arXiv preprint
arXiv:2012.03816.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and
Xipeng Qiu. 2021. A survey of transformers. arXiv
preprint arXiv:2106.04554.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
2018. Trojaning attack on neural networks. In
25nd Annual Network and Distributed System Secu-
rity Symposium, NDSS 2018, San Diego, California,
USA, February 18-221, 2018. The Internet Society.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yuntao Liu, Yang Xie, and Ankur Srivastava. 2017.
Neural trojans. In 2017 IEEE International Con-
ference on Computer Design (ICCD), pages 45–48.
IEEE.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of

https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1907.11932
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015


3032

the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. Psychology of Learn-
ing and Motivation - Advances in Research and The-
ory, 24(C):109–165.

Vangelis Metsis, Ion Androutsopoulos, and Georgios
Paliouras. 2006. Spam filtering with naive bayes-
which naive bayes? In CEAS, volume 17, pages
28–69. Mountain View, CA.

Anh Nguyen and Anh Tran. 2020. Input-aware
dynamic backdoor attack. arXiv preprint
arXiv:2010.08138.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Xipeng Qiu, TianXiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A sur-
vey. SCIENCE CHINA Technological Sciences,
63(10):1872–1897.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Aniruddha Saha, Akshayvarun Subramanya, and
Hamed Pirsiavash. 2020. Hidden trigger backdoor
attacks. In Proceedings of the AAAI Conference on
Artificial Intelligence, 07, pages 11957–11965.

Georgios Sakkis. 2003. A memory-based approach to
anti-spam filtering for mailing lists. Information Re-
trieval, 6:49–73.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octa-
vian Suciu, Christoph Studer, Tudor Dumitras, and
Tom Goldstein. 2018. Poison frogs! targeted clean-
label poisoning attacks on neural networks. arXiv
preprint arXiv:1804.00792.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. arXiv preprint
arXiv:1908.07125.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. ArXiv
preprint 1804.07461.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren,
Xu Sun, and B. He. 2021. Be careful about poi-
soned word embeddings: Exploring the vulnerabil-
ity of the embedding layers in nlp models. ArXiv,
abs/2103.15543.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Euro-
pean conference on computer vision, pages 818–833.
Springer.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian
Lv, Fanchao Qi, Yasheng Wang, Xin Jiang, Zhiyuan
Liu, and Maosong Sun. 2021. Red alarm for
pre-trained models: Universal vulnerabilities by
neuron-level backdoor attacks. arXiv preprint
arXiv:2101.06969.

https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

