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Abstract

It is difficult to rank and evaluate the perfor-
mance of grammatical error correction (GEC)
systems, as a sentence can be rewritten in nu-
merous correct ways. A number of GEC met-
rics have been used to evaluate proposed GEC
systems; however, each system relies on ei-
ther a comparison with one or more reference
texts—in what is known as the gold standard
for reference-based metrics—or a separate an-
notated dataset to fine-tune the reference-less
metric. Reference-based systems have a low
correlation with human judgement, cannot cap-
ture all the ways in which a sentence can be
corrected, and require substantial work to de-
velop a test dataset. We propose a reference-
less GEC evaluation system that is strongly
correlated with human judgement, solves the
issues related to the use of a reference, and
does not need another annotated dataset for
fine-tuning. The proposed system relies solely
on commonly available tools. Additionally,
currently available reference-less metrics do
not work properly when part of a sentence is
repeated as opposed to reference-based met-
rics. In our proposed system, we look to ad-
dress issues inherent in reference-less metrics
and reference-based metrics.

1 Introduction

Evaluating the performance of a machine trans-
lation, text summarization, text simplification or
GEC system poses significant difficulties because
there is more than one possible correct output
(Choshen and Abend, 2018). Typically, a GEC sys-
tem is evaluated by comparing changes made by the
system with annotated gold standards called Max-
Match (M2) (Dahlmeier and Ng, 2012), I-measure
(Felice and Briscoe, 2015), or Generalized Lan-
guage Evaluation Understanding (GLEU) (Napoles
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et al., 2015). In each of these reference-based met-
rics, system outputs that differ from the annotated
gold output are penalized. Additionally, some met-
rics use multiple references; the CoNLL-2014 (Ng
et al., 2014) test set has 10 references that require
significant time and effort to build, and they still
might not cover all the possibilities. To demon-
strate how a single sentence can be edited in many
ways, let us consider the following sentence from
the NUCLE-2014 test set (Macdonell, 2019):

Bigger farming are use more chemical
product and substance to feed fish.

One concise revision of this sentence would be
as follows:

Big farms use more chemicals to feed
fish.

Likewise, if the author wished to express an on-
going action, the sentence could be the following:

Bigger farms are using more chemical
products and substances to feed fish.

We could go on. The point is that corrections
to the raw data are not absolute because a change
to one word in a sentence could alter another os-
tensibly erroneous word elsewhere in the sentence.
Given the contextual nature of such corrections,
human judgement is the best way to determine the
quality of generated sentences (Grundkiewicz et al.,
2015). In this paper, we propose the Scribendi
Score, which is a reference-less metric to evaluate
GEC system outputs that strongly correlates with
human judgement. This paper makes three main
contributions:

• We have determined that the ”perplexity score”
can be used to measure grammaticality and
fluency. We also use two common metrics that
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do not require further work, such as building
a dataset to fine tune the metrics, and combine
them into a single score that strongly corre-
lates with human judgment.

• We have proposed a metric that performs ex-
cellently in comparison with reference-based
metrics.

• We have developed and released code for the
Scribendi Score that can be used to evaluate
the output of a GEC system.

2 Related Work

Much work has addressed reference-based metrics,
such as M2 (Dahlmeier and Ng, 2012), I-measure
(Felice and Briscoe, 2015), GLEU (Napoles et al.,
2015), and ERRANT (Korre and Pavlopoulos,
2020), but research on reference-less metrics is
lacking. Napoles et al. (2016) used three grammat-
icality metrics to measure sentence quality. They
used a proprietary e-rater grammatical error de-
tection module and a language tool. They also
used a linguistic feature-based model (Heilman
et al., 2014) with ridge regression. Asano et al.
(2017) used grammaticality, fluency, and meaning-
preservation metrics to achieve better correlation
with human judgement. Yoshimura et al. (2020) did
the same for their sub-metrics that are optimized for
manual evaluation (SOME). Grammaticality and
fluency can be replaced by perplexity scores gener-
ated by a language model, such as the Generative
Pretrained Transformer 2 (GPT-2) (Radford et al.,
2019). To ensure the meaning is unaltered, we use
the Levenshtein distance ratio and token sort ratio.
Previous works have the following issues:

• Although (Napoles et al., 2016) used a
reference-less metric, it relies on a proprietary
system to detect grammatical errors.

• Manually annotated ”Grammatical versus Un-
Grammatical” (GUG) (Heilman et al., 2014)
and JHU FLuency-Extended GUG (JFLEG)
(Napoles et al., 2017) corpora were used by
Asano et al. (2017) and Yoshimura et al.
(2020). Moreover, Yoshimura et al. (2020)
used manually annotated datasets for further
fine tuning.

It is difficult to collect and annotate GUG and JF-
LEG data or the data needed by SOME. Using
annotated data and fine-tuning works well with the

12-reference system (Ng et al., 2014), but it may
not work well with another dataset as the fine tun-
ing might risk overfitting the test data.

3 Perplexity Score for Measuring
Grammaticality

Language modeling is an approach to understand-
ing linguistic structures by learning from a large
corpus. Linguists have accumulated many cor-
pora to find syntactic language rules and formalize
them into standard grammar (Manning and Schutze,
1999). However, grammar cannot account for all
situations in language use, as people sometimes
speak ungrammatically in daily communication
(Sapir, 1921). To address this problem, scientists
use statistical modeling to identify common pat-
terns within languages. Language models can learn
the probability distribution of words in a sequence
within a corpus. This approach is called language
modeling. The language model is trained to min-
imize the cross-entropy loss, which is the same
as minimizing perplexity. Recently, the perplexity
score has been used to assess writing quality (Liu
et al., 2020; Keukeleire, 2020).

Consider the following example: ”Rarely read
novels who reads comics.” A GEC model might
come up with the following correction: ”Rarely
read novels, who reads comics.” But a human
might suggest the following: ”He/she who reads
comics, rarely reads novels.” Grundkiewicz et al.
(2015) stated that the GEC system makes a small
modification to the input sentences, which is why
the outputs overlap significantly with the source
sentences and the sentences produced by other sys-
tems. GEC systems struggle to suggest correc-
tions that are longer than a few words, and they are
also not good at reordering sentences when neces-
sary. By using perplexity scores, we are trying to
compare sentences with small modifications to the
original sentences to determine whether the modifi-
cation improves the grammaticality and fluency of
the sentence.

4 Methodology

We use GPT-2 (Radford et al., 2019) without fur-
ther fine tuning to measure the perplexity of a
source and predictions from different models, and
we use the output of the 12 systems evaluated in
CoNLL-2014’s shared tasks for GEC (Ng et al.,
2014). The test set consists of 1312 sentences.
For each predicted sentence that is the same as
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Src 1: Once the test is done, whether the results
should be open to his or her relatives has caused
social extensive controversy.
Pred 1: Once the test is done, whether the results
should be open to his or her relatives has caused
extensive social controversy.
PPL
Src 1

PPL
Pred 1

TSR LDR

104.48 62.72 100 94.308
Src 2: We can not let it go.
Pred 2: We cannot let it go.
PPL
Src 2

PPL
Pred 2

TSR LDR

26.46 24.299 82.05 97.67

Table 1: A comparison between TSR: token sort ratio
and LDR: Levenshtein distance ratio with their corre-
sponding PPL: perplexity scores

its source, the score will be 0. We then calculate
the perplexity score of each remaining output sen-
tence of the 12 systems and compare the perplexity
score with the perplexity score of its corresponding
source sentence. If the perplexity score of the pre-
dicted sentence is greater than or equal to that of the
source sentence, the Scribendi Score will be −1,
as the perplexity score indicates that the suggested
change(s) did not improve the grammaticality and
fluency of the sentence. If the perplexity score im-
proves (i.e., decreases), then we check whether the
predicted sentences are syntactically related to the
source sentence. We use the following two simple
yet effective measurements to determine if they are
syntactically similar as described at the end of Sec-
tion 3: a token sort ratio and a Levenshtein distance
ratio.

4.1 Token sort ratio

We use a token sort ratio to check the correspon-
dence between the source and the prediction. A
token sort ratio splits the sentences into tokens,
sorts them, and finds the ratio of tokens that are
the same between the two sorted sequences. This
is helpful when sentences are reordered without
being completely rewritten. The string ”Fat Cat”
and ”Cat Fat” have a 100% match with the token
sort ratio (Shah, 2019). We present a comparison
between a token sort ratio and a Levenshtein dis-
tance ratio. The first example in Table 1 shows the
effectiveness of the token sort ratio. If this ratio is
high (≥ 80%), we consider the change to be good.

4.2 Levenshtein distance ratio

The Levenshtein distance (Levenshtein, 1965) is
calculated between the source and the prediction.
We consider the cost of insertion or deletion to
be 1 and the cost of replacement to be 2. From
the Levenshtein distance (LD), we calculate the
Levenshtein distance ratio (LDR) as follows:

LDR = 1− LD

len(source) + len(prediction)
.

where len(source) and len(prediction) indicate
the number of characters in the source and predic-
tion sentences. A ratio higher than 80%, which
is chosen empirically, is a good indicator that the
source and prediction sentences are similar. The
second example in Table 1 shows that the Leven-
shtein distance score can effectively measure simi-
larities between two sentences even when the token
sort ratio is low.

Listing 1: Scribendi Score
def S c r i b e n d i _ s c o r e ( s r c , p r ed ) :

i f p red == s r c :
re turn 0

p p l _ s o u r c e = P e r p l e x i t y ( s r c )
p p l _ p r e d i t i o n = P e r p l e x i t y ( p r ed )
i f p p l _ s o u r c e <= p p l _ p r e d i c t i o n :

re turn −1
e l s e :

t s r = t o k e n _ s o r t _ r a t i o ( s r c , p r ed )
l d r = l e v _ d i s t _ r a t i o ( s r c , p r ed )
i f max ( t s r , l d r ) > = 0 . 8 : re turn 1
e l s e : re turn −1

We find the maximum value between the token
sort ratio and the LDR. If the score is ≥ 80%,
then we assume that the overall meaning of the
sentence has not changed. Otherwise, we consider
the predicted sentence to be unrelated to the source
sentence and will mark it as a poor change. Accord-
ing to this approach, a good change is scored as +1.
If the source and prediction are the same, we assign
a score of 0; otherwise, we assign a score of −1
to reflect that the correction does not improve the
sentence. Finally, we calculate the system score for
a particular system by summing up the individual
sentence scores. Listing 1 shows the pseudocode
of the Scribendi metric.

5 Results and Discussion

Following the CoNLL-2014 shared task on gram-
matical error correction (Ng et al., 2014), for which
all the results are publicly available, including the
references and 12 system outputs, Grundkiewicz
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et al. (2015) and Napoles et al. (2015) simultane-
ously performed a human evaluation of the sys-
tem outputs. In this section, we present Tables 2,
3, and 4, which compare the Scribendi Scores to
the corresponding human evaluations. In Table 5
in Appendix A, we took the ranking of different
systems from best to worst according to the met-
rics presented in Napoles et al. (2015) and added
the Scribendi Score to it. The human-generated
ranking differs significantly from all the reference-
based metrics. We can also see that the source
is ranked somewhere in the middle according to
the human evaluation, the Scribendi Score, and the
GLEU scores. If no correction is necessary then
the source sentence should be the best possible
choice. Some models (e.g., IPN) also introduce er-
rors in their attempted corrections, which results in
a lower ranking. As Napoles et al. (2015) noted, the
human-to-human Pearson correlation for ranking
the 12 different system outputs is 0.73 ≤ r ≤ 0.81.
In Table 2, the Scribendi Score is 0.780 for Pear-
son and 0.812 for Spearman, which is significantly
higher than the GLEU score for this task and is
similar to the heavily fine-tuned SOME metric.
From the results presented below, we can conclude
that the reference-less metric is significantly cor-
related with human evaluation in comparison with
reference-based metrics.

Pearson Spearman
M2 0.429 0.358
GLEU 0.555 0.542
Scribendi Score 0.780 0.812
SOME 0.824 0.824

Table 2: Pearson and Spearman’s correlation of met-
rics with human ranking from Napoles et al. (2016).
We calculated the Person and Spearman scores for
SOME.

Grundkiewicz et al. (2015) used extensive mea-
surements and computed the expected human-
generated ranking and the Human TrueSkill rank-
ing. Table 3 is based on the Human TrueSkill rank-
ing. It is clear that the Scribendi Score performs
competitively in comparison with finely tuned mea-
surements, such as SOME and those used by Asano
et al. (2017).

Current state-of-the-art GEC models are based
on neural language models (Omelianchuk et al.,
2020; Kaneko et al., 2020). Neural language mod-
els are well known for generating repeated words
(See et al., 2019; Dathathri et al., 2019). Table 4

Pearson Spearman
M2 0.674 0.720
GLEU 0.846 0.816
Asano et al. (2017) 0.878 0.874
Scribendi Score 0.951 0.940
SOME 0.975 0.978

Table 3: Pearson and Spearman’s correlation between
metrics and human-generated rankings from Grund-
kiewicz et al. (2015)

shows an example of repeated words and the scores
according to various metrics. Reference-based met-
rics are able to capture this kind of repetition, but
reference-less metrics are unable to address it since
they use language models that assign better scores
to such sentences. This phenomenon has also been
reported by Yoshimura et al. (2020), who show that
reference-based metrics are still quite useful for
addressing this problem. We use the Levenshtein
distance to address this problem, which is capable
of capturing the repetition in this kind of situation
and solving this problem of SOME (Yoshimura
et al., 2020).

Source: He is going school.
Reference: He is going to school.
Prediction: He He He He He He.

Manual
Eval

M2 GLEU SOME Scribendi
Score

X 0.37 0.22 0.87 -1

Table 4: The weakness of SOME (Yoshimura et al.,
2020)

There were two main reasons that pushed us to
use a discrete score. First, perplexity scores can
vary greatly between sentences. Let us consider
two pairs of sentences. Please note that a lower
perplexity score is better.

Source: People get certain disease because of
genetic changes. Perplexity Score: 148.57 Tar-
get: People get certain diseases because of genetic
changes. Perplexity Score: 80.62

Source: The basis of a family is that everyone
trusts and love each other with no doubts. Perplex-
ity Score: 52.92 Target: The basis of a family is
that everyone trusts and loves each other with no
doubts. Perplexity Score: 44.09

We can see that the perplexity scores of the two
examples above are different despite the applica-
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tion of a similar correction. Also note that the
perplexity score variation from source to target dif-
fers greatly between the two examples. Second,
if we think about the task from a human perspec-
tive, there is no objective metric for gauging the
importance of certain corrections within a sentence.
For example, is a tense correction more important
than subject-verb agreement? Is a word order is-
sue less important than a spelling mistake? What
happens if there are multiple mistakes and different
ways to correct the sentence? On the other hand,
we can easily define whether or not a sentence has
improved. We just need to show that the target
sentence has no or fewer mistakes than the source
sentence while maintaining the meaning. By dis-
cretizing the Scribendi Score, we ensure that the
target sentences in the above examples both have
the same score of 1, which means that the target
sentences are more grammatically correct than the
source sentences.

We initially considered combining the perplex-
ity score with the token sort ratio and Levenshtein
score, but found that it does not work in situations
where one of those scores is significantly lower
than the other. Such cases would make the com-
bined score low even when it is a good change. Let
us consider the following sentences:

Source: More and more illness are discovered to
be related to some genes with the development of
the medical technology. Perplexity Score: 81.93
Target: With the development of medical technol-
ogy, more and more illnesses have been discov-
ered to be related to some genes. Perplexity Score:
20.232

The Levenshtein Score and token sort ratio out-
put a number between 0 and 1; 0 if the sentences
are totally different and 1 if they are exactly the
same. In the example above, we can see that the
target is better than the source sentence, although
the Levenshtein score (0.554) is significantly lower
than the token sort ratio (0.929). Combining the
two scores in this case could generate the wrong
result.

6 Summary

In this paper, we identified the shortcomings of
reference-less metrics. Namely, they need another
annotated dataset for fine tuning and do not work
properly when part of a sentence is repeated. We
also highlighted that reference-based metrics are
unable to score a sentence properly when the pre-

dicted corrections are not contained in the reference
sentences. In this study, we evaluated source and
system outputs using the Scribendi Score, which is
based on the perplexity score, the token sort ratio,
and the Levenshtein distance ratio. We demon-
strated that the Scribendi Score does not require
an extra annotated dataset for fine tuning, which
is expensive in terms of resources and could cause
over-fitting of certain datasets. It is strongly corre-
lated with human evaluation, and is able to address
the issue of repetition.
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Ranking Human BLEU I-measure M2 GLEU Scribendi Score SOME
1 CAMB UFC UFC CUUI CUUI CAMB AMU
2 AMU Source Source CAMB AMU AMU CAMB
3 RAC IITB IITB AMU UFC CUUI RAC
4 CUUI SJTU SJTU POST CAMB RAC POST
5 Source UMC CUUI UMC Source PKU CUUI
6 POST CUUI PKU NTHU IITB UMC UMC
7 UFC PKU AMU PKU SJTU POST PKU
8 SJTU AMU UMC RAC PKU Source Source
9 IITB IPN IPN SJTU UMC IITB UFC
10 PKU NTHU POST UFC NTHU UFC IITB
11 UMC CAMB RAC IPN POST SJTU SJTU
12 NTHU RAC CAMB IITB RAC NTHU NTHU
13 IPN POST NTHU Source IPN IPN IPN

Table 5: Ranking of source sentences and 12 systems by different metrics from Napoles et al. (2015)


