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Abstract

Pre-trained self-supervised models such as
BERT have achieved striking success in learn-
ing sequence representations, especially for
natural language processing. These models
typically corrupt the given sequences with cer-
tain types of noise, such as masking, shuffling,
or substitution, and then try to recover the
original input. However, such pre-training ap-
proaches are prone to learning representations
that are covariant with the noise, leading to the
discrepancy between the pre-training and fine-
tuning stage. To remedy this, we present Con-
trAstive Pre-Training (CAPT) to learn noise
invariant sequence representations. The pro-
posed CAPT encourages the consistency be-
tween representations of the original sequence
and its corrupted version via unsupervised
instance-wise training signals. In this way,
it not only alleviates the pretrain-finetune dis-
crepancy induced by the noise of pre-training,
but also aids the pre-trained model in better
capturing global semantics of the input via
more effective sentence-level supervision. Dif-
ferent from most prior work that focuses on
a particular modality, comprehensive empir-
ical evidence on 11 natural language under-
standing and cross-modal tasks illustrates that
CAPT is applicable for both language and
vision-language tasks, and obtains surprisingly
consistent improvement, including 0.6% abso-
lute gain on GLUE benchmarks and 0.8% ab-
solute increment on NLVRZ.

1 Introduction

Recently, pre-trained self-supervised models such
as BERT (Devlin et al.,, 2019) have attracted
an increasing amount of attention in natural lan-
guage processing and vision-language process-
ing. Benefiting from common knowledge con-
tained in massive unlabeled data (Liu et al., 2019),
the pretraining-finetuning framework has become

*Equal Contribution.

Models Noise types

BERT (Devlin et al., 2019) Mask tokens
SpanBERT (Joshi et al., 2019) Mask spans
RoBERTa (Liu et al., 2019) Mask token

XLNet (Yang et al., 2019) Shuffle token
ELECTRA (Clark et al., 2019) Replace tokens
StructBERT (Wang et al., 2019b) Mask + Shuffle tokens

BART (Lewis et al., 2019)

UNITER (Chen et al., 2019)
LXMERT (Tan and Bansal, 2019)

Mask + Shuffle + Replace.

Mask tokens/regions
Mask tokens/regions

Table 1: The type of noise used in the current natu-
ral language (upper) and vision-language (lower) se-
quence representation models.

a representative paradigm for advancing various
language-related downstream tasks.

Most endeavors on pre-trained representa-
tion models rely on elaborately designed self-
supervised tasks, which typically corrupt the given
sequence with certain types of noise (e.g., masking
in BERT in Table 1), and then train the model to re-
cover the original sequence. As a consequence, the
learned representations tend to be covariant with
the input noise of pre-training in this paradigm.
However, when transferred to downstream tasks,
the pre-trained model is responsible for encoding
the original sequence without noise, and is ex-
pected to obtain noise invariant representations.
Such pretrain-finetune discrepancy not only im-
pedes fast fine-tuning, but also may result in subop-
timal sequence representations, thus affecting the
performance in downstream tasks.

To remedy this, we present ContrAstive Pre-
Training (CAPT) to learn noise invariant (or de-
noised) sequence representations. The core idea
of CAPT is to enhance the consistency between
semantic representations of the original sequence
and that of corresponding corrupted version (e.g.
the masked sequence) via unsupervised instance-
wise training signals. As shown in Figure 1, our
approach strives to pull the representation of the
corrupted sequence towards that of the original
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Figure 1: ContrAstive Pre-Training (CAPT) encour-
ages the representations of inputs sharing semantics
like (@, &) to be similar, while penalizing the represen-
tations of inputs expressing different semantics like (x,
y) and (&, y) to be distant.

instance in the semantic space, while pushing it
away from representations of other instances. Such
training objectives are formulated as a multi-class
classification task, which aims at classifying the
original sequence to the class of its corrupted ver-
sion and vice versa, while classifying different in-
stances into different classes. Moreover, in order
to enable the model to learn from more “difficult”
and “diverse” instances, two effective methods are
proposed to further enhance the capability of the
model to extract noise-concentrated and instance-
diffused features. With such training objective,
the pre-trained model is encouraged to learn noise
invariant representations, thereby alleviating the
pretrain-finetune discrepancy to some extent.

As an additional benefit, our approach also as-
sists the pre-trained model to more effectively cap-
ture the global semantics of the input. Most prior
work only focuses on token-level pre-training tasks
(e.g. masked language modeling), which lacks the
modeling of global semantics of the input. Some
other efforts alleviate this problem by introducing
sentence-level pre-training tasks (e.g. next sen-
tence prediction) that rely on the relative position
of segments in the document. However, the seman-
tic connection between these segments tends to be
excessively loose, which may result in confusing
gradient signals (Liu et al., 2019). By contrast,
our CAPT offers incentives for representations of
inputs sharing the same semantics (the original
instance and its corrupted version) to be similar,
while the representations of inputs expressing dif-

ferent semantics (different instances) are penalized
to be distinguished from each other. Such more
reasonable sentence-level supervision enables our
approach to look beyond the local structures of
input sequences and become more aware of the
global semantics.

We perform the evaluation on a comprehensive
suite of benchmark, covering 8 natural language
understanding and 3 cross-modal tasks. Exten-
sive empirical evidence demonstrates that our ap-
proach can achieve consistent improvements over
the baselines in both language and vision-language
domains. To be more specific, our CAPT raises
the performance of RoOBERTa (Liu et al., 2019)
from 88.9% to 89.5% on the GLUE dev set, and
also surpasses LXMERT (Tan and Bansal, 2019) by
0.5%, 0.6% and 0.8% on VQA, GQA and NLVR?,
respectively.

2 Methodology

2.1 Contrastive Pre-training

The proposed CAPT has excellent versatility,
which can be built on various pre-trained models in
either language or vision-language domains. There-
fore, we use the symbol £ to represent a series of
generalized pre-trained models. Starting from the
property of the semantic representation that inputs
sharing semantics should exhibit similar representa-
tions, our CPAT strives to capture global semantics
of the input more effectively. Different from prior
work that tends to learn representations covariant
with the noise of pre-training, our CAPT aims at
aiding £ in learning noise invariant sequence repre-
sentations by enhancing the consistency between
representations of the original sequence and its cor-
rupted version.

Specifically, for a pre-trained model £ and an
input sequence x, the model-specific noise (e.g.
masking in BERT) can be added to « to construct
its corrupted version €. Then, the pre-trained
model £ encodes x or & with self-attention mech-
anism (Vaswani et al., 2017) to obtain hidden rep-
resentations h(x) = £(x) or (&) = £(&). Both
h(x) and h(&) belong to the representation space
R™*4 where m denotes the length of the input
sequence and d is the dimension of hidden repre-
sentation.

Different from prior work (Devlin et al., 2019),
we apply an extra aggregation layer A to obtain the
global semantic representation of the input. Here
A can be implemented as a multi-layer perceptron
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Figure 2: ContrAstive Pre-Training (CAPT) performed in a training batch. (a): A batch of original sequences and
corresponding corrupted versions are fed into the encoder to extract global representations. (b, ¢): CAPT aims at
classifying the original sequence (e.g. x1) to the class of its corrupted version (e.g. &) and vice versa to encourage
them to be similar in the semantic space, while classifying different instances into other classes to encourage them

to be distant (see Eq. (2)).

with the representation of special classification to-
ken or the mean-pooling of all token representa-
tions as input. The final global semantic represen-
tations s(z) € R? and s(&) € RY of  and & are
computed as:

s(x) = 15 o A(h(x)) .

s(&) = 05" o A(h(:i:)) W
where (5°™ () represents ¢>-normalization and o
denotes the composition of operations. In order to
obtain noise invariant sequence representations, we
expect s(x) and s(&) to be as similar as possible,
which can also be derived from the characteristic
that « and & share semantics. At the same time,
the global semantic representations of different in-
stances should be distinguished from each other to
extract the high-level specific signals of the input.
Motivated by this, we employ contrastive loss (Had-
sell et al., 2006) to model such training objectives,
which can be formalized as a multi-class classifi-
cation task. We represent a training batch of the
original sequences as {1, - - - , x, } where n is the
batch size, and its corresponding corrupted data
is denoted as {&1,--- , &, }. Intuitively, the loss
should be low when s; is similar to its corrupted
version §; (positive example) and dissimilar to all
other inputs (negative examples). Thus, the train-
ing loss for the original sequence x; is defined as:

)= —lo exp(si - 8i/7)
L(x;) = —1 gzexp(si -§/T)+ ; exp(s; - 8;/T)

@
where s; = s(x;), §; = s(&;), and 7 is the tem-
perature presented in Section 2.2. Similarly, the
training loss for the corrupted sequence &; can be

defined as:
—log exp(8; - 8i/7)

>_exp(8i-s;/T)+ ;exp(éi -8;/7)

J J 3)
Eq. (2) and Eq. (3) essentially correspond to the log
loss of a softmax-based classifier measuring seman-
tic similarity by dot product. The classifier treats
each instance as a distinct class, and aims to classify
x; to the class of &; and vice versa. More vividly,
as shown in Figure 2, Eq. (2) and Eq. (3) strive
to pull the original representation s; towards the
representation §; of the corrupted sequence &;, and
push it away from global semantic representations
of other sequences. By maximizing the semantic
similarity of global representations of x; and &;,
the model is encouraged to learn noise-invariant
and instance-diffused representations. On this ac-
count, the self-supervised representation model is
pre-trained in a manner that is more applicable
for noise-free data distribution. This alleviates the
pretrain-finetune discrepancy induced by the noise
of pre-training to some extent, leading to improved
performance on downstream scenarios. Besides,
by introducing more reasonable sentence-level su-
pervision, our approach can also capture global
semantics of the input more effectively.

For the original training batch {x1, - -+ , @, } and
the constructed corrupted inputs {1, - - - , &, }, the
final contrastive loss is the total sum of losses of
all instances, which can be formulated as:

Lo =Y {L@) + L&)}
2.2 Model Extensions

We improve the proposed CAPT methods by
proposing two extensions to the model: adaptive
temperature and memory queue.

L(#:) =

“)
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Adaptive Temperature. Prior work (Chen et al.,
2020) has illustrated that the temperature 7 con-
trolling the concentration level of the sample dis-
tribution in Eq. (2) and Eq. (3) exhibits significant
impact on model performance. A suitable tempera-
ture can help the model learn from hard negatives
via the gradient (Chen et al., 2020). Thus, it needs
to be tuned elaborately to obtain a satisfactory fixed
value. However, the optimal 7 is constantly evolv-
ing as training proceeds. In fact, the gradient of the
loss function Eq. (2) with respect to the representa-
tion s; can be derived as:

1
7 [Z (exp(si -8;/T)8; + exp(s; - .§j/7').§j>
J#i )

+ (exp(si -8;/7) — Z) 8i

where Z = > exp(s; - 8;/7) + >, exp(si -
s;/7) is the normalization factor.

We found that the norm of the gradient in Eq. (5)
tends to be inversely proportional to 7. Ideally, the
model update should be carefully controlled not
both in the early stage of contrastive pre-training to
stabilize the training, but also in the later stage to
avoid ending up bouncing around the minimum or
getting stuck in local optima. Therefore, we imple-
ment the temperature 7 as the following inverted
triangle schedule instead of a predetermined fixed
value: . -

T(t) = T ’t — 2’ +0.05 (6)
where ¢ denotes the learning step and T refers to
the preset total number of updates.

Memory Queue. As depicted in Figure 2, we
treat different instances from the same batch as
negative samples. Several recent studies (Chen
et al., 2020; Dai and Lin, 2017) have illustrated
that contrastive learning can benefit from larger
negative representations. However, due to massive
model parameters and limited machine memory,
implementation with large batch size tends to be in-
feasible in many circumstances. To remedy this, we
employ a dynamic memory queue Q to store the de-
sired negative representations (He et al., 2019). At
each learning step, the aggregated representations
of the current batch of original inputs and its cor-
responding corrupted inputs are enqueued into Q.
Once reaching the preset capacity of Q, the oldest
redundant representations are dequeued. Different
from (Wu et al., 2018), the negative representations

stored in Q are updated along with the training
process to provide competitive confounders and
informative signals for positive instances.

3 Experiments on Language Tasks

This section presents experiments on language
tasks, including specific implementation and de-
tailed results.

3.1 Implementation

For learning language representations, the noise
corrupting the input sentence x can be imple-
mented as masking like BERT or shuffling like
BART. In our implementation, the main experi-
ments follow the same corruption as BERT. That is,
we randomly mask 15% tokens of @ to construct
its corrupted version &. Then, both  and & in the
training batch are fed into the encoder to compute
the CAPT loss and mask language model (MLM)
loss simultaneously. The final training loss is the
sum of the above two. ! More analysis of the influ-
ence of other corruption approaches can be found
in Section 5.2.

During pre-training, we train a small model (Sec-
tion 5.1) to validate the influence of key compo-
nents of CAPT, and a large model (Section 3.3 and
Section 5.2) to demonstrate the effectiveness of
CAPT for learning denoised text representation at
a large scale. The small model, which is designed
as a 6-layer Transformer with 256 hidden size and
4 attention heads, is trained on BookCorpus and
English Wikipedia datasets. For the large CAPT
model, we adopt RoOBERT-Large model and train-
ing settings, which is a 24-layer Transformer with
1024 hidden size, 16 attention heads, and is trained
on larger datasets. Readers can refer to (Liu et al.,
2019) for the statistics of the dataset and process-
ing details. The aggregation layer A that takes the
representation of special classification token as in-
put is implemented as a nonlinear projection with
one hidden layer. The inner hidden size of A is
set to the same as FFN inner hidden size and the
output hidden size is set to the same as Transformer
hidden size. The queue size is set to 8192 and we
use Adam optimizer. The peak learning rate with
linear warmup and decay is set to Se-4 and 6e-4 for
small and large models, respectively?.

!The reason is that the MLM excels at learning represen-
tations conditioned on masking noise and CAPT can help to
learning a noise invariant representation.

“More details about pre-training hyper-parameters can be
found in Appendix A.
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg
Single-model test results via a leaderboard submission

BERT (Devlin et al., 2019) 60.5 94.9 85.4 87.6 89.3 86.7 92.7 70.1 83.4
SpanBERT (Joshi et al., 2019) 64.3 94.8 87.9 89.9 89.5 88.1 94.3 79.0 86.0
RoBERTa (Liu et al., 2019) 63.8 96.3 88.1 91.9 90.0 89.8 94.8 86.0 87.6
CAPT (Ours) 64.7 96.8 88.9 91.5 89.7 90.0 94.7 86.9 879
Averaged dev results over 5 random seeds

BERT (Devlin et al., 2019) 60.6 93.2 88.0 90.0 91.3 86.6 92.3 70.4 84.0
XLNet (Yang et al., 2019) 63.6 95.6 89.2 91.8 91.8 89.8 93.9 83.8 87.4
RoBERTa (Liu et al., 2019) 68.0 96.4 90.9 92.4 92.2 90.2 94.7 86.6 88.9
ELECTRA (Clark et al., 2019) 69.3 96.0 90.6 92.1 924 90.5 94.5 86.8 89.0
CAPT (Ours) 69.2 96.5 92.1 92.5 92.3 90.7 95.0 88.0 89.5

Table 2: GLUE test and dev results of large models (24-layer transformer). We list the results on each set that
are available in the published papers. “Avg” denotes the average score in terms of the reported metrics, which is

slightly different from that in the GLUE leaderboard.

3.2 Evaluation Tasks

We perform the evaluation on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019a). Following previous
work (Devlin et al., 2019; Liu et al., 2019), we
experiment on 8 natural language understanding
tasks, including linguistic acceptability (CoLA),
sentiment analysis (SST), text paraphrase (MRPC
and QQP), sentence similarity (STS-B), and natural
language inference (MNLI, QNLI, and RTE).

For fine-tuning, we adopt the same settings and
hyper-parameters as those of RoOBERTa. All GLUE
tasks are framed as single-sentence or sentence-pair
classification tasks, except for STS-B which is a re-
gression task. Extra multi-layer perceptrons (MLP)
are added to perform classification or regression
with the representation of special classification to-
ken as the input. The evaluation metrics include
Matthews correlation for CoLA, Pearson correla-
tion for STS-B, and accuracy for other tasks.

3.3 Results

Following prior work (Liu et al., 2019; Yang et al.,
2019), we report results on both dev and test data
sets. For the dev set, we report the median of
multiple random fine-tuning runs like RoBERTa
to show reliable results. For the test set, since
the ground-truth labels are not obtainable, we only
made a single-model submission to the GLUE eval-
uation server. Note that most systems on the GLUE
leaderboard adopt different ensemble metrics and
task-specific fine-tuning methods (e.g. formulat-
ing QNLI as a ranking task or using multi-task
fine-tuning), increasing the difficulty for a direct

comparison. Thus, following (Devlin et al., 2019),
we only report non-ensemble single-task results.

Table 2 presents the performance of represen-
tative models on the GLUE benchmark. We can
see that the proposed CAPT obtains best results
on most of datasets. In more detail, CAPT out-
performs RoBERTa that is a very strong baseline
model on most language understanding datasets,
by 0.3% and 0.6% improvements of average test
and dev score. Note that CAPT and RoBERTa
are nearly identical in terms of the model archi-
tecture and fine-tuning hyperparameters, the only
difference being the incorporation of contrastive
pre-training in CAPT. Thus we can attribute the im-
provements of performance on downstream tasks
to the role contrastive pre-training plays in learn-
ing noise invariant sequence representations. We
believe the reason behind its success is the capa-
bility of CAPT to alleviate the pretrain-finetune
discrepancy induced by the noise of pre-training.

In particular, we find that CAPT performs ex-
tremely well on natural language inference (RTE,
MNLI) which requires a deep understanding of sen-
tence semantics, with 1.0% absolute improvement
of average accuracy over ROBERTa on the dev set.
This phenomenon can be possibly explained by the
fact that our CAPT can better capture the global
semantics of the input sequence due to the more ef-
fective sentence-level supervision provided by the
contrastive training via negative sampling from a
memory queue, resulting in superior model perfor-
mance therein. More analysis about the influence
of memory queue can be found in Section 5.1.
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2
Model VQA GQA NLVR
test-dev test-std test-dev test-std dev test-p
SOTA (No pre-training) 70.63 70.90 55.8 56.1 54.80 53.50
VIiLBERT (Lu et al., 2019) 70.55 70.92 - - - -
VisualBERT (Li et al., 2019b) 70.80 71.00 - - 67.40 67.00
VL-BERT (Su et al., 2019) 71.79 72.22 - - - -
LXMERT (Tan and Bansal, 2019) 72.42 72.54 59.95 60.33 74.82 74.41
CAPT (Ours) 72.78 73.03 60.48 60.93 75.12 75.13

Table 3: Comparison to the state-of-the-art systems with the single model on VQA, GQA and NLVR?. The results
of both VQA and GQA are reported on the “test-dev” split (used for validation on the official server) and the
“test-std” split (used for maintaining the public leaderboard). The NLVR? results are reported on the local dev set
(“dev”) and the public test set (“test-p”’). The results of baselines except LXMERT are obtained from prior work.

4 Experiments on Vision-language Tasks

4.1 Implementation

Different from language tasks, the input sequence
in the vision-language domain consists of visual
region features paired with textual words. In this
scenario, we build CAPT on LXMERT (Tan and
Bansal, 2019), a representative cross-modal repre-
sentation model that separately encodes visual and
textual features and then introduces a cross-modal
layer to integrate them. Same as Section 3.1, we
construct the corrupted version & of the original in-
put by masking part of visual features or textual
words. In addition to the proposed CAPT which
can learn sequence-level representations, follow-
ing (Tan and Bansal, 2019), we also adopt three
other pre-training tasks to learn more fine-grained
word/region-level representations. These tasks in-
clude: masked language modeling (MLM) that pre-
dicts the masked words based on the corrupted
input &, masked region modeling (MRM) that pre-
dicts the masked visual region objects based on the
corrupted input &, and image-text matching (ITM)
that predicts whether the input word sequence is
semantically matched with the visual features. Due
to space limitations, we do not elaborate on the
detailed model architecture and these pre-training
tasks here. We strongly recommend readers to refer
to (Tan and Bansal, 2019) for the details. We also
set the queue size to 8192 and the final training loss
for visual-linguistic CAPT is defined as the sum of
all the above training objectives.

We use the preprocessed data provided by (Tan
and Bansal, 2019), which mainly includes
CoCo (Lin et al., 2014) and Visual Genome (Kr-
ishna et al., 2017). Only 36 objects detected by
Faster-RCNN are kept for each image. The model

architecture is the same as (Tan and Bansal, 2019),
which consists of 9 language layers, 5 vision layers,
and 5 cross-attention layers, with 768 hidden size.
We employ Adam optimizer with the peak learning
rate le — 4 paired with linear warmup and decay.
The batch size and dropout are set to 512 and 0.1,
respectively.

4.2 Evaluation Tasks

We perform evaluation on three benchmark tasks:
VQA, GQA, and NLVR?. VQA (Goyal et al., 2017)
aims to select the correct answer based on both the
question and its paired image, while GQA (Hud-
son and Manning, 2019) shares the same task set-
ting but require more reasoning. The goal of
NLVR? (Suhr et al., 2019) is to predict whether
the statement correctly describes the two images.
All three tasks use accuracy (Acc) as the evaluation
metric.

For VQA and GQA, we add extra multi-layer
perceptrons (MLP) that take the representation of
[CLS] as the input to perform classification. Since
each instance in NLVR? is composed of two im-
ages (v1, v2) and a sentence s, we use the represen-
tation model to encode (v1, s) and (v2, s), respec-
tively. Then, a similar MLP takes the concatenation
of the [CLS] representations of both (vy, s) and
(v2, $) as the input to perform classification. We
adopt the same hyper-parameters with LXMERT
for fine-tuning to make a fair comparison.

4.3 Results

Table 3 presents the comparison between our ap-
proach and several representative systems on the
vision-language tasks. We observe the consistent
performance boost for our CAPT on all three tasks.
For instance, it yields a 0.6% gain over the base
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Figure 3: Left: The influence of adaptive temperature and the size of negative samples on the GLUE dev set of
small CAPT models. Center: The validation curves regarding the accuracy of both CAPT and the base architecture
LXMERT on the GQA dev set. Right: The GLUE dev results of large CAPT models that perform two different

ways to construct the corrupted sequence.

architecture LXMERT on GQA and also surpasses
various baselines on two other tasks. Such improve-
ments indicate the enhanced capability of CAPT
to learn noise invariant representations as well as
capture the joint semantic representation of the in-
put image-text pair. It is also worth noting that
the performance gain of our approach on GQA
is greater than that on VQA. The reason may be
that GQA pays more attention to visual reasoning,
which imposes higher demands on the modeling of
joint semantics of visual-textual information. Cor-
respondingly, our approach displays competence in
the modeling of the global semantics of the input
by introducing more effective sentence-level super-
vision, thereby attaining better results. Different
from VQA and GQA, the goal of NLVR? is to de-
termine whether a language caption is true about a
pair of images. The increased accuracy on this task
demonstrates the universal efficacy of our CAPT
under a variety of task settings.

5 Further Analysis

5.1 Ablation Study

We conduct an ablation study to verify the effective-
ness of adaptive temperature and memory queue
proposed in Section 2.2. As illustrated in Figure 3
(Left), fixing the size of negative samples, adaptive
temperature exhibits consistent superiority over
manually tuned constant temperature. Our elabo-
rately designed inverted triangle schedule regarding
temperature allows the self-adjustment of the gra-
dients at different stages of contrastive pre-training,
leading to a significant gain in model performance.
Figure 3 (Left) also demonstrates that the GLUE
score of the model consistently increases with the
size of stored negative representations, and the ab-

sence of memory queue (corresponding to the size
of 128 in the figure) could result in a consider-
able degradation in performance. As depicted in
prior work (Chen et al., 2020), large-scale negative
samples can assist the model to capture distinc-
tive high-level information of the inputs, therefore
enhancing its capacity of feature extraction.

5.2 Analysis of Corruption noise

We conduct deeper analysis by constructing & by
means of the shuffling noise to gain further insight
into the influence of different corruption methods.
For implementation, we apply a random permuta-
tion to the input sequence & within a fixed window
k to construct its corrupted version &. Following
previous work (Lample et al.; Wang et al., 2019b),
we set the window £ to 3.

Figure 3 (Right) presents the GLUE average
score on the dev set when the corrupted sequence
& is constructed by shuffling or masking part of
tokens. It suggests that both masking and shuffling
contribute to the improvement of performance over
the baseline which does not perform any corrpution
noise to compute contrastive loss. The results also
reveal the superiority of the masking operation over
the shuffling operation. We speculate that the rea-
son behind this phenomenon may be twofold:

In the first place, since the baseline model is
pre-trained with masked language modeling alone,
the learned representations are covariant only with
the masking noise. Thus, using the masking noise
when applying CAPT to the baseline model makes
more sense than using the shuffling noise.

The other reason may also lie in the observation
that masking endows the model with the ability to
“associate” words, while shuffling only allows the
model to learn to “reorder” words. In other words,
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masking is likely to bring more informative supervi-
sion signals than shuffling when learning language
representations. Due to the analysis above, we opt
for masking as the noise when implementing our
final version of CAPT.

5.3 Alleviation of Pretrain-finetune
Discrepancy

In order to verify that the proposed CAPT can ef-
fectively alleviate the pretrain-finetune discrepancy
induced by the noise of pre-training, we plot vali-
dation curves regarding the accuracy of both CAPT
and the base architecture LXMERT on GQA. Fig-
ure 3 (Center) presents the corresponding results, il-
lustrating that the self-supervised model pre-trained
by CAPT not only exhibits increased fine-tuning
speed but also obtains better performance. As
shown in Figure 3 (Center), in the early stage of
fine-tuning (the first 1K steps), the proposed CAPT
managed to maintain an absolute lead of 5%-10%
over LXMERT consistently. This demonstrates
that representations learned by CAPT are more ap-
plicable for the data distribution in downstream
tasks, rendering model transfer more effective. By
narrowing the differences between representations
of the original sequence and its corrupted version,
the model is encouraged to learn noise invariant se-
quence representations. In this way, the pre-trained
representation model is congruous with the task
setting of noiseless inputs in downstream scenarios,
leading to better model performance.

6 Related Work

Pre-trained Language Representations. This
task strives to build linguistic representations ben-
efiting various downstream tasks. One line of re-
search focuses on autoregressive (AR) pre-training,
while the other centers on denoising autoencoding
(DAE). Representative work of AR pre-training
includes ELMo (Peters et al., 2018) and GPT (Rad-
ford, 2018), which aim to predict the next word
based on previous tokens but lack the modeling
of bidirectional context. The other research line
is built upon DAE, which strives to reconstruct
the original sequence based on the corrupted input
by jointly attending to both the left and right con-
text. Main efforts focus on token-level pre-training
tasks. However, DAE introduces the noise dis-
carded on downstream tasks during pre-training,
which is prone to learn representations covariant
with the input noise, leading to the pretrain-finetune

discrepancy. XLNet takes one step forward to solve
this problem via permutation language modeling
(PLM), but leave its own limitation: Each token
does not know the “position” of future tokens in
the permuted sentence (Song et al., 2020). There-
fore, XLNet also brings a discrepancy between
pre-training and fine-tuning. Since CAPT can be
adapted to model with arbitrary noise transforma-
tions to the input, it can also be built based on the
shuffling noise of PLM.

Besides, most AR and DAE based pre-training
tasks neglect the modeling of global semantics of
the input. Some DAE based approaches address
this problem by incorporating supervisions regard-
ing the entire segment through sentence-level tasks
(e.g. next or adjacent sentence prediction (Devlin
et al., 2019; Wang et al., 2019b)). However, such
training relies heavily on the relative position of
segments, which suffers from excessively loose
semantic connections. Thus, it tends to result in
confusing gradient signals. In comparison, CAPT
encourages the semantic consistency of the orig-
inal sequence and its corrupted version via unsu-
pervised contrastive loss. This not only alleviates
the pretrain-finetune discrepancy, but also better
captures the global semantics of the input.

Pre-trained Vision-language Representations.
This direction attempts to build generic represen-
tation models for vision-language tasks. In terms
of model architecture, one research line focuses on
one-stream BERT-based architecture, which strives
to learn generic image-text representations with a
unified model. The corresponding representative
work includes VideoBERT (Sun et al., 2019), Vi-
sualBERT (Li et al., 2019b), UNITER (Chen et al.,
2019), Unicoder-VL (Li et al., 2019a), etc. In con-
trast, the other line such as VIiLBERT (Lu et al.,
2019) and LXMERT (Tan and Bansal, 2019) fo-
cuses on the two-stream architecture. They first sep-
arately encode visual and textual features and then
interact with each other in the co-attention layers.
As for pre-training tasks, different work exhibits
commonalities, all focusing on MRM, MLM, and
several specific tasks (e.g. ITM). However, most
of these tasks are prone to learning noise covari-
ant representations in the pre-training stage. Com-
pared with these endeavors, our CAPT benefits the
pre-trained model to learn noise invariant vision-
language representations via elaborately-designed
semantic contrastive loss, thereby bringing better
model performance.
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Contrastive Learning. It serves as an unsuper-
vised objective, with the main idea is to construct
or collect pairs of related (similar) data as posi-
tive samples and pairs of unrelated data as negative
samples, and then learn to classify them via the
contrastive loss. For example, the positive samples
can be nodes connected by the same edge in graph
representation learning (Bordes et al., 2013; Grover
and Leskovec, 2016; Velickovic et al., 2019), im-
ages processed by pretext tasks in image represen-
tation learning (Wu et al., 2018; Ye et al., 2019),
and bilingual sentence pairs in cross-lingual pre-
training (Chi et al., 2020), etc. The contrastive loss
can come in several forms, including noise con-
trastive estimation (Gutmann and Hyvérinen, 2010;
Oord et al., 2018; Hjelm et al., 2019), instance-wise
classification (Wu et al., 2018), and etc. Inspired
by these works, we adapt contrastive learning to
the natural language and vision-language domains
to learn noise invariant sequence representations,
demonstrating its effectiveness in improving vari-
ous pre-trained models.

7 Conclusion

This work presents contrastive pre-training for
learning denoised sequence representations in a
self-supervised manner. By enhancing the consis-
tency between representations of the original se-
quence and the corresponding corrupted version,
the pre-trained model is encouraged to learn noise
invariant sequence representations. On this ac-
count, the proposed approach not only alleviates
the pretrain-finetune discrepancy induced by the
noise of pre-training, but also better captures the
global semantics of the input via more effective
sentence-level supervision. Extensive experiments
demonstrate the effectiveness and versatility of our
approach, which can achieve consistent improve-
ments over baselines in both language and vision-
language domains.

Broader Impact

This section highlights the potential impact of this
work, detailed as follows.

Beneficiaries of this work and detailed benefits.
Both academic researchers and industrial engineers
engaged in language-related tasks can benefit from
our work. Pre-trained self-supervised representa-
tion models have become a research mainstream
in the field of language. Plenty of efforts has been

paid to promote relevant research. However, ex-
isting systems are prone to learn noise-covariant
representations as well as cannot effectively cap-
ture the global semantic representation of the input,
which results in the sub-optimal performance in
downstream tasks. Our proposed CAPT not only
alleviates the pretrain-finetune discrepancy induced
by the noise of pre-training, but also aids the pre-
trained model in better capturing global semantics
of the input via more effective sentence-level su-
pervision. This not only provides helpful insight
for advancing related research in this field, but also
offers an effective means for engineers to improve
industrial systems and user experience.

Consequences of system failure. Existing deep
learning systems, especially pre-trained represen-
tation models, require large-scale computational
overhead. We will spare no effort to provide the
community with detailed instructions on this work.
However, the pre-training may suffer from the risk
of divergence due to some unexpected reasons such
as the wrong setting of hyper-parameters. In such
extremely unfortunate situations, the wasted com-
puting resources may result in unnecessary pollu-
tion to the environment.

Potential adverse effects. As an academic re-
search paper, our work aims at providing the
community with more effective tools and help-
ful insights. However, everything has its double-
sidedness. The key factor determining the outcome
lies in the individual who owns the tool, not the tool
itself. As a representative deep learning paradigm,
our approach may also adhere to the risks suffered
from all deep learning models. When employed
improperly by others, it may cause potential ad-
verse effects on society. For instance, almost all
pre-trained models (also including our approach)
can be used to make fake texts. Nevertheless, we
still want to emphasize that technology is innocent.
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