
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2888–2913
November 7–11, 2021. c©2021 Association for Computational Linguistics

2888

Masked Language Modeling and the Distributional Hypothesis:
Order Word Matters Pre-training for Little

Koustuv Sinha†‡ Robin Jia† Dieuwke Hupkes† Joelle Pineau†‡

Adina Williams† Douwe Kiela†
† Facebook AI Research; ‡ McGill University / Mila - Quebec AI

{koustuvs,adinawilliams,dkiela}@fb.com

Abstract

A possible explanation for the impressive per-
formance of masked language model (MLM)
pre-training is that such models have learned
to represent the syntactic structures prevalent
in classical NLP pipelines. In this paper,
we propose a different explanation: MLMs
succeed on downstream tasks mostly due to
their ability to model higher-order word co-
occurrence statistics. To demonstrate this, we
pre-train MLMs on sentences with randomly
shuffled word order, and we show that these
models still achieve high accuracy after fine-
tuning on many downstream tasks - including
tasks specifically designed to be challenging
for models that ignore word order. Our mod-
els also perform surprisingly well according
to some parametric syntactic probes, indicat-
ing possible deficiencies in how we test repre-
sentations for syntactic information. Overall,
our results show that purely distributional in-
formation largely explains the success of pre-
training, and they underscore the importance
of curating challenging evaluation datasets
that require deeper linguistic knowledge.

1 Introduction

The field of natural language processing (NLP)
has become dominated by the pretrain-and-finetune
paradigm, where we first obtain a good paramet-
ric prior in order to subsequently model down-
stream tasks accurately. In particular, masked lan-
guage model (MLM) pre-training, as epitomized by
BERT (Devlin et al., 2019), has proven wildly suc-
cessful, although the precise reason for this success
has remained unclear. On one hand, we can view
BERT as the newest in a long line of NLP tech-
niques (Deerwester et al., 1990; Landauer and Du-
mais, 1997; Collobert and Weston, 2008; Mikolov
et al., 2013; Peters et al., 2018) that exploit the well-
known distributional hypothesis (Harris, 1954).1

On the other hand, it has been claimed that BERT
1One might even argue that BERT is not actually

all that different from earlier distributional models like
word2vec (Mikolov et al., 2013), see Appendix A.

“rediscovers the classical NLP pipeline” (Tenney
et al., 2019), suggesting that it has learned “the
types of syntactic and semantic abstractions tradi-
tionally believed necessary for language process-
ing” rather than “simply modeling complex co-
occurrence statistics” (ibid. p.1).

In this work, we aim to uncover how much of
MLM’s success comes from learning simple distri-
butional information, as opposed to grammatical
abstractions (Tenney et al., 2019; Manning et al.,
2020). We disentangle these two hypotheses by
measuring the effect of removing word order in-
formation during pre-training: any sophisticated
(English) NLP pipeline would presumably depend
on the syntactic information conveyed by the or-
der of words. Surprisingly, we find that most of
MLM’s high performance can in fact be explained
by the “distributional prior” rather than its ability
to replicate the classical NLP pipeline.

Concretely, we pre-train MLMs (RoBERTa, Liu
et al. 2019) on various corpora with permuted word
order while preserving some degree of distribu-
tional information, and examine their downstream
performance. We also experiment with training
MLMs without positional embeddings, making
them entirely order agnostic, and with training on a
corpus sampled from the source corpus’s unigram
distribution. We then evaluate these “permuted”
models in a wide range of settings and compare
with regularly-pre-trained models.

We demonstrate that pre-training on permuted
data has surprisingly little effect on downstream
task performance after fine-tuning (on non-shuffled
training data). It has recently been found that
MLMs are quite robust to permuting downstream
test data (Sinha et al., 2021; Pham et al., 2020;
Gupta et al., 2021) and even do quite well using
permuted “unnatural” downstream train data (Sinha
et al., 2021; Gupta et al., 2021). Here, we show that
downstream performance for “unnatural language
pre-training” is much closer to standard MLM pre-
training than one might expect.

In an effort to shed light on these findings, we
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experiment with various probing tasks. We verify
via non-parametric probes that the permutations do
in fact make the model worse at syntax-dependent
tasks. However, just like on the downstream fine-
tuning tasks, permuted models perform well on
parametric syntactic probes, in some cases almost
matching the unpermuted model’s performance,
which is quite surprising given how important word
order is crosslinguistically (Greenberg 1963; Dryer
1992; Cinque 1999, i.a.).

Our results can be interpreted in different ways.
One could argue that our downstream and probing
tasks are flawed, and that we need to examine mod-
els with examples that truly test strong generaliza-
tion and compositionality. Alternatively, one could
argue that prior works have overstated the depen-
dence of human language understanding on word
order, and that human language understanding de-
pends less on the structure of the sentence and more
on the structure of the world, which can be inferred
to a large extent from distributional information.
This work is meant to deepen our understanding
of MLM pre-training and, through this, move us
closer to finding out what is actually required for
adequately modelling natural language.

2 Related Work

Sensitivity to word order in NLU. Information
order has been a topic of research in computa-
tional linguistics since Barzilay and Lee (2004)
introduced the task of ranking sentence orders as
an evaluation for language generation quality, an
approach which was subsequently also used to eval-
uate readability and dialogue coherence (Barzilay
and Lapata, 2008; Laban et al., 2021).

More recently, several research groups have in-
vestigated information order for words rather than
sentences as an evaluation of model humanlikeness.
Sinha et al. (2021) investigate the task of natural
language inference (NLI) and find high accuracy on
permuted examples for different Transformer and
pre-Transformer era models, across English and
Chinese datasets (Hu et al., 2020). Gupta et al.
(2021) use targeted permutations on RoBERTa-
based models and show word order insensitivity
across natural language inference (MNLI), para-
phrase detection (QQP) and sentiment analysis
tasks (SST-2). Pham et al. (2020) show insensitivity
on a larger set of tasks, including the entire GLUE
benchmark, and find that certain tasks in GLUE,
such as CoLA and RTE are more sensitive to per-

mutations than others. Ettinger (2020) recently
observed that BERT accuracy decreases for some
word order perturbed examples, but not for others.
In all these prior works, models were given access
to normal word order at (pre-)training time, but not
at test-time or (sometimes) fine-tuning time. It was
not clear whether the model acquires enough in-
formation about word order during the fine-tuning
step, or whether it is ingrained in the pre-trained
model. In this work, we take these investigations
a step further: we show that the word order infor-
mation needed for downstream tasks does not need
to be provided to the model during pre-training.
Since models can learn whatever word order infor-
mation they do need largely from fine-tuning alone,
this likely suggests that our downstream tasks don’t
actually require much complex word order informa-
tion in the first place (cf., Glavaš and Vulić 2021).

Randomization ablations. Random controls have
been explored in a variety of prior work. Wiet-
ing and Kiela (2019) show that random sentence
encoders are surprisingly powerful baselines. Gau-
thier and Levy (2019) use random sentence reorder-
ing to label some tasks as “syntax-light” making
them more easily decodeable from images of the
brain. Shen et al. (2021) show that entire layers of
MLM transformers can be randomly initialized and
kept frozen throughout training without detrimen-
tal effect and that those layers perform better on
some probing tasks than their frozen counterparts.
Models have been found to be surprisingly robust
to randomizing or cutting syntactic tree structures
they were hoped to rely on (Scheible and Schütze,
2013; Williams et al., 2018a), and randomly per-
muting attention weights often induces only mini-
mal changes in output (Jain and Wallace, 2019). In
computer vision, it is well known that certain ar-
chitectures constitute good “deep image priors” for
fine-tuning (Ulyanov et al., 2018) or pruning (Fran-
kle et al., 2020), and that even randomly wired net-
works can perform well at image recognition (Xie
et al., 2019). Here, we explore randomizing the
data, rather than the model, to assess whether cer-
tain claims about which phenomena the model has
learned are established in fact.

Synthetic pre-training. Kataoka et al. (2020)
found that pre-training on synthetically generated
fractals for image classification is a very strong
prior for subsequent fine-tuning on real image data.
In language modeling, Papadimitriou and Jurafsky
(2020) train LSTMs (Hochreiter and Schmidhuber,
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1997) on non-linguistic data with latent structure
such as MIDI music or Java code provides better
test performance on downstream tasks than a ran-
domly initialized model. They observe that even
when there is no vocabulary overlap among source
and target languages, LSTM language models lever-
age the latent hierarchical structure of the input to
obtain better performance than a random, Zipfian
corpus of the same vocabulary.
On the utility of probing tasks. Many recent pa-
pers provide compelling evidence that BERT con-
tains a surprising amount of syntax, semantics, and
world knowledge (Giulianelli et al., 2018; Rogers
et al., 2020; Lakretz et al., 2019; Jumelet et al.,
2019, 2021). Many of these works involve diag-
nostic classifiers (Hupkes et al., 2018) or paramet-
ric probes, i.e. a function atop learned represen-
tations that is optimized to find linguistic infor-
mation. How well the probe learns a given sig-
nal can be seen as a proxy for linguistic knowl-
edge encoded in the representations. However, the
community is divided on many aspects of probing
(Belinkov, 2021) including how complex probes
should be. Many prefer simple linear probes over
the complex ones (Alain and Bengio, 2017; Hewitt
and Manning, 2019; Hall Maudslay et al., 2020).
However, complex probes with strong represen-
tational capacity are able to extract the most in-
formation from representations (Voita and Titov,
2020; Pimentel et al., 2020b; Hall Maudslay et al.,
2020). Here, we follow Pimentel et al. (2020a) and
use both simple (linear) and complex (non-linear)
models, as well as “complex” tasks (dependency
parsing). As an alternative to parametric probes,
stimulus-based non-parametric probing (Linzen
et al., 2016; Jumelet and Hupkes, 2018; Marvin and
Linzen, 2018; Gulordava et al., 2018a; Warstadt
et al., 2019a, 2020a,b; Ettinger, 2020; Lakretz et al.,
2021) has been used to show that even without a
learned probe, BERT can predict syntactic proper-
ties with high confidence (Goldberg, 2019; Wolf,
2019). We use this class of non-parametric probes
to investigate RoBERTa’s ability to learn word or-
der during pre-training.

3 Approach

We first describe the data generation and evalua-
tion methodology used in this paper. We use the
RoBERTa (base) (Liu et al., 2019) MLM architec-
ture, due to its relative computational efficiency
and good downstream task performance. We ex-

pect that other variants of MLMs would provide
similar insights, given their similar characteristics.

3.1 Models

In all of our experiments, we use the original 16GB
BookWiki corpus (the Toronto Books Corpus, Zhu
et al. 2015, plus English Wikipedia) from Liu et al.
(2019).2 We denote the model trained on the orig-
inal, un-modified BookWiki corpus as MN (for
“natural”). We use two types of word order random-
ization methods: permuting words at the sentence
level, and resampling words at the corpus level.
Sentence word order permutation. To investi-
gate to what extent the performance of MLM pre-
training is a consequence of distributional informa-
tion, we construct a training corpus devoid of nat-
ural word order but preserving local distributional
information. We construct word order-randomized
versions of the BookWiki corpus, following the
setup of Sinha et al. (2021). Concretely, given a
sentence S containing N words, we permute the
sentence using a seeded random function F1 such
that no word can remain in its original position. In
total, there exist (N − 1)! possible permutations
of a given sentence. We randomly sample a single
permutation per sentence, to keep the total dataset
size similar to the original.

We extend the permutation functionF1 to a func-
tion Fn that preserves n-gram information. Specif-
ically, given a sentence S of length N and n-gram
value n, we sample a starting position i for possible
contiguous n-grams ∈ {0, N − n} and convert the
span S[i, i + n] to a single token, to form Ŝ, of
length N̂ = N − (n+1). We continue this process
repeatedly (without using the previously created
n-grams) until there exists no starting position for
selecting a contiguous n-gram in Ŝ. For example,
given a sentence of length N = 6, F4 will first
convert one span of 4 tokens into a word, to have
Ŝ consisting of three tokens (one conjoined token
of 4 contiguous words, and two leftover words).
Then, the resulting sentence Ŝ is permuted using
F1. We train RoBERTa models on four permuta-
tion variants of BookWiki corpus,M1,M2,M3,
M4 for each n-gram value ∈ {1, 2, 3, 4}. More
details on the process, along with the pseudo code
and sample quality, are provided in Appendix B.
Corpus word order bootstrap resample. The

2We release the pre-trained RoBERTa models used
in our experiments through the FairSeq repository:
https://github.com/pytorch/fairseq/tree/master/examples /shuf-
fled_word_order.

https://github.com/pytorch/fairseq/tree/master/examples/shuffled_word_order
https://github.com/pytorch/fairseq/tree/master/examples/shuffled_word_order
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above permutations preserve higher order distri-
butional information by keeping words from the
same sentence together. However, we need a base-
line to understand how a model would perform
without such co-occurrence information. We con-
struct a baseline,MUG, that captures word/subword
information, without access to co-occurrence statis-
tics. To constructMUG, we sample unigrams from
BookWiki according to their frequencies, while
also treating named entities as unigrams. We lever-
age Spacy (Honnibal et al., 2020)3 to extract un-
igrams and named entities from the corpus, and
construct MUG by drawing words from this set
according to their frequency. This allows us to
construct MUG such that it has exactly the same
size as BookWiki but without any distributional
(i.e. co-occurrence) information beyond the uni-
gram frequency distribution. Our hypothesis is that
any model pre-trained on this data will perform
poorly, but it should provide a baseline for the lim-
its on learning language of the inductive bias of the
model in isolation.

Further baselines. To investigate what happens
if a model has absolutely no notion of word order,
we also experiment with pre-training RoBERTa on
the original corpus without positional embeddings.
Concretely, we modify the RoBERTa architecture
to remove the positional embeddings from the com-
putation graph, and then proceed to pre-train on
the natural order BookWiki corpus. We denote
this modelMNP. Finally, we consider a randomly
initialized RoBERTa modelMRI to observe the
extent we can learn from each task with only the
model’s base inductive bias.

Pre-training details. Each model ∈ {MN, M1,
M2,M3,M4,MUG,MNP} is a RoBERTa-base
model (12 layers, hidden size of 768, 12 attention
heads, 125M parameters), trained for 100k updates
using 8k batch-size, 20k warmup steps, and 0.0006
peak learning rate. These are identical hyperparam-
eters to Liu et al. (2019), except for the number
of warmup steps which we changed to 20k for im-
proved training stability. Each model was trained
using 64 GPUs for up to 72 hours each. We train
three seeds for each data configuration. We validate
all models on the public Wiki-103 validation set
(see Appendix C). We use FairSeq (Ott et al., 2019)
for the pre-training and fine-tuning experiments.

3https://spacy.io/

3.2 Fine-tuning tasks

We evaluate downstream performance using the
General Language Understanding and Evaluation
(GLUE) benchmark, the Paraphrase Adversaries
from Word Scrambling (PAWS) dataset, and vari-
ous parametric and non-parametric tasks (see §5).
GLUE. The GLUE (Wang et al., 2018) bench-
mark is a collection of 9 datasets for evaluat-
ing natural language understanding systems, of
which we use Corpus of Linguistic Acceptabil-
ity (CoLA, Warstadt et al., 2019b), Stanford Sen-
timent Treebank (SST, Socher et al., 2013), Mi-
crosoft Research Paragraph Corpus (MRPC, Dolan
and Brockett, 2005), Quora Question Pairs (QQP)4,
Multi-Genre NLI (MNLI, Williams et al., 2018b),
Question NLI (QNLI, Rajpurkar et al., 2016; Dem-
szky et al., 2018), Recognizing Textual Entailment
(RTE, Dagan et al., 2005; Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009).
Pham et al. (2020) show the word order insensitiv-
ity of several GLUE tasks (QQP, SST-2), evaluated
on public regularly pre-trained checkpoints.
PAWS. The PAWS task (Zhang et al., 2019) con-
sists of predicting whether a given pair of sentences
are paraphrases. This dataset contains both para-
phrase and non-paraphrase pairs with high lexical
overlap, which are generated by controlled word
swapping and back translation. Since even a small
word swap and perturbation can drastically mod-
ify the meaning of the sentence, we hypothesize
the randomized pre-trained models will struggle to
attain a high performance on PAWS.
Fine-tuning details. We use the same fine-tuning
methodology used by Liu et al. (2019), where we
run hyperparameter search over the learning rates
{1 × 10−5, 2 × 10−5, 3 × 10−5} and batch sizes
{16, 32} for each model. For the best hyperparam
configurations of each model, we fine-tune with 5
different seeds and report the mean and standard
deviation for each setting.MNP is fine-tuned with-
out positional embeddings, matching the way it
was pre-trained.

4 Downstream task results

In this section, we present the downstream task
performance of the models defined in §3. For eval-
uation, we report Matthews correlation for CoLA
and accuracy for all other tasks.

4http://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

https://spacy.io/
http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Model QNLI RTE QQP SST-2 MRPC PAWS MNLI-m/mm CoLA

MN 92.45 +/- 0.2 73.62 +/- 3.1 91.25 +/- 0.1 93.75 +/- 0.4 89.09 +/- 0.9 94.49 +/- 0.2 86.08 +/- 0.2 / 85.4 +/- 0.2 52.45 +/- 21

M4 91.65 +/- 0.1 70.94 +/- 1.2 91.39 +/- 0.1 92.46 +/- 0.3 86.90 +/- 0.3 94.26 +/- 0.2 83.79 +/- 0.2 / 83.94 +/- 0.3 35.25 +/- 32
M3 91.56 +/- 0.4 69.75 +/- 2.8 91.22 +/- 0.1 91.97 +/- 0.5 86.22 +/- 0.8 94.03 +/- 0.1 83.83 +/- 0.2 / 83.71 +/- 0.1 40.78 +/- 23
M2 90.51 +/- 0.1 70.00 +/- 2.5 91.33 +/- 0.0 91.78 +/- 0.3 85.90 +/- 1.2 93.53 +/- 0.3 83.45 +/- 0.3 / 83.54 +/- 0.3 50.83 +/- 5.8
M1 89.05 +/- 0.2 68.48 +/- 2.5 91.01 +/- 0.0 90.41 +/- 0.4 86.06 +/- 0.8 89.69 +/- 0.6 82.64 +/- 0.1 / 82.67 +/- 0.2 31.08 +/- 10

MNP 77.59 +/- 0.3 54.78 +/- 2.2 87.78 +/- 0.4 83.21 +/- 0.6 72.78 +/- 1.6 57.22 +/- 1.2 63.35 +/- 0.4 / 63.63 +/- 0.2 2.37 +/- 3.2
MUG 66.94 +/- 9.2 53.70 +/- 1.0 85.57 +/- 0.1 83.17 +/- 1.5 70.57 +/- 0.7 58.59 +/- 0.3 71.93 +/- 0.2 / 71.33 +/- 0.5 0.92 +/- 2.1
MRI 62.17 +/- 0.4 52.97 +/- 0.2 81.53 +/- 0.2 82.0 +/- 0.7 70.32 +/- 1.5 56.62 +/- 0.0 65.70 +/- 0.2 / 65.75 +/- 0.3 8.06 +/- 1.6

Table 1: GLUE and PAWS-Wiki dev set results on different RoBERTa (base) models trained on variants of the
BookWiki corpus (with mean and std). The top row is the original model, the middle half contains our primary
models under investigation, and the bottom half contains the baselines.

4.1 Word order permuted pre-training

In our first set of experiments, we finetune the pre-
trained models on the GLUE and PAWS tasks. We
report the results in Table 1.5 First, we observe that
the model without access to distributional or word
order information,MUG (unigram) performs much
worse thanMN overall: MUG is 18 points worse
than MN on average across the accuracy-based
tasks in Table 1 and has essentially no correlation
with human judgments on CoLA.MUG MNP and
MRI perform comparably on most of the tasks,
while achieving surprisingly high scores in QQP
and SST-2. However, all three models perform sig-
nificantly worse on GLUE and PAWS, compared
toMN (Table 1, bottom half).MUG reaches up to
71.9 on MNLI - possibly due to the fact thatMUG

has access to (bags of) words and some phrases
(from NER) is beneficial for MNLI. For the major-
ity of tasks, the difference betweenMNP andMRI

is small - a pure bag of words model performs
comparably to a randomly initialized model.

Next, we observe a significant improvement on
all tasks when we give models access to sentence-
level distributional information during pre-training.
M1, the model pre-trained on completely shuffled
sentences, is on average only 3.3 points lower than
MN on the accuracy-based tasks, and within 0.3
points ofMN on QQP. Even on PAWS, which was
designed to require knowledge of word order,M1

is within 5 points ofMN. Randomizing n-grams
instead of words during pre-training results in a
(mostly) smooth increase on these tasks:M4, the
model pre-trained on shuffled 4-grams, trailsMN

by only 1.3 points on average, and even comes

5The MN results are not directly comparable with that
of publicly released roberta-base model by Liu et al.
(2019), as that uses the significantly larger 160GB corpus, and
is trained for 500K updates. For computational reasons, we
restrict our experiments to the 16GB BookWiki corpus and
100K updates, mirroring the RoBERTa ablations.

within 0.2 points ofMN on PAWS. We observe a
somewhat different pattern on CoLA, whereM2

does almost as well asMN and outperformsM3

andM4, though we also observe very high vari-
ance across random seeds for this task. Crucially,
we observe thatM1 outperformsMNP by a large
margin. This shows that positional embeddings are
critical for learning, even when the word orders
themselves are not natural.6 Overall, these results
confirm our hypothesis that RoBERTa’s strong per-
formance on downstream tasks can be explained
for a large part by the distributional prior.

4.2 Word order permuted fine-tuning
There are two possible explanations for the results
in §4.1: either the tasks do not need word order
information to be solved, or any necessary word or-
der information can be acquired during fine-tuning.
To examine this question, we permute the word or-
der during fine-tuning as well. Concretely, for each
task, we construct a unigram order-randomized ver-
sion of each example in the fine-tuning training set
using F1. We then fine-tune our pre-trained models
on this shuffled data and evaluate task performance.
For all experiments, we evaluate and perform early
stopping on the original, natural word order dev set,
in order to conduct a fair evaluation on the exact
same optimization setup for all models.

Our results in Figure 1 provide some evidence
for both hypotheses. On QQP and QNLI, accu-
racy decreases only slightly for models fine-tuned
on shuffled data. Models can also achieve above
80% accuracy on MNLI, SST-2, and MRPC when

6Recall,MNP is fed natural sentences asMN while not
having the ability to learn positional embeddings. To further
quantify the effect of positional embeddings, we also investi-
gated the effect of shuffling the entire context window, to keep
the co-occurrence information same asMNP in Appendix D.
We observed this model to be worse thanM1 but significantly
better thanMNP to support the claim about the importance of
positional embeddings while training.
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Figure 1: GLUE & PAWS task dev performance when finetuned on naturally (blue) and randomly ordered (orange)
text, respectively, using pre-trained RoBERTa (base) models trained on different versions of BookWiki corpus.

fine-tuned on shuffled data, suggesting that purely
lexical information is quite useful on its own.7

On the other hand, for all datasets besides QQP
and QNLI, we see noticeable drops in accuracy
when fine-tuning on shuffled data and testing on
normal order, both forMN and for shuffled models
M1 through M4. This suggests both that word
order information is useful for these tasks, and that
shuffled models must be learning to use word or-
der information during fine-tuning.8 Having word
order during fine-tuning is especially important
for achieving high accuracy on CoLA, RTE (cf.
Pham et al. 2020), as well as PAWS, suggesting
that these tasks are the most word order reliant. Re-
cent research (Yu and Ettinger, 2021) raised some
questions about potential artefacts inflating perfor-
mance on PAWS: their swapping-distance cue of
appears consistent both with our finding of high
PAWS performance for n-gram shuffled models in
Table 1, and with our PAWS results in Figure 1,
which suggests that PAWS performance does in
fact rely to some extent on natural word order at
the fine-tuning stage.

Finally, for CoLA, MRPC, and RTE, perfor-
mance is higher after fine-tuning on shuffled data
forM1 thanMN. We hypothesize thatMN repre-

7This finding is compatible with the observation of Gupta
et al. (2021) and Sinha et al. (2021) who train on a randomized
training corpus for MRPC, QQP, SST-2 and MNLI.

8We perform additional experiments on how the model
representations change during fine-tuning for shuffled training
using Risannen Data Analysis in Appendix I.

sents shuffled and non-shuffled sentences very dif-
ferently, resulting in a domain mismatch problem
when fine-tuning on shuffled data but evaluating
on non-shuffled data.9 SinceM1 never learns to
be sensitive to word order during pre-training or
fine-tuning, it does not suffer from that issue. Our
results in this section also highlights the issues with
these datasets, concurrent to the findings that many
GLUE tasks does not need sophisticated linguistic
knowledge to solve, as models typically tend to
exploit the statistical artefacts and spurious corre-
lations during fine-tuning (cf. Gururangan et al.
2018; Poliak et al. 2018; Tsuchiya 2018; McCoy
et al. 2019). However, our results overwhelmingly
support the fact that word order does not matter
during pre-training, if the model has the opportu-
nity to learn the necessary information about word
order during fine-tuning.

5 Probing results

To investigate how much syntactic information is
contained in the MLM representations, we eval-
uate several probing tasks on our trained models.
We consider two classes of probes: parametric
probes, which make use of learnable parameters,
and non-parametric probes, which directly exam-

9We further study the domain mismatch problem by eval-
uating on shuffled data after fine-tuning on the shuffled data
for models in Appendix F. We observe that models improves
their scores on evaluation on shuffled data when the training
data source is changed from natural to shuffled - highlighting
domain match effect.
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ine the language model’s predictions.

5.1 Parametric Probing

To probe our models for syntactic, semantic and
other linguistic properties, we investigate depen-
dency parsing using Pareto probing (Pimentel et al.,
2020a) and the probing tasks from Conneau et al.
(2018) in SentEval (Conneau and Kiela, 2018).

5.1.1 Syntactic Probing

Pimentel et al. (2020a) proposed a framework
based on Pareto optimality to probe for syntactic
information in contextual representations. They
suggest that an optimal probe should balance op-
timal performance on the probing task with the
complexity of the probe. Following their setup,
we use the “difficult” probe: dependency parsing
(DEP). We also investigate the “easy” probes, de-
pendency arc labeling (DAL) and POS tag predic-
tion (POS), results are reported in Appendix K. We
probe with Linear and MLP probes, and inspect the
task accuracy in terms of Unlabeled Attachment
Score (UAS). The dependency parsing probe used
in Pimentel et al. (2020a) builds on the Biaffine
Dependency Parser (Dozat and Manning, 2017),
but with simple MLPs on top of the Transformer
representations.10

Training setup. Similar to the setup by Pimentel
et al. (2020a), we run 50 random hyperparameter
searches on both MLP and Linear probes by uni-
formly sampling from the number of layers (0-5),
dropout (0-0.5), log-uniform hidden size [25, 210].
We triple this experiment size by evaluating on
three pre-trained models of different seeds for each
model configuration. We consider Pimentel et al.’s
English dataset, derived from Universal Dependen-
cies EWT (UD EWT) (Bies et al., 2012; Silveira
et al., 2014) which contains 12,543 training sen-
tences. Additionally, we experiment on the Penn
Treebank dataset (PTB), which contains 39,832
training sentences.11 We report the mean test accu-
racy over three seeds for the best dev set accuracy
for each task.12

10We experimented with a much stronger, state-of-the-art
Second order Tree CRF Neural Dependency Parser (Zhang
et al., 2020), but did not observe any difference in UAS with
different pre-trained models (see Appendix G)

11PTB data (Kitaev et al., 2019) is used from
github.com/nikitakit/self-attentive-parser/tree/master/data.

12Pimentel et al. (2020a) propose computing the Pareto
Hypervolume over all hyperparameters in each task. We did
not observe a significant difference in the hypervolumes for
the models, as reported in Appendix K.

Model UD EWT PTB
MLP Linear MLP Linear

MN 80.41 +/- 0.85 66.26 +/- 1.59 86.99 +/- 1.49 66.47 +/- 2.77

M4 78.04 +/- 2.06 65.61 +/- 1.99 85.62 +/- 1.09 66.49 +/- 2.02
M3 77.80 +/- 3.09 64.89 +/- 2.63 85.89 +/- 1.01 66.11 +/- 1.68
M2 78.22 +/- 0.88 64.96 +/- 2.32 84.72 +/- 0.55 64.69 +/- 2.50
M1 69.26 +/- 6.00 56.24 +/- 5.05 79.43 +/- 0.96 57.20 +/- 2.76

MUG 74.15 +/- 0.93 65.69 +/- 7.35 80.07 +/- 0.79 57.28 +/- 1.42

Table 2: Unlabeled Attachment Score (UAS) (mean
and std) on the dependency parsing task (DEP) on two
datasets, UD EWT and PTB, using the Pareto Probing
framework (Pimentel et al., 2020a).

Results. We observe that the UAS scores follow
a similar linear trend as the fine-tuning results in
thatM1≈MUG<M2<M3<M4<MN (Table 2).
Surprisingly,MUG probing scores seem to be some-
what better thanM1 (though with large overlap in
their standard deviations), even thoughMUG can-
not learn information related to either word order
or co-occurrence patterns. The performance gap
appears to be task- and probe specific. We observe
a low performance gap in several scenarios, the
lowest being betweenMN vs. M3/M4, for PTB
using the both MLP and Linear probes.

5.1.2 SentEval Probes
We also investigate the suite of 10 probing
tasks (Conneau et al., 2018) available in the SentE-
val toolkit (Conneau and Kiela, 2018). This suite
contains a range of semantic, syntactic and surface
level tasks. Jawahar et al. (2019) utilize this set
of probing tasks to arrive at the conclusion that
“BERT embeds a rich hierarchy of linguistic sig-
nals: surface information at the bottom, syntactic
information in the middle, semantic information at
the top”. We re-examine this hypothesis by using
the same probing method and comparing against
models trained with random word order.
Training setup. We run the probes on the final
layer of each of our pre-trained models for three
seeds, while keeping the encoder frozen. SentEval
trains probes on top of fixed representations individ-
ually for each task. We follow the recommended
setup and run grid search over the following hy-
perparams: number of hidden layer dimensions
([0, 50, 100, 200]), dropout ([0, 0.1, 0.2]), 4 epochs,
64 batch size. We select the best performance based
on the dev set, and report the test set accuracy.
Results. We provide the results in Table 3. The
MN pre-trained model scores better than the un-
natural word order models for only one out of five
semantic tasks and in none of the lexical tasks.

https://github.com/nikitakit/self-attentive-parser/tree/master/data
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Model Length WordContent TreeDepth TopConstituents BigramShift Tense SubjNumber ObjNumber OddManOut CoordInversion
(Surface) (Surface) (Syntactic) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic) (Semantic) (Semantic)

MN 78.92 +/- 1.91 31.83 +/- 1.75 35.97 +/- 1.38 78.26 +/- 4.08 81.82 +/- 0.55 87.83 +/- 0.51 85.05 +/- 1.23 75.94 +/- 0.68 58.40 +/- 0.33 70.87 +/- 2.46

M4 92.88 +/- 0.15 57.78 +/- 0.36 40.05 +/- 0.29 72.50 +/- 0.51 76.12 +/- 0.29 88.32 +/- 0.13 85.65 +/- 0.13 82.95 +/- 0.05 58.89 +/- 0.30 61.31 +/- 0.19
M3 91.52 +/- 0.16 48.81 +/- 0.26 38.63 +/- 0.61 70.29 +/- 0.31 77.36 +/- 0.12 86.74 +/- 0.12 83.83 +/- 0.38 80.99 +/- 0.26 57.01 +/- 0.21 60.00 +/- 0.26
M2 93.54 +/- 0.29 62.52 +/- 0.21 41.40 +/- 0.32 74.31 +/- 0.29 75.44 +/- 0.14 87.91 +/- 0.35 84.88 +/- 0.11 83.98 +/- 0.14 57.60 +/- 0.36 59.46 +/- 0.37
M1 88.33 +/- 0.14 64.03 +/- 0.34 40.24 +/- 0.20 70.94 +/- 0.38 58.37 +/- 0.40 87.88 +/- 0.08 83.49 +/- 0.12 83.44 +/- 0.06 56.51 +/- 0.26 56.98 +/- 0.50

MUG 86.69 +/- 0.33 36.60 +/- 0.33 32.53 +/- 0.76 61.54 +/- 0.60 57.42 +/- 0.04 68.45 +/- 0.23 71.25 +/- 0.12 66.63 +/- 0.21 50.06 +/- 0.40 56.26 +/- 0.17

Table 3: SentEval Probing (Conneau et al., 2018; Conneau and Kiela, 2018) results (with mean and std) on different
model variants.

However, MN does score higher for two out of
three syntactic tasks. Even for these two syntactic
tasks, the gap amongMUG andMN is much higher
thanM1 andMN. These results show that while
natural word order is useful for at least some prob-
ing tasks, the distributional prior of randomized
models alone is enough to achieve a reasonably
high accuracy on syntax sensitive probing.

5.2 Non-Parametric Probing

How to probe effectively with parametric probes
is a matter of much recent debate (Hall Maudslay
et al., 2020; Belinkov, 2021). From our results
so far, it is unclear whether parametric probing
meaningfully distinguishes models trained with cor-
rupted word order from those trained with normal
orders. Thus, we also investigate non-parametric
probes (Linzen et al., 2016; Marvin and Linzen,
2018; Gulordava et al., 2018b) using the formula-
tion of Goldberg (2019) and Wolf (2019).

We consider a set of non-parametric probes that
use a range of sentences varying in their linguistic
properties. For each, the objective is for a pre-
trained model to provide higher probability to a
grammatically correct word than to an incorrect
one. Since both the correct and incorrect options
occupy the same sentential position, we call them
“focus words”. Linzen et al. (2016) use sentences
from Wikipedia containing present-tense verbs, and
compare the probability assigned by the encoder
to plural vs. singular forms of the verb; they focus
on sentences containing at least one noun between
the verb and its subject, known as “agreement at-
tractors.” Gulordava et al. (2018b) instead replace
focus words with random substitutes from the same
part-of-speech and inflection. Finally, Marvin and
Linzen (2018) construct minimal pairs of grammat-
ical and ungrammatical sentences, and compare the
model’s probability for the words that differ.
Setup. In our experiments, we mask the focus
words in the stimuli and compute the probability of
the correct and incorrect token respectively. To han-

Model Linzen et al. (2016) ∗ Gulordava et al. (2018b) ∗ Marvin and Linzen (2018)

MN 91.17 +/- 2.6 68.66 +/- 11.6 88.05 +/- 6.5
M4 66.93 +/- 3.2 69.47 +/- 4.9 70.66 +/- 12.5
M3 64.60 +/- 2.7 66.10 +/- 5.9 73.82 +/- 15.7
M2 61.27 +/- 3.1 60.20 +/- 7.6 73.95 +/- 14.3
M1 58.96 +/- 1.8 68.10 +/- 14.4 70.69 +/- 11.6
MUG 65.36 +/- 7.1 60.88 +/- 24.3 50.10 +/- 0.2

Table 4: Mean (and std) non-parametric probing ac-
curacy on different datasets. ∗ indicates rebalanced
datasets, see Appendix L for more details.

dle Byte-Pair Encoding (BPE), we use the Word-
Piece (Wu et al., 2016) tokens prepended with a
space. We observe that the Linzen et al. (2016)
and Gulordava et al. (2018b) datasets are skewed
towards singular focus words, which could dispro-
portionately help weaker models that just happen
to assign more probability mass to singular focus
words. To counter this, we balance these datasets to
have an equal number of singular and plural focus
words by upsampling, and report the aggregated
and balanced results in Table 4 (see Appendix L for
more detailed results). We verify our experiments
by using three pre-trained models with different
seeds for each model configuration.
Results. We observe for the Linzen et al. (2016)
and Marvin and Linzen (2018) datasets that the gap
between theMN and randomization models is rel-
atively large. The Gulordava et al. (2018b) dataset
shows a smaller gap betweenMN and the random-
ization models. While some randomization models
(e.g., M2, M3, and M4) performed quite simi-
larly to MN according to the parametric probes,
they all are markedly worse thanMN according to
the non-parametric ones. This suggests that non-
parametric probes identify certain syntax-related
modeling failures that parametric ones do not.

6 Discussion

The assumption that word order information is cru-
cial for any classical NLP pipeline (especially for
English) is deeply ingrained in our understanding
of syntax itself (Chomsky, 1957): without order,
many linguistic constructs are undefined. Our fine-
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tuning results in §4.1 and parametric probing re-
sults in §5.1, however, suggests that MLMs do not
need to rely much on word order to achieve high
accuracy, bringing into question previous claims
that they learn a “classical NLP pipeline.”

One might ask, though, whether an NLP pipeline
would really need natural word order at all: can
transformers not simply learn what the correct word
order is from unordered text? First, the lower non-
parametric probing accuracies of the randomized
models indicate that they are not able to accurately
reconstruct the original word order (see also Ap-
pendix D). But even if models were able to “un-
shuffle” the words under our unnatural pre-training
set up, they would only be doing so based on dis-
tributional information. Models would then ab-
ductively learn only the most likely word order.
While models might infer a distribution over pos-
sible orders and use that information to structure
their representations (Papadimitriou et al., 2021),
syntax is not about possible or even the most likely
orders: it is about the actual order. That is, even
if one concludes in the end that Transformers are
able to perform word order reconstruction based on
distributional information, and recover almost all
downstream performance based solely on that, we
ought to be a lot more careful when making claims
about what our evaluation datasets are telling us.

Thus, our results seem to suggest that we may
need to revisit what we mean by “linguistic struc-
ture,” and perhaps subsequently acknowledge that
we may not need human-like linguistic abilities
for most NLP tasks. Or, our results can be inter-
preted as evidence that we need to develop more
challenging and more comprehensive evaluations,
if we genuinely want to measure linguistic abilities,
however those are defined, in NLP models.

There are many interesting and potentially ex-
citing avenues for future work that we could not
explore due to limitation of space. An interest-
ing question revolves around whether this phe-
nomenon is more pronounced for English than for
other languages. It is natural to wonder whether
more word-order flexible or morphologically-rich
languages would suffer from the same problem. Us-
ing the methods discussed in this work, we could
imagine devising a way to determine the degree
of order-dependence for tasks across languages.
Another possible extension pertains to other tasks,
including extractive question answering (QA) or
sequence tagging, for which we can also to deter-

mine whether word order information is acquired
downstream or during pre-training.

The sensitivity of generative models to word
order permuted input could also be investigated
further. Recent work by Parthasarathi et al. (2021)
begins this discussion, by showing that a Machine
Translation (MT) model can often arrive at the
gold source translation when provided with input
sentences that have had their words permuted us-
ing parse trees. Relatedly, Alleman et al. (2021)
also investigates targeted parse-tree-based pertur-
bations as a means of evaluating model robustness.
O’Connor and Andreas (2021) also demonstrate
the insensitivity of Transformers towards syntax
manipulations while achieving low perplexity in
language modeling tasks. Exploring model sensi-
tivity to word order permutations for approaches
that unify generation and classification (e.g., multi-
tasking) could also be interesting future work.

7 Conclusion

In this work, we revisited the hypothesis that
masked language modelling’s impressive perfor-
mance can be explained in part by its ability to learn
classical NLP pipelines. We investigated targeted
pre-training on sentences with various degrees of
randomization in their word order, and observed
overwhelmingly that MLM’s success is most likely
not due to its ability to discover syntactic and se-
mantic mechanisms necessary for a traditional lan-
guage processing pipeline during pre-training. In-
stead, our experiments suggest that MLM’s suc-
cess can largely be explained by it having learned
higher-order distributional statistics that make for
a useful prior for subsequent fine-tuning. These re-
sults should hopefully encourage the development
of better, more challenging tasks that require so-
phisticated reasoning, and harder probes to narrow
down what exact linguistic information is present
in the representations learned by our models.
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A From Word2vec to BERT in 4 steps

Take the basic parameterization of skipgram
word2vec (Mikolov et al., 2013):

p(t | w; θ) =
ef(t,w)∑

t′∈V e
f(t′,w)

(1)

where t is the target, w is a word in the context,
V is the set of all possible context words and f is
simply the dot product.

In actual word2vec, we would use negative sam-
pling within a given window size and optimize
log σ(w·t)+k ·Et′∈P log σ(−w·t′) computed over
context C(w) = {wi−k, ..., wi−1, wi+1, wi+k} for
word index i, window size 2k and unigram proba-
bility distribution P . It has been shown that opti-
mizing this objective is close to learning the shifted
PPMI distribution (Levy et al., 2015).

Step 1: BPE One reason for not computing the
full softmax is that it becomes a prohibitively ex-
pensive matrix multiplication with large vocabu-
lary V . A solution is to tokenize based on subword
units, e.g. BPE, to ensure a smaller total vocabulary
U in the softmax denominator. Doing so makes the
matrix multiplication feasible, at least on GPU. It
also ensures we have sufficient coverage over the
words in our vocabulary.

Step 2: Defenestration Next, replace the local
context window with the entire sentence, while
masking out the target word, i.e., C(t) = {w ∈
S : w 6= t} where S is the sentence containing w.

Step 3: Non-linearity Replace the pairwise
word-level dot product f(w, t) with a fancy non-
linear function, say a sequence of multi-head self
attention layers, g(t, C(t)), that takes as input the
entire sentence-with-mask, and you get:

p(t | C(t); θ) =
eg(t,C(t))∑

t′∈U e
g(t′,C(t))

Step 4: Sprinkle data and compute You have
BERT. Now all you need is enough data and com-
pute, and perhaps some optimization tricks. Make
sure to update the parameters in your model g when
fine-tuning, rather than keeping them fixed, for op-
timal performance on downstream tasks.

This correspondence is probably (hopefully) triv-
ial to most NLP researchers, but worth pointing out,
lest we forget.

BLEU-2 BLEU-3 BLEU-4
M1 0.493 +/- 0.12 0.177 +/- 0.16 0.040 +/- 0.11
M2 0.754 +/- 0.07 0.432 +/- 0.18 0.226 +/- 0.19
M3 0.824 +/- 0.06 0.650 +/- 0.09 0.405 +/- 0.20
M4 0.811 +/- 0.08 0.671 +/- 0.11 0.553 +/- 0.12

Table 5: BLEU-2,3,4 scores (mean and std dev) on a
sample of 1M sentences drawn from the corpus used to
trainM1,M2,M3andM4 compared toMN.

B Data generation

We provide pseudo-code for Fi in Algorithm 1.
Following Sinha et al. (2021), we do not explic-
itly control whether the permuted words maintain
any of their original neighbors. Thus, a certain
amount of extra n-grams are expected to co-occur,
purely as a product of random shuffling. We quan-
tify the amount of such shuffling on a sample of 1
million sentences drawn from the BookWiki ran-
dom corpus, and present the BLEU-2, BLEU-3 and
BLEU-4 scores in Table 5. We provide a sample
snapshot of the generated data in Table 18.

Algorithm 1 SentenceRandomizer
1: procedure F(S, t, n) . Randomize a sentence S with

seed t and n grams n
2: W = tokenize the words in S
3: Set the seed to t
4: if n > 1 then
5: while True do
6: K = Sample all possible starting points from

[0, |W | − n]
7: Ignore the starting points in K which overlap

with conjoined tokens . Conjoined tokens consists of
joined unigrams

8: if |K| ≥ 1 then
9: Sample one position p ∈ K

10: g = Extract the n-gram W [p : p+ n]
11: Delete W [p+ 1 : p+ n]
12: W [p] = Convert g to a conjoined token
13: else
14: Break from While loop
15: while True do
16: Ŵ = randomly shuffle tokens in W

17: r =
∑

(Ŵ [i] = W [i]) . Count number of
positions where the token remains in its original position

18: if r = 0 then Break out of While loop
19: Ŝ = join the tokens in Ŵ

20: Return Ŝ

C Pre-training details

We use the Fairseq (Ott et al., 2019) toolkit to pre-
train RoBERTa (base) models on the different vari-
ants of the BookWiki corpus. We follow the default
parameters as reported in Liu et al. (2019), with the
following adjustments: max steps 100k, warmup
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Figure 3: GLUE results on various model ablations us-
ing BookWiki corpus.

steps: 20k. We use the Wiki 103 validation and
test set to validate and test the array of pre-trained
models, as validation on this small dataset is quick,
effective, and reproducible for comparison among
publicly available datasets (Figure 2). We observe
that perplexity monotonically increases fromMN,
throughM4–M1, toMUG, and finallyMNP.

D Word-order pre-training ablations

We also train further model ablations with low to
high distributional priors. Following the construc-
tion of the corpus bootstrap resample, we train
a model where words are drawn uniformly from
BookWiki corpus, thus destroying the natural fre-
quency distribution (MUF). We further study an ab-
lation for a high distributional prior,M512, where
we shuffle words (unigram) in a buffer created with
joining multiple sentences such that maximum to-
ken length of the buffer is 512. This ablation—
which is similar to the paragraph word shuffle con-
dition in Gauthier and Levy (2019)—will allow us

to study the effect of unigram shuffling in a window
larger than the one forM1. Buffer size is chosen
to be 512 because BERT/RoBERTa is typically
trained with that maximum sequence length.

We observe dev set results on the GLUE bench-
mark of these ablations, along with baselinesMUG,
MRI andMNP and random shuffles in Table 6 and
Figure 3. We observe thatM512 exhibits worse
overall scores thanM1, however it is still signif-
icantly better than MNP or MUG baselines. We
observe that destroying the natural frequency dis-
tribution of words (MUF) yields comparable or
slightly better results compared to random corpus
modelMUG. This result shows that merely repli-
cating the natural distribution of words without any
context is not useful for the model to learn. These
results indicate that at least some form of distribu-
tional prior is required for MLM-based models to
learn a good downstream representation.

One might argue that the superior results dis-
played by the unnatural models is due to the ability
of RoBERTa to “reconstruct” the natural word or-
der from shuffled sentences. The data generation
algorithm, Fi requires a seed t for every sentence.
In our experiments, we had set the same seed for ev-
ery sentence in the corpus to ensure reproducibility.
However, it could be problematic if the sentences
of the same length are permuted with the same seed,
which could be easier for the model to “reconstruct”
the natural word order to learn the necessary syntax.
We tested this hypothesis by constructing a new cor-
pus with different seeds for every sentence in every
shard in the corpus (1/5th of BookWiki corpus is
typically referred to as a shard for computational
purposes), to build the modelM1

∗. We observe
that there is minimal difference in the raw num-
bers among M1 and M1

∗ for most of the tasks
(Table 7) (with the exception of CoLA which per-
forms similar toM2 possibly due to a difference in
initialization). This result consequently proves that
even with same seed, it is difficult for the model
to just reconstruct the unnatural sentences during
pre-training.

E Measuring Relative difference

In this section, we further measure the difference
in downstream task performance reported in §4.1
using as a metric the relative difference. Let us de-
note the downstream task performance asA(T |D),
where T is the task and D is the pre-trained model.
We primarily aim to evaluate the relative perfor-
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Model QNLI RTE QQP SST-2 MRPC PAWS MNLI-m/mm CoLA

MN 92.45 +/- 0.2 73.62 +/- 3.1 91.25 +/- 0.1 93.75 +/- 0.4 89.09 +/- 0.9 94.49 +/- 0.2 86.08 +/- 0.2 / 85.4 +/- 0.2 52.45 +/- 21.2

M4 91.65 +/- 0.1 70.94 +/- 1.2 91.39 +/- 0.1 92.46 +/- 0.3 86.90 +/- 0.3 94.26 +/- 0.2 83.79 +/- 0.2 / 83.94 +/- 0.3 35.25 +/- 32.2
M3 91.56 +/- 0.4 69.75 +/- 2.8 91.22 +/- 0.1 91.97 +/- 0.5 86.22 +/- 0.8 94.03 +/- 0.1 83.83 +/- 0.2 / 83.71 +/- 0.1 40.78 +/- 23.0
M2 90.51 +/- 0.1 70.00 +/- 2.5 91.33 +/- 0.0 91.78 +/- 0.3 85.90 +/- 1.2 93.53 +/- 0.3 83.45 +/- 0.3 / 83.54 +/- 0.3 50.83 +/- 5.80
M1 89.05 +/- 0.2 68.48 +/- 2.5 91.01 +/- 0.0 90.41 +/- 0.4 86.06 +/- 0.8 89.69 +/- 0.6 82.64 +/- 0.1 / 82.67 +/- 0.2 31.08 +/- 10.0

M512 84.97 +/- 0.3 56.09 +/- 0.6 90.15 +/- 0.1 86.11 +/- 0.7 79.41 +/- 0.6 77.3 +/- 12.63 77.58 +/- 0.3 / 77.89 +/- 0.4 12.54 +/- 5.57
MNP 77.59 +/- 0.3 54.78 +/- 2.2 87.78 +/- 0.4 83.21 +/- 0.6 72.78 +/- 1.6 57.22 +/- 1.2 63.35 +/- 0.4 / 63.63 +/- 0.2 2.37 +/- 3.20
MUF 77.69 +/- 0.4 53.84 +/- 0.6 85.92 +/- 0.1 84.00 +/- 0.6 71.35 +/- 0.8 58.43 +/- 0.3 72.10 +/- 0.4 / 72.58 +/- 0.4 8.89 +/- 1.40
MUG 66.94 +/- 9.2 53.70 +/- 1.0 85.57 +/- 0.1 83.17 +/- 1.5 70.57 +/- 0.7 58.59 +/- 0.3 71.93 +/- 0.2 / 71.33 +/- 0.5 0.92 +/- 2.10
MRI 62.17 +/- 0.4 52.97 +/- 0.2 81.53 +/- 0.2 82.0 +/- 0.7 70.32 +/- 1.5 56.62 +/- 0.0 65.70 +/- 0.2 / 65.75 +/- 0.3 8.06 +/- 1.60

Table 6: GLUE and PAWS-Wiki dev set results on different ablations of the RoBERTa (base) models, trained on
variants of the BookWiki corpus (with mean and std dev). The top row is the original model, the middle half
contains the sentence randomization models, and the bottom half contains the ablations.

Model RTE MRPC SST-2 CoLA QQP QNLI MNLI PAWS

M1 68.48 85.97 90.41 31.07 91.01 89.05 82.64 89.69
M1

∗ 68.41 85.75 90.17 50.14 91.02 89.50 82.92 91.99

Table 7: Reconstruction experiments on shuffled word
order sentences by fixing the same seed for every sen-
tence (M1) and having different seed for different
shards of the corpus (M1

∗). We observe minimal dif-
ference in the downstream GLUE and PAWS scores.

Model QNLI RTE QQP SST-2 MRPC CoLA PAWS MNLI

M1 3.70 7.04 0.26 3.58 3.42 40.74 5.12 3.62
M2 2.11 4.95 -0.09 2.12 3.61 3.09 9.06 2.63
M3 0.97 5.30 0.03 1.91 3.24 22.25 0.49 2.31
M4 0.87 3.67 -0.15 1.39 2.47 32.79 0.25 2.19

MUG 27.74 27.25 6.26 11.35 20.91 98.24 38.20 16.56
MNP 16.16 25.77 3.83 11.30 18.42 95.48 39.66 26.10

Table 8: ∆{Di}(T ), scaled by a factor of 100 for GLUE
and PAWS tasks.

mance gap, i.e. how much the performance differs
between our natural and unnatural models. Thus,
we define the Relative Difference (∆{D}(T )):

∆{D}(T ) =
A(T |OR)−A(T |D))

A(T |OR)−A(T |∅)
, (2)

whereA(T |∅) is the random performance on the
task T (0.33 for MNLI, 0 for CoLA, and 0.5 for
rest) ∆{D}(T ) → 0 when the performance of a
pre-trained model reaches that of the pre-trained
model trained with natural word order.

We observe the relative difference on the tasks
in Table 8. CoLA has the largest ∆{D}(T ) among
all tasks, suggesting the expected high word order
reliance. ∆{D}(T ) is lowest for QQP.

F Fine-tuning with randomized data

We perform additional experiments using the fine-
tuned models from §4.1. Specifically, we construct

unigram randomized train and test sets (denoted as
shuffled) of a subset of tasks to evaluate whether
models fine-tuned on natural or unnatural task data
(having natural or unnatural pre-training prior) are
able to understand unnatural data during testing.
Sinha et al. showed for MNLI there exists at least
one permutation for many examples which can be
predicted correctly by the model. However, they
also showed that every sentence can have many
permutations which cannot be predicted correctly
as well. We follow them in this evaluation, and
construct 100 permutations for each example in the
dev set for each task to capture the overall accuracy.

Concretely, we useMN,M1 andMUG as our
pre-trained representations (trained with natural,
unigram sentence shuffle and corpus shuffle data
respectively) and evaluate the effect of training and
evaluation on natural and unnatural data in Table 9.
We observe that all models perform poorly on the
shuffled test set, compared to natural evaluation.
However, interestingly, models have a slight ad-
vantage with a unigram randomized prior (M1),
with CoLA having the biggest performance gain.
PAWS task suffers the biggest drop in performance
(from 94.49 to 62.22) but the lowest gain inM1,
confirming our conclusion from §4.1 that most of
the word order information necessary for PAWS is
learned from the task itself.

Furthermore, training on shuffled data surpris-
ingly leads to high performance on natural data
forMN in case of several tasks, the effect being
weakest in case of CoLA and PAWS. This suggests
that for tasks other than CoLA and PAWS, spuri-
ous correlations are leveraged by the models during
fine-tuning (cf. Gururangan et al. 2018; Poliak et al.
2018; Tsuchiya 2018). We also observe evidence
of domain matching, where models improve their
performance on evaluation on shuffled data when
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name fine-tune-train fine-tune-eval MNLI QNLI RTE CoLA MRPC SST-2 PAWS

MN natural natural 86.08 +/- 0.15 92.45 +/- 0.24 73.62 +/- 3.09 52.44 +/- 21.22 89.09 +/- 0.88 93.75 +/- 0.44 94.49 +/- 0.18
natural shuffled 68.11 +/- 0.52 81.08 +/- 0.38 56.72 +/- 3.29 4.77 +/- 1.82 75.94 +/- 1.01 80.78 +/- 0.37 62.22 +/- 0.09
shuffled natural 82.99 +/- 0.16 89.32 +/- 0.23 57.9 +/- 4.71 0.0 +/- 0.0 79.71 +/- 2.57 89.12 +/- 0.5 72.03 +/- 13.79
shuffled shuffled 79.96 +/- 0.1 87.51 +/- 0.09 59.07 +/- 3.2 1.4 +/- 2.17 79.17 +/- 0.35 86.11 +/- 0.5 65.15 +/- 0.48

M1 natural natural 82.64 +/- 0.15 89.05 +/- 0.15 68.48 +/- 2.51 31.07 +/- 9.97 85.97 +/- 0.89 90.41 +/- 0.43 89.69 +/- 0.59
natural shuffled 76.67 +/- 0.34 87.21 +/- 0.17 65.8 +/- 6.11 23.06 +/- 5.3 81.84 +/- 0.43 83.94 +/- 0.33 62.86 +/- 0.19
shuffled natural 79.87 +/- 0.1 87.81 +/- 0.36 65.65 +/- 2.33 24.53 +/- 13.63 82.51 +/- 0.82 86.45 +/- 0.41 73.34 +/- 6.88
shuffled shuffled 79.75 +/- 0.0 88.21 +/- 0.24 64.88 +/- 6.32 22.43 +/- 10.79 82.65 +/- 0.42 86.25 +/- 0.4 63.15 +/- 2.2

MUG natural natural 71.93 +/- 0.21 66.94 +/- 9.21 53.7 +/- 1.01 0.92 +/- 2.06 70.57 +/- 0.66 83.17 +/- 1.5 58.59 +/- 0.33
natural shuffled 62.27 +/- 0.57 63.13 +/- 7.13 52.42 +/- 2.77 0.09 +/- 0.21 70.56 +/- 0.33 79.41 +/- 0.63 56.91 +/- 0.16
shuffled natural 67.62 +/- 0.3 66.49 +/- 0.49 52.17 +/- 1.26 0.0 +/- 0.0 70.37 +/- 0.93 79.93 +/- 1.01 57.59 +/- 0.29
shuffled shuffled 67.02 +/- 0.33 66.24 +/- 0.33 53.44 +/- 0.53 0.08 +/- 0.18 70.28 +/- 0.62 80.05 +/- 0.4 57.38 +/- 0.16

Table 9: Fine-tuning evaluation by varying different sources of word order (with mean and std dev). We vary the
word order contained in the pre-trained model (MN,M1,MUG); in fine-tuning training set (natural and shuffled);
and in fine-tuning evaluation (natural and shuffled). Here, shuffled corresponds to unigram shuffling of words
in the input. In case of fine-tune evaluation containing shuffled input, we evaluate on a sample of 100 unigram
permutations for each data point in the dev set of the corresponding task.

Model UD EWT PTB
UAS LAS UAS LAS

MN 90.92% 87.87% 95.42% 93.75%

M1 91.18% 88.19% 95.90% 94.35%
M2 91.11% 88.12% 95.74% 94.16%
M3 91.05% 87.94% 95.73% 94.14%
M4 90.88% 87.78% 95.77% 94.16%

MUG 90.47% 87.42% 95.81% 94.28%

Table 10: Unlabeled Attachment Score (UAS) on De-
pendency parsing task on two datasets, UD EWT and
PTB, using the Second order Tree CRF Neural Depen-
dency Parser (Zhang et al., 2020)

the training data source is changed from natural to
shuffled (for MN, MNLI shuffled evaluation im-
proves from 68.11 to 79.96 just by changing the
training corpus from natural to shuffled). We ob-
serve this behavior consistently for all tasks with
all pre-trained representations.

G Dependency parsing using Second
order Tree CRF Neural Dependency
Parser

We also conduct extensive experiments with Sec-
ond Order Tree CRF Neural Dependency parser
from Zhang et al. (2020), using their provided code-
base.13 We report the results on UD EWT and PTB
corpus in Table 10. Strangely enough, we find
the gap to be even smaller across the different ran-
domization models, even for some cases the perfor-
mance on R1 improves over OR. We suspect this
result is due to two reasons: (a) Due to the presence
of the complex Biaffine Dependency parser consist-
ing of multiple LSTMs and individual MLP heads

13https://github.com/yzhangcs/parser
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Figure 4: BPPL scores per model per test scenario.

for each dependency arc (left and right), the major-
ity of learning of the task is done by the parser it-
self; (b) Zhang et al. (2020) downsample the BERT
representation to 100 dimensions which is then
combined with the learned LSTM representations,
thereby minimizing the impact of the pre-trained
representations. Our hypothesis is confirmed by
the published results of Zhang et al. (2020) on the
Github repository, which shows a minimal gap be-
tween models with or without BERT.

H Perplexity analysis

We measure perplexity of various pre-trained
randomization models on text that is random-
ized using the same function F . Conven-
tional language models compute the perplexity

https://github.com/yzhangcs/parser
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of a sentence S by using past tokens (S<t =
(w1, w2, . . . , wt−1)) and the application of chain
rule (

∑|S|
t=1 logPLM(wt|St−1)). However, this for-

mulation is not defined for MLM, as a word is pre-
dicted using the entire sentence as a context. Fol-
lowing Salazar et al. (2020), we measure Pseudo-
Perplexity, i.e., given a sentence S, we compute
the log-probability of the missing word in S by
iteratively masking out the specific word, and com-
puting the average log-probability per word in S:

PLL(S) =
1

|S|
∑
w∈S

logPMLM(w|S\w; θ) (3)

We bootstrap the PLL score of a test corpus T by
drawing 100 samples five times with replacement.
We also similarly compute the bootstrap perplexity
following Salazar et al.:

BPLLT = exp(− 1

N

∑
S∈W

PLL(S)), (4)

where W is the combined bootstrap sample con-
taining N sentences drawn with replacement from
T . We compute this score on 6 pre-trained mod-
els, over four randomization schemes on the boot-
strapped sample W (i.e., we use the same n-gram
randomization function Fi). Thus, we obtain a 5x6
matrix of BPLL scores, which we plot in Figure 4.

We observe that the pre-trained modelMN has
the lowest perplexity on the sentences with natural
word order. Pre-trained models with random word
order exhibit significantly higher perplexity than
the normal word order sentences (top row). With
the exception of M1, the models pre-trained on
randomized data (M2,M3 andM4) all display
the lowest perplexity for their respective n = 2, 3, 4
randomizations. These results indicate that the
models retain and detect the specific word order for
which they were trained.

I The usefulness of word order

The results in §4.1 suggest that, with proper fine-
tuning, an unnaturally trained model can reach a
level of performance comparable to that of a nat-
urally pre-trained model. However, we want to
understand whether natural word order pre-training
offers any advantage during the early stages of fine-
tuning. Towards that end, we turn to compute the
Minimum Description Length (MDL; Rissanen,

1984). MDL is designed to characterize the com-
plexity of data as the length of the shortest program
required to generate it. Thus, the length of the
minimum description (in bits) should provide a
fair estimate of how much word order is useful for
fine-tuning in a few-shot setting. Specifically, we
leverage the Rissanen Data Analysis (RDA) frame-
work from Perez et al. (2021) to evaluate the MDL
of pre-trained models on our set of downstream
tasks. Under mild assumptions, if a pre-trained
model θ1 is useful for solving a particular task T
over θ2, then the MDL in bits obtained by using θ1
should be shorter than θ2. We follow the experi-
mental setup of Perez et al. to compute the MDL on
several tasks using θ = {MN,M1,M2,M3,M4},
over three seeds and on three epochs of training.
Concretely, RDA involves sampling 9 blocks of
data from the dataset at random, where the size
of each block is increased monotonically, training
on 8 blocks while evaluating the model’s loss (or
codelength) on the ninth. The minimum number
of data samples in the smallest block is set at 64,
while the largest number of data samples used in
the last block is 10,000.

We observe that the value of MDL is consis-
tently lowest for naturally pre-trained data (Fig-
ure 5). For purportedly word order reliant datasets
such as RTE, CoLA and PAWS, the gap between
the MDL scores among the natural and unnatural
models is high. PAWS, specifically, has the largest
advantage in the beginning of optimization, how-
ever with more fine-tuning, the model re-learns cor-
rect word order (§4.1). The present analyses, when
taken in conjunction with our main results in §4.1,
suggest that fine-tuning on large training datasets
with complex classifiers in the pursuit of state-of-
the-art results has mostly nullified the impact of
word order in the pre-trained representations. Few
shot (Bansal et al., 2020) and few sample (Zhang
et al., 2021) learning and evaluation could poten-
tially require more word order signal, thereby en-
couraging the model to leverage its own learned
syntax better.

J At what point do models learn word
order during pre-training?

Results from §4.1 beg the question: when, if at
all, during pre-training does a model learn the nat-
ural word order? We aim to answer that question
by comparing downstream task performance of
RoBERTa base on intermediate checkpoints with
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Figure 5: Rissanen Data Analysis (Perez et al., 2021) on the GLUE benchmark and PAWS datasets. The lower
minimum description length (MDL, measured in kilobits), the better the learning ability of the model.
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Figure 6: Comparison among GLUE task performance
from different steps in pre-training of RoBERTa on
BookWiki Corpus.

that of the random word order pretrained models.
The idea is to find the point during pre-training on
natural corpus at which the model exceeds the task
performance of the random pre-training model.

Performance on all tasks (Figure 6) increases
rapidly during the first 20-25 epochs of pre-training.
For some tasks, the word order information only
helps after 30-50 pre-training epochs.

Model UD EWT PTB
MLP Linear MLP Linear

MN 93.74 +/- 0.15 88.82 +/- 0.42 97.07 +/- 0.38 93.1 +/- 0.65

M1 88.60 +/- 3.43 80.76 +/- 3.38 95.33 +/- 0.37 87.83 +/- 1.86
M2 93.39 +/- 0.45 87.58 +/- 1.06 96.96 +/- 0.15 91.80 +/- 0.50
M3 92.89 +/- 0.65 86.78 +/- 1.32 97.03 +/- 0.13 91.70 +/- 0.70
M4 92.83 +/- 0.61 87.23 +/- 0.77 96.96 +/- 0.12 92.08 +/- 0.39

MUG 89.10 +/- 0.21 79.75 +/- 0.5 94.12 +/- 0.01 84.15 +/- 0.51

Table 11: Accuracy on the part-of-speech labelling task
(POS) on two datasets, UD EWT and PTB, using the
Pareto Probing framework (Pimentel et al., 2020b).

Model UD EWT PTB
MLP Linear MLP Linear

MN 89.63 +/- 0.60 84.35 +/- 0.78 93.96 +/- 0.63 88.35 +/- 1.00

M1 83.55 +/- 3.31 75.26 +/- 3.08 91.10 +/- 0.38 82.34 +/- 1.37
M2 88.57 +/- 0.68 82.05 +/- 1.10 93.27 +/- 0.26 86.88 +/- 0.87
M3 88.69 +/- 1.09 82.37 +/- 1.26 93.46 +/- 0.29 87.12 +/- 0.72
M4 88.66 +/- 0.76 82.58 +/- 1.04 93.49 +/- 0.33 87.30 +/- 0.79

MUG 84.93 +/- 0.34 76.30 +/- 0.52 89.98 +/- 0.43 78.59 +/- 0.68

Table 12: Accuracy on the dependency arc labelling
task (DAL) on two datasets (with mean and std dev),
UD EWT and PTB, using the Pareto Probing frame-
work (Pimentel et al., 2020a).

K More results from Syntactic Probes

We computed the Pareto Hypervolume on the de-
pendency parsing task (Pimentel et al., 2020a). The
Pareto Hypervolume is computed as the Area Un-
der Curve (AUC) score over all hyperparameter
runs, where the models are arranged based on their
complexity. We observe minimal differences in the
Pareto Hypervolumes (Table 13) amongMN and
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Model UD EWT PTB
MN 0.528 +/- 0.01 0.682 +/- 0.01

M1 0.489 +/- 0.03 0.648 +/- 0.01
M2 0.529 +/- 0.00 0.681 +/- 0.01
M3 0.528 +/- 0.02 0.689 +/- 0.01
M4 0.525 +/- 0.00 0.683 +/- 0.01

MUG 0.510 +/- 0.01 0.640 +/- 0.05

Table 13: Pareto Hypervolume of dependency parsing
task (DEP) on two datasets (with mean and std dev),
UD EWT and PTB, using the Pareto Probing frame-
work (Pimentel et al., 2020b).

the randomization models for both datasets.
We also investigated two “easy” tasks, Part-of-

Speech tagging (POS) and Dependency Arc Label-
ing (DAL) from the Pareto Probing framework. For
POS (Table 11) and DAL (Table 12), since these
tasks are simpler than DEP, the gap betweenMN

and unnaturally pre-trained models reduces even
more drastically. The gap betweenMN andM1

reduces to just 3.5 points on average for PTB in
both POS and DAL.

L Non parametric probes

Probability difference. In the original formula-
tion (Goldberg, 2019; Wolf, 2019), the effective-
ness of each stimulus is determined by the accuracy
metric, computed as the number of times the prob-
ability of the correct focus word is greater than that
of the incorrect word (P (good) > P (bad)). We
observed that this metric might not be reliable per
se, since the probabilities may themselves be ex-
tremely low for all tokens, even when focus word
probability decreases drastically fromMN toMUG.
Thus, we also report the mean difference of prob-
abilities, ( 1

N

∑N
i P (goodi)− P (badi)), scaled up

by a factor of 100 for ease of observation, in Fig-
ure 9, Figure 8 and Figure 7. We observe the high-
est difference between probabilities of the correct
and incorrect focus words for the model pretrained
on the natural word order (MN). Moreover, with
each step fromM1 toM4, the difference between
probablities of correct and incorrect focus words in-
creases, albeit marginally, showing that pre-trained
models with fewer n-gram words perturbed capture
more word order information. MUG, the model
with the distributional prior ablated, performs the
worst, as expected.
Accuracy comparison. We provide the accuracy
as measured by Goldberg (2019); Wolf (2019) on
the probing stimuli in Table 14, Table 15 and Ta-

N 1 2 3 4 UG

(P(good) - P(bad)) * 100

LVC

AOR

AOR-T

IOR-T

IOR

APP

ISC

ARC

SCM

SVA

SNP

SRX

ASR

SVC

26.58 0.10 1.44 0.63 0.66 -0.00

29.16 1.70 3.87 2.45 1.16 0.00

13.84 0.15 0.43 0.25 0.55 -0.00

0.20 0.01 0.01 0.01 0.03 -0.00

0.40 0.01 0.04 0.04 0.08 -0.00

27.06 0.68 0.20 0.79 0.91 -0.00

5.27 0.07 0.00 0.31 0.06 0.00

1.20 0.11 0.07 0.07 0.03 -0.00

5.72 0.12 0.17 2.62 0.26 0.02

31.35 0.57 3.17 6.15 30.57 0.02

0.23 -0.00 0.00 1.73 0.08 -0.00

2.72 0.10 0.32 0.02 3.07 0.00

26.18 1.91 2.91 1.38 1.48 -0.00

19.27 0.84 1.17 6.39 11.07 0.00

Figure 7: The difference in word probabilities for stim-
uli in Marvin and Linzen (2018): Simple Verb Agree-
ment (SVA), In a sentential complement (SCM), Short
VP Coordination (SVC), Long VP Coordination (LVC),
Across a prepositional phrase (APP), Across a subject
relative clause (ASR), Across an object relative clause
(AOR), Across an object relative (no that) (AOR-T),
In an object relative clause (IOR), In an object relative
clause (no that) (IOR-T), Simple Reflexive (SRX), In a
sentential complement (ISC), Across a relative clause
(ARC), Simple NPI (SNP).

ble 16. We also highlight the difference in proba-
bility (P (good)− P (bad)) in the table to provide
a more accurate picture. All experiments were con-
ducted on three pre-trained seeds for each model
in our set of models. However, the low token
probabilities in MUG tend to present unreliable
scores. For example, in the case of Gulordava
et al. (2018b) stimuli, unnatural models provide
better scores compared to the natural model. We
also observe for the Linzen et al. (2016) stimuli
that the results on model condition 4 (number of
attractors) are surprisingly high forMUG whereas
the individual token probabilities are lowest. We
believe these inconsistencies stem from extremely
low token probabilities themselves.
Balancing datasets on inflection by upsampling.
The stimuli datasets of Linzen et al. (2016) and
Gulordava et al. (2018b) turned out to be heavily
skewed towards words where singular was the cor-
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model MN MUG M1 M2 M3 M4

condition

1 93.45 (0.89) [25.04] 58.87 (0.41) [0.0] 59.96 (1.58) [0.08] 63.63 (0.6) [1.25] 64.7 (1.44) [2.79] 70.47 (1.9) [4.01]
2 92.8 (1.22) [23.8] 63.03 (1.35) [0.01] 58.22 (1.5) [0.09] 61.15 (2.07) [0.82] 63.84 (2.41) [2.09] 64.7 (1.92) [3.07]
3 87.71 (1.34) [22.03] 64.06 (3.52) [0.0] 56.69 (2.98) [0.03] 56.83 (3.63) [0.85] 61.1 (0.32) [2.02] 63.0 (3.36) [2.35]
4 92.67 (0.52) [22.16] 76.33 (1.38) [0.0] 62.33 (7.61) [0.08] 63.17 (9.09) [1.12] 69.42 (1.77) [2.1] 67.67 (7.02) [3.43]

Table 14: Linzen et al. (2016) stimuli results in raw accuracy. Values in parenthesis reflect the standard deviation
over different seeds of pre-training. Values in square brackets indicate the mean probability difference among
correct and incorrect words.

model MN MUG M1 M2 M3 M4

condition

0 79.42 (5.5) [2.43] 47.83 (3.76) [-0.0] 53.67 (1.38) [0.03] 58.75 (6.38) [0.05] 63.58 (4.11) [0.14] 63.75 (3.28) [0.17]
1 72.83 (4.07) [2.55] 44.5 (0.5) [0.0] 70.83 (5.8) [0.02] 64.83 (1.76) [-0.09] 71.67 (6.71) [0.21] 71.5 (2.65) [0.61]
2 55.56 (0.0) [0.92] 88.89 (11.11) [0.0] 81.48 (12.83) [0.03] 51.85 (6.42) [0.04] 62.96 (6.42) [0.38] 74.07 (16.97) [0.61]

Table 15: Gulordava et al. (2018b) stimuli results in raw accuracy.Values in parenthesis reflect the standard devia-
tion over different seeds of pre-training. Values in square brackets indicate the mean probability difference among
correct and incorrect words.

N 1 2 3 4 UG

(P(good) - P(bad)) * 100

1

2

3

4

25.01 0.08 1.25 2.79 4.00 0.00

23.74 0.09 0.81 2.08 3.06 0.02

21.96 0.03 0.84 2.01 2.34 0.00

22.16 0.08 1.12 2.10 3.43 0.00

Figure 8: Linzen et al. (2016)

rect inflection (as opposed to plural). This dataset
imbalance caused the weak models (such asMUG)
to have surprisingly high scores - the weak models
were consistently providing higher probability for
the singular inflection (Table 17). We upsample for
both datasets, balancing the frequency of correct
singular and plural inflections. We compute the up-
sampling number to the next multiple of 100 of the
count of original singular inflections. For example,
in condition 4 of Linzen et al. (2016) dataset, we
upsample both S and P to 300 rows each. This type
of balancing via upsampling largely alleviated the
inconsistencies we observed, and might prove to
be useful when evaluating other models on these
datasets in future.

N 1 2 3 4 UG

(P(good) - P(bad)) * 100

0

1

2

2.41 0.03 0.05 0.14 0.17 -0.00

2.55 0.02 -0.09 0.21 0.61 0.00

0.92 0.03 0.04 0.38 0.61 0.00

Figure 9: Gulordava et al. (2018b)
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Model MN MUG M1 M2 M3 M4

condition

AOR 89.98 (1.96) [29.16] 50.0 (0.01) [0.0] 60.17 (1.61) [1.7] 66.61 (7.1) [3.87] 63.57 (2.39) [2.45] 61.26 (4.91) [1.16]
AOR-T 77.4 (7.74) [13.84] 50.0 (0.0) [0.0] 78.88 (0.64) [0.15] 52.17 (2.14) [0.43] 48.85 (3.8) [0.25] 57.06 (3.49) [0.55]
APP 89.94 (4.16) [27.06] 50.01 (0.02) [-0.0] 70.34 (1.9) [0.68] 53.61 (3.3) [0.2] 53.03 (1.75) [0.79] 60.6 (4.41) [0.91]
ARC 85.06 (5.92) [1.2] 50.05 (0.08) [-0.0] 62.39 (1.91) [0.11] 74.57 (5.99) [0.07] 67.55 (3.84) [0.07] 62.88 (3.45) [0.03]
ASR 87.19 (3.58) [26.18] 50.0 (0.0) [-0.0] 78.55 (10.01) [1.91] 81.73 (5.1) [2.91] 62.8 (0.35) [1.38] 67.23 (6.82) [1.48]
IOR 89.83 (3.33) [0.4] 50.55 (0.95) [-0.0] 56.28 (2.66) [0.01] 58.96 (4.28) [0.04] 70.49 (2.2) [0.04] 62.82 (8.51) [0.08]
IOR-T 74.05 (8.26) [0.2] 50.61 (1.05) [-0.0] 52.63 (2.07) [0.01] 57.35 (4.88) [0.01] 61.85 (4.75) [0.01] 55.16 (6.59) [0.03]
ISC 85.87 (9.6) [5.27] 50.0 (0.0) [0.0] 67.85 (2.62) [0.07] 82.66 (9.43) [0.0] 77.69 (4.51) [0.31] 68.65 (5.71) [0.06]
LVC 93.0 (0.75) [26.58] 49.92 (0.14) [-0.0] 70.42 (6.79) [0.1] 87.5 (7.26) [1.44] 85.42 (3.84) [0.63] 81.08 (5.13) [0.66]
SCM 88.6 (3.49) [5.72] 50.0 (0.0) [0.02] 63.73 (7.94) [0.12] 82.12 (0.92) [0.17] 86.44 (3.67) [2.62] 80.27 (2.46) [0.26]
SRX 91.0 (6.07) [2.72] 50.0 (0.0) [0.0] 88.0 (10.11) [0.1] 92.25 (10.27) [0.32] 94.25 (5.02) [0.02] 91.0 (6.5) [3.07]
SVA 95.33 (7.23) [31.35] 50.0 (0.0) [0.02] 86.0 (5.29) [0.57] 85.17 (12.87) [3.17] 94.67 (5.25) [6.15] 88.83 (9.57) [30.57]
SVC 97.54 (1.58) [19.27] 50.0 (0.0) [-0.0] 83.58 (4.58) [0.84] 83.71 (8.78) [1.17] 93.29 (7.4) [6.39] 81.04 (3.66) [11.07]

Table 16: Marvin and Linzen (2018) stimuli results in raw accuracy. Values in parenthesis reflect the standard
deviation over different seeds of pre-training. Values in square brackets indicate the mean probability difference
among correct and incorrect words. Abbreviations: Simple Verb Agreement (SVA), In a sentential complement
(SCM), Short VP Coordination (SVC), Long VP Coordination (LVC), Across a prepositional phrase (APP), Across
a subject relative clause (ASR), Across an object relative clause (AOR), Across an object relative (no that) (AOR-
T), In an object relative clause (IOR), In an object relative clause (no that) (IOR-T), Simple Reflexive (SRX), In a
sentential complement (ISC), Across a relative clause (ARC), Simple NPI (SNP).

Model MN MUG M1 M2 M3 M4 S/P
condition

1 94.04 (0.8) 62.64 (0.5) 62.18 (1.33) 64.91 (0.14) 65.35 (1.78) 70.88 (1.88) 14011 / 10112
2 93.28 (0.94) 71.24 (0.85) 63.03 (1.69) 62.92 (2.57) 65.25 (3.13) 65.61 (2.35) 3120 / 1312
3 89.1 (0.58) 74.05 (1.85) 62.94 (3.13) 59.18 (3.32) 63.54 (1.72) 63.05 (2.0) 733 / 215
4 90.53 (0.9) 80.03 (0.59) 63.16 (4.83) 63.94 (6.92) 66.41 (3.17) 66.28 (4.64) 206 / 51

Table 17: Linzen et al. (2016) stimuli results in raw accuracy on original, unbalanced data. Values in parenthesis
reflect the standard deviation. S/P reflects the count of correct singular and plural focus words.
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OR R1 R2 R3 R4

1 They are commonly known as
daturas, but also known as
devil’s trumpets, not to be con-
fused with angel’s trumpets, its
closely related genus "Brug-
mansia".

be They angel’s also but trum-
pets, genus related devil’s as
commonly closely known its
daturas, trumpets, as "Brugman-
sia". confused with known are
to not

as devil’s They genus not to
trumpets, closely related "Brug-
mansia". are commonly trum-
pets, its also known known as
be confused daturas, but with
angel’s

"Brugmansia". related They are
commonly trumpets, its closely
as daturas, but known genus
also known as trumpets, con-
fused with angel’s devil’s not
to be

its closely related genus They
are commonly known trumpets,
as trumpets, daturas, but also
known as "Brugmansia". not to
be confused with angel’s devil’s

2 They are also sometimes called
moonflowers, jimsonweed,
devil’s weed, hell’s bells,
thorn-apple, and many more.

are devil’s bells, called weed,
hell’s thorn-apple, and many
They also more. moonflowers,
jimsonweed, sometimes

more. They are hell’s bells, also
sometimes and many called
moonflowers, jimsonweed,
devil’s weed, thorn-apple,

jimsonweed, devil’s weed, They
are also thorn-apple, and many
bells, more. hell’s sometimes
called moonflowers,

moonflowers, They are also
sometimes bells, thorn-apple,
and many more. called jimson-
weed, devil’s weed, hell’s

3 Its precise and natural distribu-
tion is uncertain, owing to its
extensive cultivation and natu-
ralization throughout the tem-
perate and tropical regions of
the globe.

throughout owing precise exten-
sive temperate and naturaliza-
tion and tropical of to natural
is its Its distribution cultivation
the globe. uncertain, regions the
and

and natural distribution is trop-
ical to its and naturalization
throughout the the temperate
and globe. Its precise uncertain,
owing extensive cultivation re-
gions of

uncertain, owing to Its precise
and its extensive cultivation of
globe. natural distribution is the
the and tropical regions and nat-
uralization throughout temper-
ate

globe. Its precise and natural
cultivation distribution the is un-
certain, owing to its extensive
and naturalization throughout
the temperate and tropical re-
gions of

4 Its distribution within the Amer-
icas and North Africa, how-
ever, is most likely restricted
to the United States, Mexico
and Southern Canada in North
America, and Tunisia in Africa
where the highest species diver-
sity occurs.

distribution Mexico occurs.
likely diversity North however,
species most the Tunisia where
in and and North Canada South-
ern America, highest Africa
United the and in Americas Its
within States, is to the restricted
Africa,

and Tunisia the Americas dis-
tribution within Mexico and
is most United States, Africa,
however, Africa where in North
Its and North in Southern
Canada America, the to the
likely restricted occurs. highest
species diversity

likely Its highest species di-
versity United States, Mexico
restricted to the Africa where
the occurs. distribution within
the and Tunisia in however, is
most Americas and Southern
Canada and North Africa, in
North America,

Tunisia occurs. Its distribu-
tion within the Africa where
the highest in restricted to the
United Canada in North Amer-
ica, most North Africa, how-
ever, is and Americas likely
diversity States, Mexico and
Southern species and

5 All species of "Datura" are poi-
sonous, especially their seeds
and flowers.

seeds and species of poisonous,
"Datura" their are All flowers.
especially

"Datura" are especially their
flowers. seeds and of All
species poisonous,

especially their seeds flowers.
"Datura" are poisonous, All
species of and

flowers. poisonous, species of
"Datura" are All especially their
seeds and

6 Some South American plants
formerly thought of as "Datura"
are now treated as belonging
to the distinct genus "Brugman-
sia" ("Brugmansia" differs from
"Datura" in that it is woody,
making shrubs or small trees,
and it has pendulous flowers,
rather than erect ones).

and "Datura" treated from than
flowers, it small belonging
woody, thought as ones). South
differs Some "Brugmansia"
American as are in the rather
pendulous distinct making now
erect "Datura" to ("Brugman-
sia" of formerly trees, or is it
that plants genus has shrubs

"Brugmansia" ("Brugmansia"
than erect pendulous genus and
ones). is woody, small trees,
of as the distinct flowers, rather
Some South differs from Amer-
ican plants treated as formerly
thought belonging to "Datura"
in making that it "Datura" are it
has now shrubs or

woody, small trees, and has
pendulous flowers, as belong-
ing to Some making shrubs or
as rather than erect "Datura"
are now "Brugmansia" ("Brug-
mansia" differs the distinct
genus from "Datura" in for-
merly thought of it treated that it
is ones). South American plants

belonging to the distinct has
making Some ("Brugmansia"
differs from "Datura" in are
now treated as genus pendulous
shrubs flowers, rather than erect
or ones). "Brugmansia" that it is
woody, South American plants
formerly thought of as "Datura"
small trees, and it

7 Other related taxa include taxa Other include related include Other related taxa include Other related taxa Other related taxa include
8 "Hyoscyamus niger", "Atropa

belladonna", "Mandragora of-
ficinarum", Physalis, and many
more.

and many niger", officinarum",
belladonna", "Mandragora
"Atropa "Hyoscyamus more.
Physalis,

belladonna", "Mandragora
"Hyoscyamus niger", many
Physalis, and more. offici-
narum", "Atropa

more. Physalis, and many bel-
ladonna", "Mandragora offici-
narum", "Hyoscyamus niger",
"Atropa

niger", more. belladonna",
"Mandragora officinarum",
Physalis, "Atropa many and
"Hyoscyamus

9 The name "Datura" is taken
from Sanskrit ’ ’thorn-apple’,
ultimately from Sanskrit ’
’white thorn-apple’ (referring
to "Datura metel" of Asia).

of Asia). taken from name
The "Datura" ’ is to ’thorn-
apple’, Sanskrit ’ Sanskrit
metel" ’white (referring from
"Datura thorn-apple’ ultimately

"Datura" is taken from to ’
’thorn-apple’, Sanskrit ’ ’white
of thorn-apple’ (referring Asia).
The name Sanskrit ultimately
from "Datura metel"

Sanskrit ’ The name "Datura"
’thorn-apple’, ultimately from
metel" Asia). is taken from of
’white (referring to "Datura San-
skrit ’ thorn-apple’

Asia). The name "Datura" is
from taken of from Sanskrit ’
’thorn-apple’, ultimately San-
skrit ’ ’white thorn-apple’ (re-
ferring to "Datura metel"

10 In the Ayurvedic text Sushruta
different species of Datura are
also referred to as ’ and ’.

the of also Sushruta Datura are
referred to as In Ayurvedic and
different species ’ text ’.

species of referred to are also
Datura Sushruta different and
as ’ Ayurvedic text In the ’.

as ’ and In the Ayurvedic also
referred to species of Datura are
text Sushruta different ’.

different In the Ayurvedic text
also referred to as and Sushruta
’ species of Datura are ’.

Table 18: First 10 lines from the BookWiki corpus, and their respective n-gram permutations.
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Model RTE MRPC SST-2 CoLA QQP QNLI MNLI PAWS

MN 2e-05 2e-05 1e-05 2e-05 1e-05 1e-05 1e-05 2e-05
M1 2e-05 1e-05 1e-05 1e-05 3e-05 1e-05 2e-05 2e-05
M2 2e-05 2e-05 1e-05 1e-05 2e-05 1e-05 1e-05 3e-05
M3 3e-05 1e-05 2e-05 2e-05 3e-05 1e-05 1e-05 2e-05
M4 3e-05 1e-05 2e-05 2e-05 2e-05 1e-05 1e-05 2e-05
M512 1e-05 3e-05 2e-05 2e-05 3e-05 2e-05 3e-05 2e-05
MUG 2e-05 1e-05 3e-05 1e-05 3e-05 3e-05 3e-05 2e-05
MUF 2e-05 1e-05 3e-05 2e-05 3e-05 3e-05 3e-05 1e-05
MRI 1e-05 1e-05 3e-05 1e-05 1e-05 1e-05 2e-05 1e-05
MNP 1e-05 3e-05 2e-05 1e-05 1e-05 1e-05 1e-05 1e-05

Table 19: Fine-tuning hyperparam Learning rate of each model for each task in GLUE and PAWS

Model RTE MRPC SST-2 CoLA QQP QNLI MNLI PAWS

MN 16 16 32 16 16 32 32 16
M1 32 32 16 32 32 16 32 16
M2 32 16 32 16 32 32 16 32
M3 32 32 16 32 32 16 32 32
M4 32 16 32 16 32 32 32 32
M512 32 16 16 32 32 16 16 16
MUG 16 16 16 16 32 16 16 32
MUF 16 32 16 16 32 16 16 16
MRI 16 16 32 16 16 16 32 16
MNP 16 32 16 16 32 16 16 16

Table 20: Finetuning hyperparam batch size of each model for each task in GLUE and PAWS


