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Abstract
Recent studies have shown that prompts im-
prove the performance of large pre-trained lan-
guage models for few-shot text classification.
Yet, it is unclear how the prompting knowledge
can be transferred across similar NLP tasks for
the purpose of mutual reinforcement. Based
on continuous prompt embeddings, we pro-
pose TransPrompt, a transferable prompting
framework for few-shot learning across simi-
lar tasks. In TransPrompt, we employ a multi-
task meta-knowledge acquisition procedure to
train a meta-learner that captures cross-task
transferable knowledge. Two de-biasing tech-
niques are further designed to make it more
task-agnostic and unbiased towards any tasks.
After that, the meta-learner can be adapted
to target tasks with high accuracy. Extensive
experiments show that TransPrompt outper-
forms single-task and cross-task strong base-
lines over multiple NLP tasks and datasets.
We further show that the meta-learner can ef-
fectively improve the performance on previ-
ously unseen tasks. TransPrompt also outper-
forms strong fine-tuning baselines when learn-
ing with full training sets.

1 Introduction

Fine-tuning Pre-trained Language Models (PLMs)
has become the standard practice to train models
for a majority of NLP tasks (Devlin et al., 2019; Liu
et al., 2019b; Qiu et al., 2020). To ensure high accu-
racy, it is necessary to obtain a sufficient amount of
training data for downstream tasks, which is often
the bottleneck in low-resource scenarios.

The application of ultra-large PLMs such as
GPT-3 (Brown et al., 2020) proves that such PLMs
can learn to solve a task with very few training sam-
ples. Inspired by these works, Gao et al. (2020) pro-
pose a prompt-based approach to fine-tune BERT-
style PLMs in a few-shot learning setting, which

∗ C. Wang and J. Wang contributed equally to this work.
† Corresponding author.

adapts PLMs into producing specific tokens cor-
responding to each class, instead of learning the
prediction head. The effectiveness of prompts has
also been shown in Schick and Schütze (2020);
Scao and Rush (2021); Schick and Schütze (2021)
and others. However, designing high-performing
prompts is challenging and requires a very large
validation set. To alleviate this problem, Liu et al.
(2021) propose continuous prompt embeddings
with fully differentiable parameters, avoiding the
cumbersome manual prompt engineering process.

Despite the remarkable success, we notice that
current prompt-based approaches may have a few
limitations. For few-shot learning, the performance
of downstream tasks is still constrained by the num-
ber of training instances. It would be highly de-
sirable if the model can acquire the transferable
knowledge from similar NLP tasks before it is
adapted to specific tasks with few samples. How-
ever, it is unclear how the knowledge in prompt
encoders and PLMs with prompting techniques
is transferred across tasks. A natural question
arises: how can we design a prompting framework
for BERT-style models that captures transferable
knowledge across similar NLP tasks to improve the
performance of few-shot learning?

A straightforward solution to the above question
is to adopt multi-task fine-tuning across these sim-
ilar NLP tasks. When the training data is scarce,
the fine-tuned PLM would easily be over-fitted to
specific instances (Nakamura and Harada, 2019).
In machine learning, the meta-learning paradigm
is extensively studied, which produces models that
are capable of being adapted to a group of similar
tasks quickly with few learning steps (Wang et al.,
2020c; Huisman et al., 2020). For PLMs, Wang
et al. (2020a) discover that training a meta-learner
for PLMs is effective to capture the transferable
knowledge across different domains. Yet, this
method is not designed for prompts for few-shot
learning and lacks the mechanism to learn unbiased
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Figure 1: The high-level architecture of the TransPrompt framework. In the toy example, Task 1 and Task 2 are
existing tasks, while Task 3 is a new task for the meta-learner to generalize. (Best viewed in color.)

representations for all the tasks.
In this paper, we present TransPrompt, a prompt-

ing framework that allows PLMs to capture cross-
task transferable knowledge for few-shot text clas-
sification, with the high-level architecture shown
in Figure 1. TransPrompt firstly employs a Multi-
task Meta-knowledge Acquisition (MMA) proce-
dure to learn the transferable representations of
prompt encoders and PLMs jointly across similar
NLP tasks. To reduce over-fitting and make the
underlying PLM more task-agnostic and less unbi-
ased towards any specific tasks, we propose two de-
biasing techniques, namely prototype-based de-
biasing and entropy-based de-biasing. The learned
model can be viewed as the meta-learner for a
group of similar NLP tasks.

After MMA, TransPrompt takes the Task-aware
Model Specification (TMS) step, which can be fur-
ther divided into two cases. i) When the model
is adapted to existing tasks during MMA, a varia-
tion of P-tuning (Liu et al., 2021) can be applied
for effective adaptation. ii) When it is required to
fit a previously unseen task, a model generaliza-
tion strategy is employed, specifically considering
the universal prompting knowledge in the model.
This is often the case where re-training of the meta-
leaner across all the tasks is infeasible due to data
privacy or computation efficiency issues. 1

For evaluation, we test the TransPrompt frame-
work on three sets of few-shot NLP tasks (in-
cluding seven public datasets in total): i) sen-
timent analysis; ii) Natural Language Inference
(NLI); and iii) paraphrase. Experimental results
show that TransPrompt consistently outperforms
both single-task and cross-task strong baselines.

1Note that our settings are slightly different from existing
works on few-shot learning for PLMs (Gao et al., 2020; Liu
et al., 2021) in that we focus on few-shot learning over a series
of similar NLP tasks. When tasks during TMS are the same
as MMA, our approach can be viewed as a transfer learning
algorithm that learns how knowledge can be transferred better.
When TransPrompt is required to fit new tasks during TMS, it
is placed in a meta-learning setting.

We further show that i) the meta-learner trained
by TransPrompt is effective to generalize to un-
seen tasks; and ii) TransPrompt also outperforms
popular fine-tuning algorithms when learning with
the full training sets. In summary, we make the
following major contributions in this work:

• We introduce the novel TransPrompt frame-
work to learn cross-task transferable knowl-
edge for few-shot text classification.

• A prompt-based meta-learner training algo-
rithm with two de-biasing techniques is pre-
sented to capture transferable knowledge.

• Experiments on multiple types of NLP tasks
show that TransPrompt consistently outper-
forms strong baselines for both few-shot learn-
ing and standard fine-tuning.

2 Related Work

We summarize the related work on PLMs, PLM
prompting, transfer learning and meta-learning.

2.1 Pre-trained Language Models

With large-scale pre-training, PLMs have achieved
significant improvements on various NLP
tasks (Qiu et al., 2020). BERT (Devlin et al., 2019)
learns contextual representations by transformer
encoders. Other transformer encoder-based PLMs
include Transformer-XL (Dai et al., 2019), XL-
Net (Yang et al., 2019), StructBERT (Wang et al.,
2020b), Big Bird (Zaheer et al., 2020) and many
others. The encoder-decoder architectures are used
in T5 (Raffel et al., 2020) and GPT-3 (Brown et al.,
2020). As the neural architecture design of PLMs
is not our major focus, we do not further elaborate.

2.2 Prompt Learning for PLMs

The huge GPT-3 model (Brown et al., 2020) en-
ables few-shot learning without fine-tuning, which
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relies on handcraft prompts. To facilitate auto-
matic prompt construction, Gao et al. (2020) gen-
erates prompts from the T5 model (Raffel et al.,
2020). Jiang et al. (2020) mines prompts from the
training corpus. AutoPrompt (Shin et al., 2020)
employs token-based gradient searching to detect
prompts. However, these approaches focus on dis-
crete prompts only. P-tuning (Liu et al., 2021) is a
pioneer work to learn continuous prompt embed-
dings with differentiable parameters. Our work
further extends P-tuning (Liu et al., 2021) that al-
lows PLMs to learn from similar tasks to improve
few-shot text classification.

2.3 Transfer Learning and Meta-learning

Transfer learning aims to transfer knowledge
or resources from source domains to target do-
mains (Zhuang et al., 2021). For deep neural net-
works, it is common practice to learn similar tasks
by multi-task learning (Liu et al., 2019a). With
the popularity of PLMs, fine-tuning has become
the standard practice by learning from PLMs for
similar tasks (Sun et al., 2019; Arase and Tsujii,
2021). In contrast, meta-learning aims to learn
models that can quickly adapt to different tasks
with little training data available (Wang et al.,
2020c; Huisman et al., 2020), typically formulated
as a K-way N-shot problem. Meta-learning algo-
rithms have been applied in few-shot NLP tasks,
such as text classification (Geng et al., 2020), rela-
tion extraction (Gao et al., 2019), question answer-
ing (Hua et al., 2020) and knowledge base com-
pletion (Sheng et al., 2020). Similar to Wang et al.
(2020a); Pan et al. (2021); Wang et al. (2021), the
proposed TransPrompt framework can be viewed
as a combination of transfer learning and meta-
learning, which learns transferable knowledge from
similar tasks to improve the performance of few-
shot text classification, either for existing tasks or
new tasks.

3 The TransPrompt Framework

We formally present our task and the techniques of
the proposed TransPrompt framework in detail.

3.1 Overview

We begin with a brief summary of our task. Let
T1, · · · , TM be M similar few-shot text classifica-
tion tasks. The m-th task can be formulated as:
Tm : x → y, where x and y ∈ Y represent the
input text and the classification label, respectively.

Y is the pre-defined label set with |Y| = N , where
N is a pre-defined constant. In our setting, we as-
sume that there are K training samples associated
with each class y ∈ Y in each task Tm. Hence,
we have a training set Dm for each task Tm, each
containing N ×K samples. The total number of
training instances of M tasks is N ×K ×M . 2

In TransPrompt, we train a meta-learner Fmeta

with parameters initialized from any PLMs, based
on the M few-shot training sets D1, · · · ,DM . Af-
ter that, Fmeta is adapted to each task Tm based on
its own training set Dm. The task-specific model
is denoted as Fm. As Fmeta is designed to di-
gest the transferable knowledge across tasks, rather
than simple multi-task learning, Fmeta can also be
adapted to previously unseen tasks. Due to the data
privacy or computation efficiency issues, when the
few-shot training set D̃ of a similar task T̃ is not
available during the training process of Fmeta, we
explore how TransPrompt can be used to generate
an accurate model F̃ based on Fmeta and D̃. In
this case, Fmeta does not have any knowledge of
the new task T̃ when it is trained during MMA.

In the following, we introduce the detailed tech-
niques of the TransPrompt framework, which con-
sists of two major stages, i.e., Multi-task Meta-
knowledge Acquisition (MMA) and Task-aware
Model Specification (TMS). Finally, we discuss
how to apply TransPrompt to standard fine-tuning
scenarios where we have relatively large training
sets, instead of solving the N-way K-shot problem.

3.2 Multi-task Meta-knowledge Acquisition
For clarity, we illustrate the general architecture of
the meta-learner for MMA in Figure 2.

3.2.1 Prompt Encoding
As the TransPrompt framework is placed in the
multi-task setting, for each task Tm, we have a
task-specific prompt template t(m)(x) as follows:

P
(m)
1 , · · · , P (m)

i , x, P
(m)
i+1 , · · · , P

(m)
I ,MASK

where P (m)
i is a prompt pseudo token (as proposed

in Liu et al. (2021)), I is the total number of pseudo
tokens, and MASK is a special token as the place-
holder for model output. We also define a universal
prompt template t(∗)(x) for all the tasks:

P
(∗)
1 , · · · , P (∗)

i , x, P
(∗)
i+1, · · · , P

(∗)
I ,MASK

2Note that the input x can be either a single sentence or a
sentence pair (which has the same setting as that of BERT (De-
vlin et al., 2019)). For simplicity, we uniformly denote the
input as x throughout this paper.
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Figure 2: The model architecture of the meta-learner training process during MMA. For simplicity, we assume
there are two tasks and three classes for few-shot text classification. (Best viewed in color.)

For an instance (x, y) ∈ Dm, the prompt embed-
ding PE(m)(x) can be computed as follows:

PE(m)(x) = AvgPool
(
MLP(BiLSTM(t(m)(x))),

MLP(BiLSTM(t(∗)(x)))
)
,

where we use bidirectional LSTM networks with
multi-layer perceptrons as prompt encoders (Liu
et al., 2021). The average pooled results from both
task-specific and universal prompt encoders are
treated as the prompt embedding. The prompt em-
bedding PE(m)(x) is a sequence as the input of the
PLM:

h1, · · · , hi, h[x], hi+1, · · · , hI , h[MASK]

where h[x] is the sequence embedding of input x,
and h[MASK] is the masked output token embed-
ding. 3 As prompt parameters are fully differen-
tiable, during back propagation, they effectively
capture the task-specific and universal knowledge.

3.2.2 Training the Meta-learner
A naive approach for obtaining the meta-learner is
applying the P-tuning process (Staudemeyer and
Morris, 2019) across the M tasks with the M + 1
prompt encoders. However, in practice, it does
not guarantee satisfactory results. As large PLMs
can easily suffer from over-fitting during few-shot
learning (Gao et al., 2020), in cross-task scenar-
ios, the meta-learner would unfortunately mem-
orize the non-transferable knowledge from non-
target tasks. To alleviate this problem, we propose
two de-biasing techniques to obtain a more unbi-
ased meta-learner encoded with transferable knowl-
edge, namely i) prototype-based de-biasing and ii)
entropy-based de-biasing.

3Note that the length of h[x] is varied, depending on the
tokenization result of x.

Prototype-based De-biasing. This technique aims
to give more importance to prototypical instances
across tasks during the training process of the meta-
learner. Here, we extend Snell et al. (2017) to
construct a lite Multi-task Prototypical Network
G. In the network G, the class centroid embedding
cm(y) (y ∈ Y) for each task Tm is computed and
stored as:

cm(y) =
1

|Dm,y|
∑

(x,y)∈Dm,y

E(x)

where Dm,y is the subset of Dm such that each
instance in Dm,y has the label y, and E(x) is the
representation of x generated by the meta-learner
described previously 4. For each instance (x, y) ∈
Dm, we pass the text x through the network to
generate the cross-task prototype score, denoted as
s(x):

s(x) = ζ · sim(E(x), cm(y))∑
ỹ∈Y sim(E(x), cm(ỹ))

+
1− ζ
M − 1

M∑
m̃=1(m6=m̃)

sim(E(x), cm̃(y))∑
ỹ∈Y sim(E(x), cm̃(ỹ))

,

where 0 < ζ < 1 is a pre-defined balancing factor,
and sim(·, ofKnowcdot) is the similarity func-
tion between two embeddings. We can see that an
instance receives a higher score if it is semantically
related to the centroids from both the task Tm itself
and other tasks, hence is more transferable across
tasks. By treating s(x) as the optimization weight,
the overall loss function L(Θ) of Fmeta can be
given by:

L(Θ) =

M∑
m=1

∑
(x,y)∈Dm

s(x)l(x, y; Θ) + λ1‖Θ‖,

4In this work, we use the pooled results of the last layer of
the PLM encoder as E(x).
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where Θ is the collection of all model parameters,
l(x, y; Θ) is the sample-wise cross-entropy loss,
and λ1 is the regularization hyper-parameter.
Entropy-based De-biasing. One potential risk of
applying the prototype-based de-biasing technique
only is obtaining a non task-agnostic meta-learner.
Consider three tasks T1, T2 and T3. If T1 and T2
are highly similar, and T3 is more dis-similar. In-
stances in D1 and D2 would naturally receive high
prototype scores, making the meta-learner biased
towards T1 and T2, and pays little attention to T3.
Hence, when the meta-learner is required to fit T3,
it may have poor parameter initialization settings.
To make it more task-agnostic, inspired by Jamal
and Qi (2019), we consider the model prediction
entropyH(Dm) over Dm:

H(Dm) = − 1

|Dm|
∑

(x,y)∈Dm

∑
ŷ∈Y

ŷ(x) log ŷ(x),

where ŷ(x) is the predicted probability of x being
assigned to the class ŷ ∈ Y . WhenH(Dm) is used
as a part of the model regularizers, the meta-learner
will be less over-trained on any specific tasks.

By plugging the termH(Dm) into the loss func-
tion L(Θ), we have the new loss function L′(Θ):

L′(Θ) =

M∑
m=1

∑
(x,y)∈Dm

(s(x)l(x, y; Θ)

− λ2
|Dm|

∑
ŷ∈Y

ŷ(x) log ŷ(x)) + λ1‖Θ‖,

where λ2 is the regularization hyper-parameter.
Optimization Procedure. Despite its simple for-
mula, minimizing L′(Θ) is a non-trivial problem.
This is because when we calculate s(x), we must
obtain model parameters of the PLM beforehand,
which is not available before the training process.
On the other hand, the optimization of L′(Θ) re-
quires the values of s(x) for all training samples,
which poses the “chicken-and-egg” problem.

We employ a dual optimization process to solve
the problem of L′(Θ). In the initial stage, all s(x)s
are uniformly initialized. Next, we fix s(x)s as
constants to minimize l(x, y; Θ) in L′(Θ). An in-
ference procedure on the PLM can be applied to
obtain all s(x)s. This process iterates for a cer-
tain number of epochs. Readers can also refer to
Algorithm 1 for an algorithmic overview.

3.3 Task-aware Model Specification
After MMA, the meta-learner can be adapted to
specific tasks with ease. For a task Tm that has

already “seen” by the meta-learner, we fine-tune
the corresponding prompt encoder and the PLM by
minimizing the loss function L(m)(Θ):

L(m)(Θ) =
∑

(x,y)∈Dm

l(x, y; Θ) + λ1‖Θ‖,

which is a variant of P-tuning (Liu et al., 2021)
with better parameter initialization.

For a previously unseen task T̃ , the model gen-
eralization strategy is employed. Here, we use the
universal prompt encoder to initialize its prompt en-
coder. The entire model is trained over the dataset
D̃, with the loss function L̃(Θ) as follows:

L̃(Θ) =
∑

(x,y)∈D̃

l(x, y; Θ) + λ1‖Θ‖,

As the meta-learner is highly generalized, it can
provide good initialization for the few-shot learning
task T̃ .

3.4 Learning with Full Training Sets
TransPrompt can also be applied for standard fine-
tuning when we have relatively large training sets
with few modifications. During MMA, we notice
that when it is not a N-way K-shot problem, the
sizes of D1, · · · ,DM can be significantly differ-
ent. Optimizing L′(Θ) directly on these datasets
would make the meta-learner biased towards large
datasets. To address this problem, when we sample
a batch from D1, · · · ,DM , instead of randomly
selection, we employ stratified sampling where
training instances are selected with the probability
proportional to the dataset distribution Pr(Dm):

Pr(Dm) =
log |Dm|+ γ∑M

m̃=1 log |Dm̃|+ γ
,

where γ > 0 is a smoothing factor. This results in
the over-sampling of small datasets and the under-
sampling of large datasets.

4 Experiments

In this section, we conduct extensive experiments
to evaluate the TransPrompt framework and com-
pare it against strong baselines.

4.1 Datasets and Experimental Settings
Following Gao et al. (2020), we select seven pub-
lic datasets to evaluate TransPrompt, divided into
three sets of NLP tasks: sentiment analysis (SST-
2 (Socher et al., 2013), MR (Hu and Liu, 2004) and



2797

Algorithm 1 Meta-learner Training Algorithm

1: for each instance (x, y) ∈
⋃M

m=1 Dm do
2: Uniformly set s(x) = 1;
3: end for
4: while number of training epochs does not reach a limit

do
5: while current training epoch is not finished do
6: Sample a batch B = {(x, y)} from

⋃M
m=1 Dm;

7: Use B to update Fmeta by minimizing L
′
(Θ);

8: end while
9: for each instance (x, y) ∈

⋃M
m=1 Dm do

10: Compute s(x) based on the updated model;
11: end for
12: end while
13: return the meta-learner Fmeta (i.e., parameters of the

PLM and M + 1 prompt encoders).

Task Type Task Name #Train #Test

Sentiment
SST-2 6,920 872
MR 8,662 2,000
CR 1,775 2,000

NLI
MNLI 392,702 9,815
SNLI 549,367 9,842

Paraphrase
MRPC 3,668 408
QQP 363,846 40,431

Table 1: Dataset statistics.

CR (Pang and Lee, 2005)), NLI (MNLI (Williams
et al., 2018) and SNLI (Bowman et al., 2015)) and
paraphrase (MRPC (Dolan and Brockett, 2005) and
QQP5).6 The statistics of these datasets are reported
in Table 1. The training/development/testing splits
are the same as Gao et al. (2020).

For few-shot learning, the evaluation protocols
are the same as Gao et al. (2020). The underlying
PLM is the RoBERTa large model (with 335M pa-
rameters) (Liu et al., 2019b) and we set K = 16.
We measure the average performance in terms of
accuracy across 5 different randomly sampled train-
ing and development splits. Refer to Gao et al.
(2020) for more experimental settings. We employ
standard BERT fine-tuning (Devlin et al., 2019) 7,
the LM-BFF prompting model (Gao et al., 2020)
(with both manually-compiled and automatically-
mined prompts) 8 and P-tuning (Liu et al., 2021) 9

5https://www.quora.com/q/quoradata/.
6Note that we do not use other benchmark datasets (such

as CoLA) because datasets on similar tasks to CoLA are not
available to us. Hence, it is impossible to train the meta-learner
in TransPrompt.

7https://github.com/huggingface/
transformers.

8https://github.com/princeton-nlp/
LM-BFF.

9https://github.com/THUDM/P-tuning.

(which produces state-of-the-art performance for
PLM-based few-shot learning) as single-task base-
lines. Because we focus on learning knowledge
across tasks, we also use the multi-task versions of
BERT fine-tuning (Sun et al., 2019), LM-BFF (Gao
et al., 2020) and P-tuning (Liu et al., 2021), and
Meta Fine-tuning (Wang et al., 2020a) 10 as cross-
task baselines. Specifically, we employ separate
prompts (either discrete prompts or continuous
prompt embeddings) for different tasks in the multi-
task versions of LM-BFF and P-tuning. As we
consider three sets of NLP tasks, we constrain that
the knowledge is transferred across the same set
of NLP tasks (for example, the cross-task models
for sentiment analysis are jointly trained over the
training sets of SST-2, MR and CR). Besides, we
are interested in how TransPrompt can be applied
when learning with full training sets. We follow
the base-scale experimental settings in Liu et al.
(2021), with the RoBERTa base model (with 109M
parameters) as the underlying PLM.

For fair comparison, we re-produce all baselines
based on their open-source codes under the same
settings. Our own TransPrompt algorithm is im-
plemented in PyTorch and run with NVIDIA V100
GPUs. In default, we set ζ = 0.5, γ = 0.001
and λ2 = 0.01. The parameter regularizers are
the same as in Liu et al. (2021). The model is
trained with the Adam optimizer (Kingma and Ba,
2015) and a batch size of 16. The model architec-
ture of prompt encoders is the same as Liu et al.
(2021). Therefore, the increased number of param-
eters of TransPrompt remains minimal. We further
tune the learning rates and epochs, with results
reported in the following experiments.

4.2 General Experimental Results

The results of TransPrompt and all baselines on
all seven testing sets for few-shot learning are
shown in Table 2. From the experimental results,
we have the following conclusions. i) Prompting
baselines (such as LM-BFF (Gao et al., 2020) and
P-tuning (Liu et al., 2021)) outperform standard
fine-tuning by a large margin. This shows prompts
are useful for few-shot learning. Based on our re-
production results, LM-BFF and P-tuning have sim-
ilar performance. Automatically-mined prompts
are sightly better than manually-compiled prompts
for LM-BFF. ii) As for cross-task baselines, the

10https://github.com/alibaba/
EasyTransfer.

https://www.quora.com/q/quoradata/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/princeton-nlp/LM-BFF
https://github.com/princeton-nlp/LM-BFF
https://github.com/THUDM/P-tuning
https://github.com/alibaba/EasyTransfer
https://github.com/alibaba/EasyTransfer
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Method Task: Sentiment Analysis Task: NLI Task: Paraphrase Avg.SST-2 MR CR MNLI SNLI MRPC QQP
Single-task Baselines
Fine-tuning (Devlin et al., 2019) 81.42 76.15 84.50 54.17 44.45 73.28 59.64 67.66
LM-BFF (man) (Gao et al., 2020) 90.75 86.60 90.50 63.62 70.77 74.05 60.27 76.65
LM-BFF (auto) (Gao et al., 2020) 91.62 87.25 91.80 64.25 71.21 74.23 60.59 77.28
P-tuning (Liu et al., 2021) 91.85 86.60 91.75 62.41 70.28 66.42 60.57 75.70
Cross-task Baselines
Fine-tuning (mtl) (Sun et al., 2019) 83.37 79.30 84.75 41.32 48.14 53.12 59.31 64.19
Meta Fine-tuing (Wang et al., 2020a) 86.32 83.85 88.42 48.52 58.20 71.56 67.12 72.00
LM-BFF (mtl) (Gao et al., 2020)∗ 91.97 87.45 90.70 69.09 75.90 50.00 67.40 76.07
P-tuning (mtl) (Liu et al., 2021)∗ 93.12 87.75 91.35 68.83 74.24 70.83 69.99 79.44
TransPrompt (Proposed Approach) 93.58 88.80 92.00 71.90 76.99 75.98 75.80 82.15

Table 2: The few-shot testing results of TransPrompt and baselines in terms of accuracy (%). “man”, “auto” and
“mtl” refer to manually-compiled prompts, automatically-mined prompts and multi-task learning, respectively. ∗

refers to the multi-task variants of the original approaches. Hereinafter the same.

multi-task version of P-tuning is more effective
than that of LM-BFF, which shows that continuous
prompt embeddings are more suitable for multi-
task learning than discrete prompts. iii) The per-
formance gains of TransPrompt over all three sets
of tasks and seven datasets are consistent. Overall,
the average improvement is around 3% in terms
of accuracy, compared to the strongest baseline
(i.e., the multi-task version of P-tuning). We also
conduct paired t-tests over the results produced on
all tasks. The results show that the improvement
of TransPrompt is statically significant (with the
p-value p < 0.01).

4.3 Detailed Model Analysis

In the following, we study how TransPrompt im-
proves the performance in various aspects.
Ablation Study. In the TransPrompt framework,
we propose two de-biasing techniques to improve
the effectiveness of the meta-learner, i.e, prototype-
based and entropy-based. Here, we remove each
one and all two de-biasing techniques, and imple-
ment three variants of TransPrompt. The results
of the ablation study are in Table 3. As seen,
both de-biasing techniques are proved effective
for TransPrompt. Particularly, prototype-based
de-biasing plays a slightly more important role
than entropy-based de-biasing in 6 out of 7 tasks.
We conclude that de-biasing the meta-learner is
crucial for obtaining the cross-task knowledge.
Parameter Tuning. We further tune the learning
epoch and the learning rate during the training pro-
cess of TransPrompt, and report the performance
over the development sets. Due to space limitation,
we illustrate the results over SST-2, MR and CR,
shown in Figure 3. We fix the learning rate to be 1e-
5 and tune the learning epochs. Figure 3(a) shows

that the performance of the meta-learner becomes
stable over 20 epochs (which is tested on the com-
bination of three developments sets for SST-2, MR
and CR). Figure 3(b) gives the results of the three
tasks during TMS. We fix the learning epoch to be
20, and tune the learning rate from 1e-5 to 5e-4. As
seen in Figure 3(c), the learning rate should be set
in the range of 1e-5 to 5e-5.

4.4 Model Generalization to New Tasks

One advantage of TransPrompt is that it can train
a meta-learner with cross-task transferable knowl-
edge encoded. In this set of experiments, we con-
sider three tasks of sentiment analysis: SST-2, MR
and CR. Each time, we train the meta-leaner over
two out of the three datsets (the MMA step), and
then make the model generalized to each of the
other tasks (the TMS step). For example, we
train the meta-learner over the few-shot SST-2
and MR datasets and then take the TMS step over
the few-shot CR dataset. Here, the meta-learner
has no knowledge of CR before the TMS step.
We test whether the usage of the meta-learner is
better than simply applying LM-BFF (Gao et al.,
2020) or P-tuning (Liu et al., 2021) initialized from
PLMs. From Table 4, it is clearly reflected that the
meta-learner brings improvement in all three cases,
hence generalizes to new tasks accurately.

4.5 Learning with Full Datasets

Apart from few-shot learning, we also investigate
how TransPrompt performs when the full training
sets are available, compared to other approaches.
The results are presented in Table 5. On average,
TransPrompt outperforms all single-task baselines
by around 1% to 5% in terms of accuracy. This
shows that our proposed paradigm can be of help in
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Task Name w/o. Prototype w/o. Entropy w/o. Both Full Implementation
SST-2 92.90 93.18 92.67 93.58
MR 87.97 88.14 87.75 88.80
CR 91.50 91.70 91.07 92.00
MNLI 67.72 69.74 67.08 71.90
SNLI 76.76 76.66 76.08 76.99
MRPC 75.98 76.72 68.38 75.98
QQP 73.44 74.00 73.02 75.80
Avg. 80.90 81.45 79.44 82.14

Table 3: Ablation study of TransPrompt for few-shot learning. Experimental results are reported on the testing
sets in terms of accuracy (%).

(a) Tuning the learning epoch of the meta-learner
during MMA.

(b) Tuning the learning epoch of the fine-tuned
PLM during TMS.

(c) Tuning the learning rate.

Figure 3: Parameter analysis over the three develop-
ment sets of SST-2, MR and CR for few-shot learning.

Task SST-2 MR CR Avg.
LM-BFF (m) 90.75 86.60 90.50 89.28
LM-BFF (a) 91.62 87.25 91.80 90.22
P-tuning 91.85 86.60 91.75 90.05
TransPrompt 93.35 88.25 91.85 91.15

Table 4: Model generalization results in terms of accu-
racy (%). LM-BFF and P-tuning are strong baselines
w/o. the usage of the meta-learner.

non few-shot learning scenarios by learning from a
group of similar NLP tasks.

Another interesting finding is that when it comes
to multi-task learning, the performance of LM-
BFF (Gao et al., 2020) and P-tuning (Liu et al.,
2021) drops, compared to the single-task setting.
A most possible cause is that with a large amount
of training data from other tasks, existing prompt-
based approaches may capture non-transferable
knowledge that is harmful to the target task. In con-
trast, the two-step paradigm of TransPrompt learns
different types of knowledge at different steps (i.e.,
the universal knowledge in MMA, and the task-
specific knowledge in TMS), hence produces better
results. Overall, TransPrompt is competitive in
standard fine-tuning scenarios with datasets from
similar NLP tasks available.

4.6 Case Studies

For a more initiative understanding of which in-
stances are more transferable across tasks, in Ta-
ble 6, several review texts from SST-2, MR and CR
with high and low prototype scores are presented.
Although these texts come from different tasks,
our TransPrompt algorithm is able to find texts that
express general polarities instead of specific points.
For instance, “time waster”, “remarkable” and “5
stars” are strong indicators of polarities, which re-
ceive high scores generated by TransPrompt. In
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Method Task: Sentiment Analysis Task: NLI Task: Paraphrase Avg.SST-2 MR CR MNLI SNLI MRPC QQP
Single-task Baselines
Fine-tuning (Devlin et al., 2019) 93.00 90.15 90.90 82.87 87.87 72.28 89.53 86.65
LM-BFF (man) (Gao et al., 2020) 93.65 88.50 90.98 87.23 91.10 88.75 85.12 89.33
LM-BFF (auto) (Gao et al., 2020) 93.81 88.75 91.25 87.01 91.51 88.97 83.12 89.20
P-tuning (Liu et al., 2021) 93.69 90.10 90.25 87.17 91.67 88.97 90.87 90.38
Cross-task Baselines
Fine-tuning (mtl) (Sun et al., 2019) 94.72 90.65 91.05 87.10 91.80 69.85 90.20 87.91
Meta Fine-tuing (Wang et al., 2020a) 95.70 91.25 91.42 83.67 89.48 78.92 89.72 88.59
LM-BFF (mtl) (Gao et al., 2020)∗ 95.41 90.45 91.50 86.76 88.25 69.36 90.32 87.43
P-tuning (mtl) (Liu et al., 2021)∗ 95.30 90.40 90.08 86.97 91.48 68.87 90.59 87.67
TransPrompt (Proposed Approach) 96.05 91.78 91.59 88.70 91.88 86.87 91.27 91.16

Table 5: The testing results of TransPrompt and baselines with full training sets in terms of accuracy (%).

Score Task Review Text Label
SST-2 There are many definitions of “time waster” but this movie must surely be one of them... NEG

High MR It is most remarkable not because of its epic scope, but because of the startling intimacy... POS
CR 5 stars all the way! POS
SST-2 It’s a treat watching show, a British stage icon, melting under the heat of phocion’s attentions. POS

Low MR Humorous, artsy, and even cute, in an off-kilter, dark, vaguely disturbing way. POS
CR However, the calls constantly drop in my area and I experience mega-static, to the point... NEG

Table 6: Cases of review texts in SST-2, MR and CR with high and low cross-task prototype scores.

contrast, review texts with low scores are overly
specific and hence are less transferable across tasks.
Hence, our meta-learner truly captures transferable
knowledge for effective knowledge transfer.

5 Conclusion and Future Work

In this paper, we present the TransPrompt frame-
work for few-shot learning across similar NLP
tasks based on continuous prompt embeddings. Ex-
perimental results show that TransPrompt consis-
tently outperforms strong baselines in both few-
shot learning and standard fine-tuning settings. Ad-
ditionally, we find that the meta-learner trained
by TransPrompt can be adapted to previously un-
seen tasks easily. In the future, we will explore
how TransPrompt is applied to other PLMs apart
from BERT-style models and other NLP tasks.
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