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Abstract

Dense retrieval requires high-quality text se-
quence embeddings to support effective search
in the representation space. Autoencoder-based
language models are appealing in dense re-
trieval as they train the encoder to output high-
quality embedding that can reconstruct the in-
put texts. However, in this paper, we provide
theoretical analyses and show empirically that
an autoencoder language model with a low
reconstruction loss may not provide good se-
quence representations because the decoder
may take shortcuts by exploiting language pat-
terns. To address this, we propose a new self-
learning method that pre-trains the autoencoder
using a weak decoder, with restricted capacity
and attention flexibility to push the encoder
to provide better text representations. Our
experiments on web search, news recommen-
dation, and open domain question answering
show that our pre-trained model significantly
boosts the effectiveness and few-shot ability of
dense retrieval models. Our code is available
at https://github.com/microsoft/
SEED-Encoder/.

1 Introduction

Recently, Dense Retrieval (DR) has progressed to
more important roles in many language systems,
for example, web search (Xiong et al., 2021), ques-
tion answering (Karpukhin et al., 2020), and news
recommendation (Wu et al., 2020b). In the first-
stage retrieval of these scenarios, DR models gener-
ally employ a Siamese/Dual-Encoder architecture
in practice. The encoder model first separately en-
codes the user side (query, browsing history, or
question) and the corpus side (document or pas-
sages) as individual embeddings in a learned repre-
sentation space (Lee et al., 2019), where retrieval
with simple similarity metrics are conducted effec-
tively (Johnson et al., 2017; Guo et al., 2020).
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A popular choice of text encoders in DR is the
Transformer network pre-trained by language mod-
eling (e.g., BERT) (Reimers and Gurevych, 2019a).
It is unexpected that, unlike in other language tasks
where pre-trained models simply excel, directly
fine-tuning BERT in DR often underperforms unsu-
pervised sparse retrieval, e.g., BM25. Some com-
plicated procedures are almost necessary to effec-
tively fine-tune pre-trained Transformers in dense
retrieval (Karpukhin et al., 2020; Luan et al., 2021;
Xiong et al., 2021). One observation is that the
pre-trained language models are not effective at
encoding the semantics of the entire text sequence
in one embedding, especially in dense retrieval
where text sequences are mostly longer than 128
tokens (Luan et al., 2021).

In some other modalities, autoencoders have
been widely used to obtain high-quality data rep-
resentations (Vincent et al., 2010; Kingma and
Welling, 2013). They pair a decoder on top of the
encoder, trains the decoder to reconstruct the data
solely from the encoder’s encodings, thus enforce
an information bottleneck on the data encodings
for better representation quality. Recently, autoen-
coders have been brought in language pre-training.
Li et al. (2020) stacks a GPT-2 decoder on top of
the BERT encoder and trains the autoencoder via a
conditional language modeling task. Their learned
encoder, Optimus, provides better text encodings
for GLUE and language generation tasks, but, as
shown in our empirical study, does not provide
better encodings for dense retrieval.

This phenomenon inspires us to investigate why
the standard setup of autoencoders in language
modeling falls short in dense retrieval. We first no-
tice that in the auto-regressive decoder, the model
takes not only the CLS encoding but also the pre-
vious tokens as input. Our mathematical analysis
shows that the decoder can exploit natural language
patterns using its access to previous tokens and
bypass the dependency on the encoder, especially
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when the sequence is long and the decoder is strong,
e.g., GPT-2. As aresult, the autoencoder achieving
a low reconstruction loss value does not necessarily
provide better text sequence encodings.

Our analyses lead to a quite simple solution: we
present a new autoencoder pre-training strategy,
which pairs the BERT-style encoder with a weak
decoder by restricting its parameter capacity and
attention flexibility. This way, our SEED-Encoder,
“Strong tExt Encoder by training with weak De-
coder”, creates an information bottleneck in the au-
toencoder and forces the encoder to provide better
text representations. In our experiments on three
real-world applications, we confirm that SEED-
Encoder produces better pre-trained checkpoints
that seed dense retrieval models with higher accu-
racy and better few-shot ability.

2 Related work

Pre-training Language Models. Masked Lan-
guage Modeling (MLM) (Devlin et al., 2018) is
one of the most effective ways to learn text repre-
sentations. It first randomly masks some tokens
in a sequence and then pre-trains a Transformer to
recover them (Joshi et al., 2020; Liu et al., 2019;
Clark et al., 2020). There are also attempts to de-
sign sequence-level tasks during pre-training. The
next sequence prediction task proposed in Devlin
et al. (2018) trains the model to predict whether two
sequences are contiguous. Liu et al. (2019) showed
this task is not effective and can be removed. In
Sun et al. (2020), more sequence-level tasks are de-
veloped, such as predicting whether two segments
are from the same document. Our learning frame-
work architecture is close to Li et al. (2020), which
trains an encoder and a decoder for both language
understanding and generation. We will discuss its
detail and show how it motivates our work.

Dense Retrieval with Text Encoders. Dense-
Retrieval systems often use the Siamese/Dual En-
coder architecture, where two sequences are en-
coded by the Transformer separately, and their sim-
ilarity is calculated upon their sequence embed-
dings. Reimers and Gurevych (2019b) is among
the first to study how to use BERT in a Siamese
architecture and found that the CLS representa-
tion does not perform as well as expected. Re-
cent research (Karpukhin et al., 2020; Xiong et al.,
2021) demonstrated that applying pre-trained mod-
els in dense text retrieval is not as straightforward.
Karpukhin et al. (2020) use BM2S5 to find negative

samples to better fine-tune pre-trained models for
dense retrieval. Xiong et al. (2021) performs global
noise constructive estimation and finds global neg-
atives using the DR model for the DR model.

3 Method

In this section, we first recap preliminaries in lan-
guage pre-training and autoencoder. Then we dis-
cuss the drawbacks of using strong decoders in au-
toencoder and address them with SEED-Encoder.

3.1 Preliminary

In a standard setup of pre-training language mod-
els, e.g., BERT (Devlin et al., 2018), the neural
network to be pre-trained is a multi-layer bidirec-
tional Transformer encoder (Vaswani et al., 2017),
which takes a sequence of tokens = = (z1, ..., Zy,)
from the vocabulary V', and produces their contex-
tualized representations h = (hy, ..., hy):

Transformer

(CLS, 1, ... (ho,hy, ..., hy),

where CLS is a special token added in the first
position, its contextual representation hg is of-
ten used as the representation of the sequence.
The parameters of the Transformer 6., are typ-
ically pre-trained using Masked Language Model-
ing (MLM) (Devlin et al., 2018), which masks a
fraction of the input sequence and trains the model
to predict the original tokens. For ease of reference,
we denoted the loss as Lyim(x, Gene)-

As there is no informative training target at the
CLS position in token level pre-training tasks, it
is not formally guaranteed that the contextual rep-
resentation at CLS contains enough information
for any sequence-level downstream tasks. Li et al.
(2020) introduces the autoencoder setup in lan-
guage model pre-training, which adds a reconstruc-
tion loss on top of the CLS token’s hg:

al‘n)

eenC 9 ecC,
x % hy —2% x. (1)

where hg is viewed as a latent variable. The de-
coder 64, which is another deep Transformer
model GPT-2, receives hg and generates the orig-
inal input autoregressively. The (variational) de-
coder loss is defined as (Li et al., 2020):

Edec(SUa edec) =
— Y log P(zi]w<r, hoifdee),  (2)

t:1~n

where x; are all previous tokens before .
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Figure 1: Behaviors of Optimus on MS MARCO Pas-
sage Ranking Dev set: (a) its ranking accuracy in com-
parison with vanilla BERT; (b) its sequence representa-
tions’ cosine similarity at variant lengths.

3.2 Effects of Using a Strong Decoder

One would expect the autoencoder to provide good
representations if the decoder can well recover the
input. However, we found that a typical model
stacking a standard autoregressive decoder on a
standard BERT-style encoder doesn’t work well
in dense retrieval tasks. For example, we fine-
tune the pre-trained checkpoint of Optimus, which
stacks GPT-2 on top of BERT on MS MARCO and
compare it with BERT. We use Mean Reciprocal
Rank(mrr) and recall as evaluation metrics. The
detailed experimental setting can be found in Sec-
tion 4.3, and the results are shown in Figure 1(a).

The performance of Optimus on dense retrieval
tasks is worse than standard BERT, a sharp contrast
with Optimus’s effectiveness on other language
tasks, e.g., in GLUE benchmarks. Note that one
difference between data in GLUE and MS MARCO
is the sequence length. In most GLUE tasks, the
sequence length is short, e.g., average 14 tokens
in SST-2, while the average passage length in MS
MARCO is more than 450. Also, recent research
shows that long sentences are hard to represent via
single embedding vectors from pre-trained mod-
els (Luan et al., 2021).

To confirm this, We randomly select sequence
pairs of different lengths and calculate the cosine
similarity of their CLS embeddings provided by
Optimus. The results are shown in Figure 1(b).
The representations of long sequences (256 or 512
tokens) from Optimus are quite similar; the co-
sine similarities of random long sequence pairs are
around 0.8. The model yields cluttered represen-
tations for long text sequences. When fine-tuned
for dense retrieval in MS MARCO, it does not sep-
arate relevant documents for a query from those
irrelevant ones. All of those representations might
be similar to each other and require dedicated fine-
tuning to realign their encodings.

3.3 Theoretical Analysis

Next, we mathematically show why the encoder
may fail to learn good sequence representations
using a strong decoder.

In Eqn. 2, at each time step ¢, the prediction
of x; not only depends on the CLS encoding hg
but also the previous tokens x.;. Thus a lower
reconstruction loss may not be contributed by more
informative hg: for a large ¢ in a long text sequence,
the model may directly predict x; from x; if the
decoder is strong. The quality of the representation
at the CLS is not guaranteed as a low decoding loss
may not reflect much about hg.

To further understand the requirements for infor-
mative sequence representations, we investigate the
relationship between the reconstruction loss, hg,
and the language sequence in their mathematical
form. First, we decompose the expectation of the
loss L e into two terms: a Kullback-Leibler diver-
gence and a conditional-entropy term, according to
the following fact in information theory:

Fact1 Given two distributions P(Y,Z) and
Q(Y, Z) on random variables (Y, Z), we have

Eyzwp[— logQ(Z|Y)]
=Ey p)[Dxc(P(ZIY)]|Q(Z]Y))]  (3)
+ Hp(Z]Y).

We have X as a random variable defined in the
sequence space X', where each sequence x is sam-
pled from data distribution Pp, X ; as the truncate
of X at position ¢, and P, _ as the sequence dis-
tribution generated by the decoder. For simplicity,
we assume all the sequences are of length n. The
expected reconstruction loss can be rewritten as

ED [Ldec(Xa edec)] (4)

=Ep [Z —10gP(Xt|X<t,h0;9dec)] )

t:1~m
=3 B [Da (Po(XXaho)| )
t:1~n
Ppgeo (Xt| X<, ho))} @)
+ Hp(X¢|X<t, ho). (8)

The above equation shows that the loss con-
sists of two terms, a K-L term Dky (-) (Eqn. 6 and
Eqn. 7) describing the difference between two dis-
tributions, and a conditional-entropy term Hp(-)
(Eqn. 8) reflecting the strength of language pat-
terns. As we discuss next, both terms can achieve
low values even with random hg.
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Figure 2: The structure of SEED-Encoder with an auxil-
iary decoder. The encoder and decoder are connected
only via the [CLS] representation as the information
bottleneck. The decoder capacity is restricted in both
parameter size and attention span.

The first K-L term characterizes how
Py,..(X¢|X<t,hg), the decoder generated
sequence distribution, aligns with the ground
truth distribution Pp(X;| X<, hg). Even with a
meaningless ¢, if the decoder has sufficient
capacity, e.g., a very deep Transformer, it can
still approximate the ground truth distribution
well and thereby reduce the K-L term. In theory,
Transformers with arbitrary width and depth can
approximate any sequence-level functions and may
reach a low K-L loss using little information from
ho (Yun et al., 2019).

The second term H p(X;| X<, hg) characterizes
the strength of language patterns: The stronger the
correlation between X; with X_;, the lower the
second term is. In natural language, the correlation
becomes stronger with larger ¢ as there is more
information from the previous tokens. There is not
a strong need for a good text encoder hg because
a strong decoder can capture the natural language
patterns by itself.

3.4 SEED-Encoder

Our analysis shows that to obtain a stronger text
encoder and a better hg, we can not make the de-
coder too strong: we need to constrain its capacity
and also the available language context to reduce
the correlation between X; and X -4, so that it has
to rely on the information in the encoder CLS to
reconstruct the text sequence.

In the rest of this section, We introduce SEED-
Encoder which adopts these designs. The model

structure is illustrated in Figure 2.

Making a language model weaker is easier than
making it stronger. We simply modify Eqn. 2 to
weaken the decoder:

* Using a shallower Transformer §%?* with
fewer layers (e.g., three);

* Restricting its access to previous context, i.e.,
limit model attention to previous k tokens.

This leads to the following reconstruction loss:

Eweak ($, eweak) —

dec dec

— > log P(x4]i—it—1. ho; 03e%),  (9)

t:ln

where k is the window size of the restricted atten-
tion. Through these modifications, we enforce the
information bottleneck between the encoder and
the decoder, thereby forcing the decoder to rely on
the CLS representation of the encoder, and pushing
the encoder to learn a more informative representa-
tion.

Similar to Li et al. (2020), the pre-training of
SEED-Encoder uses the combination of the en-
coder’s standard MLM loss and the decoder’s re-
construction loss:

E(a’:? Henca GZerecak) =

[fMLM (1_7 eenc) + ﬁweak (.%', gweak) )

dec dec

(10)

The encoder and decoder are trained together. Af-
ter pre-training, the decoder is discarded, and the
encoder is used in downstream applications.

4 Experiments

In this section, we present various experimental
analyses to evaluate the SEED-Encoder on dense
retrieval tasks. More results on other language
tasks are in Appendix A.2.

4.1 Pre-training Details

All our models are pre-trained from scratch, follow-
ing the setup of BERT-base (Devlin et al., 2018):
pre-training on English Wikipedia and BookCor-
pus (Zhu et al., 2015) (roughly 16GB texts) for
1M steps, with batch size 256, maximum sequence
length 512, and 15% masks. We follow the pre-
processing steps and use 32,768 sub-word tokens
in Ke et al. (2020). We remove the next sentence
prediction task following Liu et al. (2019).
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Rerank Retrieval

Model MRR@10 | MRR@10 Recall @1k
BM25 (Craswell et al., 2020) E 0.240 0.814
Best DeepCT (Dai and Callan, 2019) - 0.243 n.a.
Best TREC Trad IR (Craswell et al., 2020) - 0.240 n.a.
DPR (RoBERTz) (Karpukhin et al., 2020) - 0.311 0.952
With DPR (BM25 Neg)

BERT (Devlin et al., 2018) 0317 0.310 0.929
Optimus (Li et al., 2020) 0.300 0.244 0.880
ELECTRA (Clark et al., 2020) 0.300 0.258 0.854
ERNIE2.0 (Sun et al., 2020) 0.324 0.321 0.942
RoBERTa (Liu et al., 2019) - 0.299 0.928
BERT (Ours) 0.326 0.320 0.933
SEED-Encoder 0.3291 0.329° 0.953"
With ANCE (FirstP)

RoBERTa (Liu et al., 2019) E 0.330 0.959
BERT (Ours) 0.327 0.332 0.952
SEED-Encoder 0.334" 0.339° 0.961"

Table 1: First stage retrieval results on MS MARCO
Passage ranking Dev set. Rerank MRR is for reference
only. Statistically significant improvements over BERT
(Ours) are marked by f.

We use Adam (Kingma and Ba, 2014) as the
optimizer, and set its hyperparameter € to le-6 and
(81, 82) to (0.9, 0.999). The peak learning rate is
set to le-4 with a 10k-step warm-up stage. After
the warm-up stage, the learning rate decays linearly
to zero. We set the dropout probability to 0.1, gra-
dient clip norm to 1.0, and weight decay to 0.01.
All codes are implemented based on fairseq (Ott
et al., 2019) in PyTorch (Paszke et al., 2017). All
models are run on 8 NVIDIA Tesla V100 GPUs
with mixed-precision (Micikevicius et al., 2017).

Our encoder architecture is the same with BERT-
base: 12 Transformer layers, eight attention heads,
and 768 hidden dimensions (110M parameters).
We use a three-layer Transformer as the decoder,
restrict its attention to the previous two tokens (at-
tention span k£ = 2), and keep all else the same
with the encoder. The decoder is only used in pre-
training and is dropped during fine-tuning. There
is no additional cost in fine-tuning nor inference.

4.2 Fine-tuning Siamese/Dual-Encoders

Fine-tuning SEED-Encoder in the Siamese archi-
tecture on the dense retrieval tasks is the same as
other pre-trained models. Here we show how fine-
tuning in a typical sentence pair matching task with
binary labels can be done with Triplet loss.

L= Z relu(1 — (s(z?,2%7) — (29, 297))).

4,24+ xpd—

The training data include triples of query x? and
its positive/negative labeled sequence (2%, z97).
The scoring of the sequence pairs s(x9, %) is done
by simple similarity functions, such as cosine and
dot product, on their CLS encodings. More ad-
vanced fine-tuning strategies (Karpukhin et al.,

2020; Xiong et al., 2021) can also be used as SEED-
Encoder is an alternative for other pre-trained en-
coders.

4.3 Experiments on Web Search

Our first application, web search (Lee et al.,
2019),.uses the MS MARCO (Bajaj et al., 2016)
dataset, the largest public search benchmark to date.
It includes two tasks, passage ranking and docu-
ment ranking. We focus on the first stage retrieval
step, which is to find relevant passages/documents
from the entire corpus. We also show the results in
the reranking setting where all models rerank a pre-
given set of candidate documents (Top 100 from
BM25) for reference. More details of MARCO are
in Appendix A.1.

Our pre-trained encoders are fine-tuned with
ANCE negative sampling strategy (Xiong et al.,
2021). In document retrieval, we use ANCE
(FirstP) which uses the first 512 tokens of the
long document and cut-off the rest. We also
evaluate with another negative sampling strategy,
BM25 Neg, which uses top 100 BM25 retrieved
results as negatives samples and performs similar
to DPR (Karpukhin et al., 2020) on MARCO.

Baselines: The main baseline is our run of BERT-
base (Devlin et al., 2018; Liu et al., 2019), which
we pre-trained and fine-tuned in the exact setting
with SEED-Encoder. We use the permutation test
and p < 0.05 as the statistical significance test be-
tween SEED-Encoder and BERT (Ours). Besides
BERT, we evaluate two other pre-trained language
models in the same setting: ELECTRA (Clark
et al., 2020) and ERNIE2.0 (Sun et al., 2020).
ELECTRA is one of the most effective pre-trained
encoders on the GLUE benchmark (Clark et al.,
2019). ERNIE2.0 uses various token-level tasks
and sentence-level tasks, including an IR Relevance
Task. We use the MARCO passage benchmark to
showcase the performance of these two pre-trained
models.

In addition, we also list the task-specific first
stage retrieval baselines that were published re-
cently or submitted to the leaderboard, although
they barely outperform our vanilla BERT baseline.
For passage ranking, the classic sparse retrieval
baselines include the standard BM25, Best TREC
Sparse Retrieval with tuned query expansion, and
Best DeepCT, all from TREC DL 2019 official
evaluation (Craswell et al., 2020). These three ap-
proaches represent the standard sparse retrieval,
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Dev Eval

Model
BM25 (Craswell et al., 2020)
DE-hybrid (Luan et al., 2021)

Rerank Retrieval | Retrieval
0.318 0.284

- 0.287
0.327 0.291
0.310
0.312
0.342

BM25 + doc2query-T5 expansion

ME-hybrid (Luan et al., 2021)

Enriched Traditional IR Baseline

ANCE MaxP (RoBERTa) (Xiong et al., 2021)
‘With DPR (BM25 Neg)

BERT (Ours) 0.338
0.3441

0.355
0.384

0.308
SEED-Encoder 0.323
With ANCE (FirstP)
RoBERTa (Liu et al., 2019) - 0.373
BERT (Ours) 0.368 0.382

SEED-Encoder 0.377" 0.3941

0.362

Table 2: MRR @100 on MARCO Documents from first-
stage retrieval methods. Rerank results are for reference
only. Statistically significant improvements over BERT
(Ours) are marked by 7.

best classical sparse retrieval, and the latest method
of using BERT to improve sparse retrieval.

For document ranking, BM25 (Craswell et al.,
2020) and the enriched traditional IR baseline are
standard sparse retrieval baselines. The enriched
traditional IR baseline uses pre-defined IR fea-
tures, including BM25, to rank the documents.
BM25 + doc2query-T5 expansion uses Doc2query
model(Nogueira et al., 2019), expanding the doc-
uments with predicted queries that are related to
or representative of the documents’ content. The
queries are predicted by a sequence-to-sequence
model taking the document terms as input. Both
DE-hybrid and ME-hybrid (Luan et al., 2021) use
dense features from BERT and hand-craft sparse
features. DE-hybrid takes the CLS representations
of document and query as the dense feature and
calculates the dot product similarity. This similar-
ity score is further combined with sparse retrieval
scores as the final score for ranking. Different from
DE-hybrid, ME-hybrid uses max-pooling over mul-
tiple contextual embeddings as dense features.

Results: The results of SEED-Encoder and base-
lines in MARCO Passage retrieval and Doc re-
trieval are listed in Table 1 and Table 2. SEED-
Encoder outperforms all existing baselines on all

benchmarks. By simply switching its fine-tuning

starting checkpoint from BERT to SEED-Encoder—
without changing any architectures nor fine-tuning

strategies—the accuracy is significantly improved

on these two large-scale benchmarks.

In comparison, on MARCO Passage retrieval,
switching from BERT to ELECTRA or ERNIE2.0
does not improve the retrieval accuracy. Pre-
training models optimized for other scenarios are
not necessarily better for dense retrieval.

On MARCO document retrieval, ANCE (FirstP)
only uses one vector per document from its first

Model AUC MRR NDCG@5 NDCG@10
Transformer (Vaswani et al., 2017) | 0.6776 0.3305  0.3594 0.4163
Transformer-XL (Dai et al., 2019) | 0.6792 0.3315  0.3604 0.4170
TENER (Yan et al., 2019) 0.6770 03301  0.3589 0.4158
DA-Transformer (Wu et al., 2020a) | 0.6832 0.3336 0.3634 0.4207
With DPR (MIND Neg)

BERT (ours) 0.7015 0.346 0.3844 0.4479
SEED-Encoder 0.70597 0.3506" 0.3908"  0.4526'

Table 3: Results on MIND news recommendation bench-
mark. All methods are evaluated in the reranking setting
with pre-given news candidates in MIND, to follow their
official setting. Baseline scores are obtained from Wu
et al. (2020a). Statistically significant improvements
over BERT (Ours) are marked by f.

passage, while ANCE (MaxP) uses four vectors per
document from its first four passages, which often
cover the full document body. Yet with SEED-
Encoder as the starting point, ANCE (FirstP) out-
performs the recent state-of-the-art ANCE (MaxP)
with RoBERTa by relatively 6% in the hidden Eval,
while using fewer embeddings per document. Re-
ducing embeddings required per document is im-
portant in real search systems where the corpus size
is beyond billions (Xiong et al., 2021).

4.4 Experiments on News Recommendation

Our second application is news article recommen-
dation, another important real-world task that con-
nects users with information. We use the recently
released Mlcrosoft News Dataset (MIND) bench-
mark (Wu et al., 2020b). The task is to rank a given
set of candidate news articles based on the user’s
previous click history on MSN news articles. The
evaluation uses the user’s click as the positive la-
bel. We use the public MIND Deyv and its official
metrics: AUC, MRR, NDCG@5, and NDCG@10.
More details of MIND are in Appendix A.1.

We follow MIND’s official setting and use a stan-
dard dense retrieval model to rerank the pre-given
candidate news articles. Our DR model represents
each user’s history by concatenating all the titles
they clicked on the MSN site, with [SEP] tokens
in between, and using as many recent titles as pos-
sible within the 512 length limit. The candidate
articles are represented by the concatenation of
their titles and snippets. Then it encodes the user
history and candidate articles with SEED-Encoder,
and matches them with dot-products.

Baselines: MIND is a relatively new benchmark.
The most recent baselines are those in Wu et al.
(2020a). Based on Transformer (Vaswani et al.,
2017), Transformer-XL (Dai et al., 2019) uses rel-
ative positional encodings that integrate content-
dependent positional scores and a global positional
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Model | Top-20  Top-100
BM25 (Craswell et al., 2020) \ 59.1 73.7
With DPR

BERT (Karpukhin et al., 2020) 784 85.4
BERT (BM25 +DPR) (Karpukhin et al., 2020) 76.6 83.8
BERT (Ours) 77.8 85.1
SEED-Encoder 80.4" 87.1"
With ANCE

BERT (Xiong et al., 2021) 81.9 87.5
SEED-Encoder 83.1" 88.7

Table 4: Retrieval results (Answer Coverage at

Top-20/100) on Natural Questions in the setting
from (Karpukhin et al., 2020). Statistically significant
improvements over BERT are marked by 7.

score in the self-attention layer. TENER (Yan et al.,
2019) uses direction-aware sinusoidal relative posi-
tion embeddings in a similar way as in Transformer-
XL. Different from Transformer-XL and TENER,
DA-Transformer (Wu et al., 2020a) directly re-
scales the attention weights based on the mapped
relative distances instead of using sinusoidal po-
sition embeddings. Similar to the web search ex-
periments, we also compare SEED-Encoder with
BERT (Ours).

Results: The results of SEED-Encoder and base-
lines in MIND are listed in Table 3. SEED-
Encoder outperforms the recent state-of-the-art DA-
Transformer, which employs various architecture
improvements specifically designed for recommen-
dation (Wu et al., 2020a). A better self-learning
strategy to leverage unsupervised data can be as
effective as, if not better than, task-specific archi-
tecture changes while avoiding all the engineering
hustles.

4.5 Experiments on Open QA

Our third application is dense retrieval in open-
domain question answering. This task often lever-
ages a two-stage framework: first uses a context
retriever to select a small set of passages that may
contain the answer to the question; and then uses
a machine reader which thoroughly examines the
retrieved passages and identifies the correct answer
(Karpukhin et al., 2020). We focus on the first stage,
i.e., dense retrieval to select relevant passages. We
use Natural Question query set (Kwiatkowski et al.,
2019) and the Wikipedia passages prepared and
shared in DPR (Karpukhin et al., 2020). More de-
tails of the NQ dataset are in Appendix A.1. We
follow the evaluation metrics used in DPR, hit ac-
curacy of Top-20 and Top-100.

Models are fine-tuned using DPR fine-tuning
strategy as in Karpukhin et al. (2020), which uses
a dual-encoder architecture and samples negatives
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Figure 3: MS MARCO passage Dev accuracy of
Siamese (BM25 Neg) when fine-tuned from SEED-
Encoder variations.

in the mini-batch. We also experiment with the
ANCE fine-tuning strategy as in Xiong et al. (2021)
which dynamically samples hard negatives.

Baselines: We take BM25, BERT as baselines as
in Karpukhin et al. (2020). Consistent with the web
search tasks and news recommendation tasks, we
also compare SEED-Encoder with BERT (ours).

Results: The results of SEED-Encoder and the
baselines on NQ benchmark are in Table 4. Again,
SEED-Encoder outperforms all other baselines
with DPR negative sampling or ANCE negative
sampling. We do not change any architectures
nor fine-tune strategies and only simply switch the
BERT checkpoint to SEED-Encoder, but bring sig-
nificant improvements on the large-scale bench-
mark.

4.6 Discussion and Analysis

In this section, we conduct more analysis to un-
derstand the advantages of the SEED-Encoder.
For simplicity, all experiments are run on the MS
MARCO document retrieval tasks.

4.6.1 Ablation study

In the experiments above, we use a three-layer
Transformer decoder and restrict the attention span
to be two. One may wonder whether such con-
straints are essential for learning good sentence
representations. In this section, we try various de-
coder configurations with different numbers of lay-
ers and attention window sizes.

From the results in Figure 3, we can see that
the SEED-Encoder with the stronger decoder, 5-
layer Transformer with full attention (All), per-
forms worse than those with weaker decoders in
dense retrieval. The retrieval accuracy correlated
well with the decoder capacity of the correspond-
ing SEED-Encoder. So unlike typical multi-task
settings where tasks share lower-level representa-
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tions and correlate in accuracy, in SEED-Encoder,
the decoder is to force the encoder to capture more
information in its sequence embeddings: A weak
decoder leads to a stronger encoder.

To further understand the relationship of en-
coder’s CLS embedding and the decoder, in Fig-
ure 4 we plot the cosine similarity between the
decoder’s token representations in its last layer and
the encoder’s CLS. The impact of restricting atten-
tion is significant: with full attention (Figure 4(a)),
the decoder may depend heavily on the encoder’s
CLS in the beginning but quickly drops the depen-
dency when sufficient context information is avail-
able; with restricted access to context, the decoder
is forced to attend more on the encoder’s CLS rep-
resentation in all token positions, as shown in the
consistent cosine similarity in different positions in
Figure 4(b). This confirms that when the decoder is
weak (restricted attention), it depends more on the
encoder’s CLS, thus pushes the encoder to learn
more informative representations. Also, the results
in Figure 4(a) suggest that when using a powerful
encoder, the CLS embedding will encode the first
several words in the sentence but might ignore oth-
ers. This can be one of the reasons that Optimus
performs worse than BERT in dense retrieval in
Figure 1(a).

4.6.2 Document Representation Quality

In Section 3.2, we empirically show that using a
standard autoencoder learning framework, the sim-
ilarity between sequence representations grows to
be large for long sequences. In this section, we
first study whether SEED-Encoder improves the
representation diversity. Similar to Figure 1(b), we
collect randomly sampled sentence pairs and cal-
culate the cosine similarity of their CL.S encodings
generated by SEED-Encoder.

Results in Figure 5 shows that, the CL.S embed-
ding generated by SEED-Encoder is more diverse.
The average CLS cosine similarity is only 0.48
even when the sentence length is 512. This result
shows that SEED-Encoder can well differentiate
sentences during pre-training.

Few-shot effectiveness Note that diverse rep-
resentations don’t necessarily mean high-quality.
To figure out the effectiveness of the representa-
tion, we conduct few-shot learning experiments
for SEED-Encoder. In particular, we record the
dev performance during the fine-tuning stage and
check how many training iterations and how many
samples are required for the model to achieve a
reasonably good performance.

In Figure 6(a) and 6(b), we plot the retrieval ac-
curacy at different fine-tuning steps. Starting from
SEED-Encoder instead of BERT, both the vanilla
Siamese and ANCE achieve higher retrieval ac-
curacy in the very beginning and maintain their
advantages throughout the fine-tuning process. For
example, Siamese (BM25 Neg) only requires 30k
fine-tuning iterations with SEED-Encoder to reach
BERT’s best performance at 140k iterations. With
ANCE (First P), it takes 150K iterations with
SEED-Encoder versus 750K with BERT.

In Figure 6(c) and 6(d), we plot the retrieval
accuracy with different fractions of training data.
Compared with BERT, with fewer training la-
bels, SEED-Encoder always reaches better accu-
racy. When only using 10% training labels, SEED-
Encoder (MRR 0.318 in Figure 6(c)) is still com-
petitive with BERT using all training labels (MRR
0.32).

These results indicate that the representation
learned by SEED-Encoder is better than that
learned by BERT. The reduction in fine-tuning cost
helps democratize the benefits of pre-training mod-
els, especially in applications where computing
resources or task-specific supervision is restricted.
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Case 1 Case 2
Query hiking on mount rainier in the winter what kind of party is the cooperative party
SEED-Encoder MRR@100 1.0 MRR@100 1.0
Url https://www.nps.gov/mora/planyourvisit/winter-recreation.htm | https://simple.wikipedia.org/wiki/Co-operative_Party
Title Winter Recreation Cooperative Party
Winter Recreation Winter Camping Food Storage Snowplay... Co-operative Party From Wikipedia, the free encyclopedia
Snippet A Winter visit to Mount Rainier can include ranger-guided navigation search. The Co-operative Party is a small socia-
pp snowshoe walks, skiing...Learn about winter hiking opportu- list political party, in the United Kingdom. Its candidates
nities at Longmire in... must be members of the Labour Party as well...
RoBERTa MRR @100 0.043 MRR @100 0.067
Url http://www.seattlgt}mes.com/llfe/travel/S— great-day-hikes- hitp:/fsocialeconomyaz.org/whats-a-cooperative/
around-mount-rainier/
Title 5 great day-hikes around Mount Rainier ‘What is a Cooperative?
Life Outdoors Travel5 great day-hikes around Mount Rainier ‘What is a Cooperative? According to the International Coo-
Snippet Originally published June 24, 2015 at 4:59...(Picasa)E-book perative Alliance (ICA ), a cooperative is "an autonomous
nippe authors name their favorite day-hikes in Mount Rainier Na- association of persons united voluntarily to meet their com-
tional Park... mon economic, social, and cultural needs...

Table 5: Two examples of SEED-Encoder’s winning case over RoOBERTa (Ours) when fine-tuning with ANCE
FirstP in MARCO Document. Their first ranked documents are listed.

Case Study We further showcase some winning
examples of SEED-Encoder in Table 5. The error
made by BERT correlated with our observation in
Figure 4(a), where the encoder’s representation is
more related to those tokens at the beginning of the
text sequences, which is quite related to the query.
Only when the model captures the information of
the entire text can it find the correct documents. For
example, in the first case, SEED-Encoder captures
“winter hiking” at the back of the document while
BERT only pays attention to some of the keywords
at the beginning of the document even if the overall
semantics does not match, and in the second case,
BERT missed the "party" part in the query.

5 Conclusion

In this paper we present SEED-Encoder, a self-
training framework dedicated to pre-training lan-
guage models for dense text retrieval. We pre-train
an auto-encoder that employs a weak decoder with
restricted capacity and attention span following our
mathematical derivation. The weak decoder helps

SEED-Encoder capture more context information
and generate better text representation. In our ex-
periments on web search, news recommendation,
and question answering, SEED-Encoder initialized
dense retrieval models achieve state-of-the-art accu-
racy compared to several strong baselines. Future
work along this direction includes exploring more
self-learning tasks and network architectures for
sequence matching in dense retrieval scenarios.
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Document Passage
Model Train [ Dev | Eval Train [ Dev [ Eval
Query 367,013 5,193 5793 | 808,731 101,093 101,092
relevant label | 384,597 5,478 532,761 59,273
Doc set 3,213,835 8,841,823

Table 6: Statistics of the MSMARCO dataset

Train Dev
Users 711,222 255,990
News 101,527 72,023
Impression 2,232,748 376,471
Avg. title len 14.41 14.47
Avg. click num 1.52 1.53
Avg. candidate num 37.40 37.41
Avg. historical news click num 32.98 32.62

Table 7: Statistics of the MIND dataset

A Appendix

A.1 More Details of MS MARCO, MIND
and OpenQA dataset

More Details of MARCO Dataset Microsoft
MARCO (Bajaj et al., 2016) is the largest available
search benchmark to date. It includes two tasks,
document ranking and passage ranking. Both are to
find and rank relevant documents/passages from a
web corpus for a web query from Bing. The dataset
statistics are summarized in Table 6.

More Details of MIND Dataset MiIcrosoft
News Dataset (MIND) (Wu et al., 2020b) is a large-
scale recommendation dataset that collects about
160k English news articles and more than 15 mil-
lion user impression logs from MSN news. Each
news article contains the title, abstract, body, and
category. Each impression log includes the user’s
click behavior on the page and her historical news
click behaviors. The task is to rank a given set of
candidate news articles, e.g., those from an early
stage of their recommendation pipeline, based on
the user’s previous click history. The dataset statis-
tics are summarized in Table 7.

More Details of NQ Dataset For OpenQA ex-
periments we use the Natural Question query
set (Kwiatkowski et al., 2019), in which the queries
are mined from real Google search queries and
the corresponding answers are spans in Wikipedia
articles identified by annotators. We use the
Wikipedia passages preprocessed and shared in
DPR (Karpukhin et al., 2020), which includes
21,015, 324 passages. More detailed data such as
the number of queries can be found in Karpukhin
et al. (2020)

model MNLI | QQP | SST-2 | QNLI
BERT (Ours) 0.849 | 0.910 | 0.929 | 0.913
Optimus 0.834 | 0.909 | 0.923 | 0.912
SEED-Encoder | 0.843 | 0.011 | 0.927 | 0914

Table 8: Results on some GLUE tasks.

A.2 GLUE

We also consider the GLUE benchmark (Wang
et al., 2018) which contains nine datasets for gen-
eral language understanding. Here we select MNLI,
QQP, QNLI and SST-2 from the GLUE benchmark,
and compare the performance of SEED-Encoder
with BERT (Ours) and Optimus on these tasks.
We follow the fine-tuning schedule in Devlin et al.
(2018), and the results are shown in Table 8. We
can see that on these GLUE tasks, SEED-Encoder
is not worse than BERT and Optimus. This shows
that while SEED-Encoder can generate higher-
quality representations that well fit the Siamese
network, the performance on GLUE will not be-
come worse.
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