
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2769–2779
November 7–11, 2021. c©2021 Association for Computational Linguistics

2769

Synchronous Dual Network with Cross-Type Attention for Joint Entity
and Relation Extraction

Hui Wu12 and Xiaodong Shi123∗
1Department of Artificial Intelligence, School of Informatics, Xiamen University, China
2National Institute for Data Science in Health and Medicine, Xiamen University, China
3Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural

Heritage of Fujian and Taiwan (Xiamen University), Ministry of Culture and Tourism, China
huistudent@stu.xmu.edu.cn, mandel@xmu.edu.cn

Abstract

Joint entity and relation extraction is challeng-
ing due to the complex interaction of inter-
action between named entity recognition and
relation extraction. Although most existing
works tend to jointly train these two tasks
through a shared network, they fail to fully uti-
lize the interdependence between entity types
and relation types. In this paper, we design
a novel synchronous dual network (SDN) with
cross-type attention via separately and interac-
tively considering the entity types and relation
types. On the one hand, SDN adopts two iso-
morphic bi-directional type-attention LSTM
to encode the entity type enhanced represen-
tations and the relation type enhanced repre-
sentations, respectively. On the other hand,
SDN explicitly models the interdependence be-
tween entity types and relation types via cross-
type attention mechanism. In addition, we also
propose a new multi-task learning strategy via
modeling the interaction of two types of infor-
mation. Experiments on NYT and WebNLG
datasets verify the effectiveness of the pro-
posed model, achieving state-of-the-art perfor-
mance.

1 Introduction

Joint entity and relation extraction is a fundamental
and important task in information extraction, pro-
viding necessary information for knowledge base
construction (Mesquita et al., 2019), question an-
swering (Yu et al., 2017), and dialogue systems
(Xu et al., 2019), etc. This task can be decomposed
into two subtasks: named entity recognition (NER)
and relation extraction (RE), aiming respectively
to detect text spans with specific types (entities)
and semantic relations among those text spans (re-
lations) from unstructured texts.

Early studies employ pipeline models (Zelenko
et al., 2002; Zhou et al., 2005; Chan and Roth,
2011), which first extract all entities of the sentence
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Jackie R. Brown was born in Washington, the capital city of United States of America.

LOC LOCPER

Birth_Place

Birth_Place

Capital_of

Figure 1: An example of joint entity and relation extrac-
tion. The italics with underline represent entities. The
red and blue represent entity types and relation types,
respectively.

by an entity model, and then these extracted entities
are used as the inputs of a relation model to identify
semantic relations between entity pairs. However,
pipeline models disregard the correlation between
NER and RE (Li and Ji, 2014).

In recent years, joint learning models have
gained increasing attention. Among them, multi-
task learning methods (Miwa and Bansal, 2016;
Katiyar and Cardie, 2017; Fu et al., 2019; Liu et al.,
2020) are popular and they utilize a shared network
to learn common features, but making indepen-
dent predictions for the two tasks. Later, Sun et al.
(2020) propose a new multi-task learning method
to dynamically learn the interactions between the
two tasks. Lin et al. (2020) propose a joint neural
framework OneIE to study the interaction of dif-
ferent feature categories by a set of global feature
templates. Other methods such as novel tagging
(Zheng et al., 2017; Wei et al., 2020; Wang et al.,
2020) and generative models (Zeng et al., 2018,
2019; Nayak and Tou Ng, 2020; Ye et al., 2021)
adopt a unified model to directly extract relational
triplets. Although these methods show effective-
ness for joint entity and relation extraction, they
only apply a shared network or a unified model
to capture the connection between NER and RE
without taking into account the interdependence of
entity types and relation types.

Intuitively, the relation types of relational triplets
are not only relevant to the textual context and enti-
ties, but also to entity types (Peng et al., 2020).
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Conversely, the entity types of subject and ob-
ject entities are also constrained by relation types
in the triplets. For example, the instance in Fig-
ure 1 contains three entities: “Jackie R. Brown”
(PER), “Washington” (LOC), and “United States
of America” (LOC). The relation type of (“Jackie
R. Brown”, “Washington”) and (“Jackie R. Brown”,
“United States of America”) is Birth_Place, while
the relation type of (“Washington”, “United States
of America”) is Capital_of. When the subject en-
tity type is PER and the object entity type is LOC,
the relation type between them may be Birth_Place,
but never Capital_of. Conversely, when the relation
type is Capital_of, the corresponding entity type
does not include PER. In addition, although Sun
et al. (2019) adopt graph convolutional network to
handle the joint type inference problem, they fail to
discuss the fine-grained correlation between entity
types and relation types.

In this paper, we propose a Synchronous Dual
Network (SDN) with cross-type attention to sep-
arately and interactively capture the vector repre-
sentations related to entity types and relation types.
First, SDN adopts two isomorphic bi-directional
type-attention LSTM to learn two different feature
representations, where one is the entity type en-
hanced representations and the other is the relation
type enhanced representations. Then the entity type
information and the relation type information are
introduced into the relation type enhanced represen-
tations and the entity type enhanced representations
respectively to explicitly model the interaction be-
tween entity types and relation types via cross-type
attention mechanism. These type-related represen-
tations are concatenated together for NER and RE
via a multi-task learning strategy. The above type-
attention LSTM is a general structure to select the
preferred type distribution. The main idea is to
inject all possible entity types simultaneously via
multiple type-related cells based on the standard
LSTM. In this way, our model obtains the preferred
type information via training auxiliary tasks.

To summarize, the main contributions of this
work are as follows1:

(1) We design a general type-attention LSTM
structure to inject all possible type information,
which can capture the preferred type features via
training the corresponding auxiliary task.

(2) We propose a novel synchronous dual net-

1Our code will be released on Github at https://
github.com/HuiStudent/Cross-type_SDN.

work with cross-type attention, which adopts cross-
type attention mechanism to explicitly model the
interdependence between entity types and relation
types, to capture the vector representations related
to entity types and relation types.

(3) Experiments on two public datasets verify the
effectiveness of the multi-task learning strategy via
fusing the interaction of two types of information.

2 Related Work

Multi-Task Learning Model. Some multi-task
learning models like (Miwa and Bansal, 2016; Kati-
yar and Cardie, 2017) learn the shared features
through parameter sharing and then use them for
the two subtasks of entity recognition and relation
extraction. Based on this, Sun et al. (2018) enhance
the interaction between the two subtasks by opti-
mizing a global loss function. Sun et al. (2019)
apply graph convolutional network to handle the
interaction in type inference. These approaches
essentially belong to a pipeline decoder: first ex-
tract entities and then identify the relation of the
predicted entities. Later, Fu et al. (2019), Sun et al.
(2020) and Liu et al. (2020) do joint learning via
a shared network and simultaneously make inde-
pendent predictions. Zeng et al. (2020) propose
CopyMTL, a multi-task learning framework to en-
hance the capability of handling with multi-token
entities. However, it is based on the strong assump-
tion that the shared network is sufficient to capture
the correlations between the tasks.

Tagging Model. Zheng et al. (2017) firstly con-
vert the joint extraction task to a sequence label-
ing problem and propose a unified tagging scheme.
Later Wei et al. (2020) and Wang et al. (2020)
propose different tagging schemes. Yuan et al.
(2020) propose a relation-attentive sequence label-
ing framework. Yu et al. (2020) adopt a novel de-
composition strategy, which first recognizes head
entities and then extracts corresponding tail entities
and relations.

Generative Model. Zeng et al. (2018) firstly pro-
pose a sequence-to-sequence model with copy
mechanism to generate relational triplets but fail to
generate multi-word entities. Subsequently, Zeng
et al. (2019), Nayak and Tou Ng (2020) and Sui
et al. (2020) adopt different encoder-decoder ar-
chitectures to generate relational triplets. Ye et al.
(2021) propose contrastive triple extraction with a
generative transformer.

https://github.com/HuiStudent/Cross-type_SDN
https://github.com/HuiStudent/Cross-type_SDN
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Figure 2: Overall structures. The red in (a) represents the calculation of type-attention mechanism and “TCm”
represents the m-th type-related cell. “ETCp” and “RTCq” in (b) represent the p-th entity type cell and q-th
relation type cell, respectively.

⊕
denotes concatenation operation.

Compared with these works, we propose a new
multi-task learning strategy to explicitly model the
interdependence between entity types and relation
types within one relation to synchronize their infor-
mation and make them mutually beneficial.

3 Type-Attention LSTM

In this section, we will introduce the general frame-
work of Type Attention LSTM (TA-LSTM). As
shown in Figure 2 (a), each TA-LSTM unit is com-
posed of a LSTM unit and a type-attention unit.
For each token wt, the LSTM unit is used to obtain
the contextual representation hct , while the type-
attention unit uses the scaled dot-product attention
(Vaswani et al., 2017) to obtain the type represen-
tation hlt by integrating m type-related cells for
controlling type information flow.

We adopt the standard LSTM (Graves and
Schmidhuber, 2005) to encode the contextual rep-
resentation for each token. At each time step
t(t ∈ [1, ..., n]), the current hidden state hct based
on a memory cell ct is calculated as follows:

 it
ot
ft
c̃t

=

 σ
σ
σ

tanh

 (W[ht−1;xt] + b)

ct = it � c̃t + (1− it)� ct−1

hct = ot � tanh(ct),

(1)

where [W;b] are trainable parameters. xt ∈ Rdw
is the word embedding of each token wt. σ repre-
sents the sigmoid activation function. it, ot, and
ft represent the input gate, output gate, and for-
get gate, respectively. The hidden state hct ∈ Rde

represents the vector representation with context
information.

Type-Attention Mechanism. Given xt and
ht−1, the key-value pair of the k-th (k ∈
[1, . . . ,m]) type-related cell is computed as:[

k
(t)
k

v
(t)
k

]
=

[
σ
σ

]
(Wk[ht−1;xt] + bk) , (2)

where [Wk;bk] represent the trainable parameters
specific to the k-th type-related cell. σ represents
the sigmoid activation function. k

(t)
k ∈ Rde and

v
(t)
k ∈ Rde represent the key and value of the k-th

type-related cell, respectively.
The above operations are repeated for m type-

related cells. At the time step t, we finally acquire
a set of key-value pairs K(t) = [k

(t)
1 , . . . ,k

(t)
m ] and

V(t) = [v
(t)
1 , . . . ,v

(t)
m ].

We regard the contextual representation hct as
the query. The scaled dot-product attention first
computes the dot products of the query with all
corresponding keys, divide each by

√
de, and ap-

ply a softmax function to obtain the weight α(t)

on the values. Then the type representation hlt is
computed as a weighted sum of the values:

hlt = attention(hct ,K
(t),V(t)) = α(t)V(t)

α(t) = softmax

(
hctK

(t)>

√
de

)
(3)

Finally, the hidden state ht ∈ Rde of each TA-
LSTM unit is computed as:

ht = hct + hlt (4)
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4 Synchronous Dual Network with
Cross-Type Attention

Given a sentence s = [w1, . . . , wn] of n words,
joint entity and relation extraction task aims to
identify a collection of relation triplets T =
{(ei, r, ej)|ei, ej ∈ E , r ∈ R}, where ei, ej , and
r represent the subject entity, the object entity, and
their semantic relation, respectively. Note that
the subject and object entities belong to the set
of entities E = {ei}Pi=1 existing in the sentence
and the relation is selected from a pre-defined set
R = {R1, . . . ,RM} with M valid relation types.

In this section, we will describe how to build a
synchronous dual network on top of the proposed
TA-LSTM and how to interact between entity types
and relation types via cross-type attention mech-
anism for joint entity and relation extraction. As
shown in Figure 2 (b), synchronous dual network
adopts two bi-directional TA-LSTM to encode the
vector representations with corresponding type in-
formation from the perspective of entity types and
relation types by synchronous dual learning, re-
spectively. Then synchronous dual learning adopts
the cross-type attention mechanism to model the
interaction between entity types and relation types
through introducing entity type information into
relation type learning or introducing relation type
information into entity type learning. Finally, the
vector representations with type information are
concatenated together for joint learning.

4.1 Synchronous Dual Learning
We design entity type learning and relation type
learning to obtain the entity type enhanced repre-
sentation het and the relation type enhanced repre-
sentation hrt , respectively.

Entity Type Learning. To encode the entity type
information, we first define p entity type cells
(ETCs) according to the number of entity types.
Following Jia and Zhang (2020), we regard each
entity type as a label, such as PER, LOC, ORG,
and so on. Entity type learning mainly aims at ex-
tracting entity type knowledge from a set of labeled
training data by training entity type cells.

From Equation (1) and (2), we can acquire the

contextual representation of h̄ct = [(
−→̄
h c
t +
←−̄
h c
t)/2]

and a set of key-value pairs K̄(t) = [k̄
(t)
1 , . . . , k̄

(t)
p ]

and V̄(t) = [v̄
(t)
1 , . . . , v̄

(t)
p ] related to entity types,

where k̄
(t)
l = [(

−→̄
k

(t)
l +

←−̄
k

(t)
l )/2] and v̄

(t)
l =

[(
−→̄
v

(t)
l +
←−̄
v

(t)
l )/2], (l ∈ [1, . . . , p]). The contextual

representation and the type representation related
to entity types are computed for the final vector
representation het = [

−→
h e
t ⊕
←−
h e
t ] in Equation (4).

Finally the sequence representations associated to
entity types are H(e) = [he1, . . . ,h

e
n].

To explicitly highlight entity type knowledge,
we design entity type prediction as an auxiliary
task in Figure 3 (a). Given a sentence s and its cor-
responding entity types Te = [T e1 , . . . , T

e
n] (T et ∈

[O, PER, LOC, ORG, . . .] and t ∈ [1, . . . , n]), we
regard entity type prediction as the sequence tag-
ging problem by converting the attention scores to
the aligned entity type distribution for wt:

p(T el |wt) = softmax(
h̄ct k̄

(t)>
l√
de

) (5)

And the negative log-likelihood loss is used for
training on the sentence s:

LET = −
n∑
t=1

log(p(T et |wt)) (6)

Relation Type Learning. Similar to entity type
learning, q kinds of new relation types are designed
to correspond to entity types by considering M
valid relation types of the pre-defined set R and
the triplet composition. As shown in Figure 3 (b),
these new relation types are composed of relation
labels and subject or object labels, namely “R1-S”,
“R1-O”, . . ., “RM -S”, “RM -O” and “None” (“None”
represents the invalid relation type). Obviously, the
number of new relation types q = 2×M + 1.

These new relation types are mainly used to learn
the distribution of the subject or object type af-
fected by valid relation types. Thus, we design
relation-related TA-LSTM as the other model of
synchronous dual network to extract new relation
type knowledge.

At the time step t, we can acquire the contex-

tual representation of ĥct = [(
−→
ĥ c
t +
←−
ĥ c
t)/2] and

a set of key-value pairs K̂(t) = [k̂
(t)
1 , . . . , k̂

(t)
q ]

and V̂(t) = [v̂
(t)
1 , . . . , v̂

(t)
q ] related to new relation

types, where k̂(t)
l = [(

−→
k̂

(t)
l +

←−
k̂

(t)
l )/2] and v̂

(t)
l =

[(
−→
v̂

(t)
l +

←−
v̂

(t)
l )/2], (l ∈ [1, . . . , q]) in Equation (1-

2). Finally, the sequence representations associ-
ated to new relation types are H(r) = [hr1, . . . ,h

r
n],

where the vector representation hrt = [
−→
h r
t ⊕
←−
h r
t ]

is computed by Equation (4).
Different from entity type prediction, the second

auxiliary task relation type prediction is a multi-
label classification problem because the same entity
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Jackie R. Brown Washington United States of AmericaSentence:

Entity type tags:

(a) entity type prediction

Sentence:

(b) relation type prediction

PER PER PER O

⋯ 

LOC LOC LOC LOC LOC

1 1 1 0R1-S 0 0 0 0 0

0 0 0 0 1 1 1 1 1R1-O

⋯
 

0 0 0 0Rn-S 1 0 0 0 0

0 0 0 0 0 1 1 1 1Rn-O

0 0 0 1 0 0 0 0 0None

Relation 

type

   tags：

was

⋯
 

⋯ 

Jackie R. Brown Washington United States of America⋯ was ⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

⋯ 

Figure 3: Entity type prediction & relation type prediction. The whole sentence in (a) and (b) comes from Figure 1.
We omit some words for simplicity. Entity type prediction and relation type prediction are regarded as different
sequence tagging tasks to learn entity types and relation types, respectively. “R1” and “Rn” represent relation
labels; “R1-S” and “R1-O” represent the labels of the subject and object entities in the relation triplet (S, R1, O),
respectively.

may exist in multiple relational triplets (namely
overlapping triplets). We adopt multiple identical
binary classifiers to detect different relation types
by assigning each token a binary tag (0/1) that
indicates whether the current token corresponds to
a new relation type. So the aligned relation type
distribution for wt is computed as:

p(T rl |wt) = sigmoid(
ĥct k̂

(t)>
l√
de

) (7)

where T rl belongs to q new relation type labels,
such as “R1-S”, “R1-O” and so on.

The binary cross-entropy loss is used for training
on the sentence s:

LRT = −
n∑
t=1

q∑
r=1

{ log(p(T rt |wt))I{T̂
r
t =1}

+ log(1− p(T rt |wt))I{T̂
r
t =0} }

(8)

where T̂ rt represents the gold relation type label.

4.2 Cross-Type Attention Mechanism
Since entity types and relation types are interdepen-
dent in the joint entity and relation extraction task,
it is important to synchronize their information and
make them mutually beneficial. So we propose a
novel cross-type attention mechanism to model the
interaction between entity types and relation types.

Given the entity type enhanced representation het
and a set of key-value pairs K̂(t) and V̂(t) related
to new relation types, the relation-entity representa-
tion cet is computed by Equation (3) via introducing
relation type information into entity type learning.

Similarly, given hrt and the entity type key-value
pairs K̄(t) and V̄(t), we can obtain the entity-
relation representation crt . Finally, we obtain the
new entity type enhanced representation h̃et and
new relation type enhanced representation h̃rt to
model the interdependency between entity types
and relation types by adding cet and crt into het and
hrt , respectively.

4.3 Joint Entity and Relation Extraction
We first concatenate the vector representations h̃et
and h̃rt to obtain the overall representation h̃t:

h̃t = h̃et ⊕ h̃rt (9)

Then the overall sequence representation H̃ =
[h̃1, . . . , h̃n] is used for NER and RE.

Named Entity Recognition. NER is a typical
sequence labeling task. Here we use the BIESO
tagging as the tagging scheme to recognize the
entity boundary accurately. Given a sentence s,
the probability distribution yt of a word wt over
these five labels is calculated based on the overall
representation h̃t ∈ H̃ as follows:

yt = softmax(Weh̃t + be) (10)

where [We;be] are trainable parameters.
The negative log-likelihood loss is used for train-

ing on the sentence s:

LE = −
n∑
t=1

log(yt) (11)
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Relation Extraction. Following Sun et al.
(2020), we classify all relations between pairs of
words in the sentence based on the overall represen-
tation H̃. Similar to relation type prediction, the
relation extraction task belongs to a multilabel clas-
sification problem. We design multiple identical
binary classifiers to detect different relations.

The probability distribution yr
′
i,j of the word pair

(wi, wj) belonging to the relation r′ ∈ R is com-
puted as follows:

m = φ(Wm(h̃i ⊕ h̃j) + bm)

yr
′
i,j = sigmoid(Wr′m + br′)

(12)

where [Wm;bm;Wr′ ;br′ ] are trainable parame-
ters. φ represents the ReLU activation function.

The binary cross-entropy loss is used for training
on the sentence s:

LR = −
M∑
r′=1

n∑
i,j=1

{ log(yr
′
i,j)

I{ŷr
′

i,j=1}

+ log(1− yr
′
i,j)

I{ŷr
′

i,j=0} }

(13)

where ŷr
′
i,j represents the gold relation label.

4.4 Training

Given a training instance s, the training objective
of joint entity and relation extraction is as follows:

L = λt1LET + λt2LRT + λeLE + λrLR +
λ

2
‖Θ‖2

(14)

where λt1, λt2, λe, and λr represent the different
task weights. λ is the L2 regularization parameters
and Θ represents the parameters set.

4.5 Inference

Following Fu et al. (2019), we adopts the average
prediction method to infer whether the extracted
triplet is right. Concretely, we can obtain the entity
set E by named entity recognition. Then, given
the subject entity ei = [wξi , . . . , wζi ] and the ob-
ject entity ej = [wξj , . . . , wζj ], the probability pr
that they belong to the r-th relation type can be
calculated as follows:

pr =
1

|ei|
1

|ej |

ζi∑
f=ξi

ζj∑
s=ξj

yrf,s (15)

where |ei| and |ej | represent the length of ei and ej ,
respectively. The triplet (ei, r, ej) is extracted only
if pr > θ, where θ is a free threshold parameter.

Class
NYT WebNLG

Train Dev Test Train Dev Test
#ALL 56195 5000 5000 5019 500 703
#Entity 3 15
#Relation 24 246

Table 1: Statistics of datasets. #ALL, #Entity, and #Re-
lation represent the total number of sentences, entity
types, and relation types, respectively.

5 Experiments

In this section, we empirically verify the effective-
ness of our proposed SDN on two public datasets.
In addition, we also investigate how different com-
ponents in the model impact the performance of
joint entity and relation extraction with different
settings.

5.1 Experimental Settings

Datasets. We conduct experiments to evaluate
SDN on two public datasets NYT (Riedel et al.,
2010) and WebNLG (Gardent et al., 2017). The
NYT dataset is produced by the distant supervision
method which automatically aligns Freebase with
New York Times news articles. It includes 3 en-
tity types (e.g., “PER”, “LOC”, and “ORG”) and
24 valid relation types. The WebNLG dataset is
originally created for the natural language gener-
ation task. Given a group of triplets, annotators
are asked to write a sentence which contains the
information of all triplets in this group. We directly
use the dataset preprocessed by Zeng et al. (2018),
which includes 15 entity types and 246 valid rela-
tion types. The statistics of NYT and WebNLG are
described in Table 1.

Hyperparameters. We initialize the word em-
beddings with Glove 300-dimension vectors (Pen-
nington et al., 2014). The dimensions of hid-
den states for TA-LSTM, entity extraction mod-
ule, and relation extraction module are set to 100,
200, 400, respectively. During training, we use
the Adam optimizer with the initial learning rates
of 1e−3 on NYT and 5e−4 on WebNLG, a maxi-
mum epoch number of 100 and the batch size of
30. To avoid overfitting, we apply Dropout with
a rate of 0.3. In SDNCROSS-TA-LSTM + BERT and
SDNTA-LSTM + BERT, we use bert-base-cased2

to initialize BERT (Devlin et al., 2018) and the
initial learning rates is 1e−5 for fine-tuning BERT.

2https://storage.googleapis.com/bert_models/2018_10_18/
cased_L-12_H-768_A-12.zip
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Methods NYT WebNLG
P R F1 P R F1

Multi-task

MRT (Sun et al., 2018) 65.2 40.6 50.0 - - -
RIN (Sun et al., 2020) 83.9 85.5 84.7 77.3 76.8 77.0
CopyMTL-One (Zeng et al., 2020) 72.7 69.2 70.9 57.8 60.1 58.9
CopyMTL-Mul (Zeng et al., 2020) 75.7 68.7 72.0 58.0 54.9 56.4

Tagging

PA-LSTM-CRF (Dai et al., 2019) 49.4 59.1 53.8 - - -
RSAN (Yuan et al., 2020) 85.7 83.6 84.6 80.5 83.8 82.1
TPLinker(LSTM) (Wang et al., 2020) 86.0 82.0 84.0 91.9 81.6 86.4
TPLinker(BERT)† (Wang et al., 2020) 91.4 92.6 92.0 88.9 84.5 86.7

Generative

OneDecoder (Zeng et al., 2018) 59.4 53.1 56.0 32.2 28.9 30.5
MultiDecoder (Zeng et al., 2018) 61.0 56.6 58.7 37.7 36.4 37.1
PNDec (Nayak and Tou Ng, 2020) 89.3 78.8 83.8 - - -
CGT(BERT)† (Ye et al., 2021) 94.7 84.2 89.1 92.9 75.6 83.4

Ours

SDNLSTM 86.5 81.7 84.1 85.1 82.5 83.7
SDNTA-LSTM 89.8 84.0 86.8 88.2 85.9 87.0
SDNCROSS-TA-LSTM 90.1 86.2 88.1 90.8 88.8 89.8
SDNTA-LSTM + BERT† 93.7 89.1 91.3 91.8 88.8 90.3
SDNCROSS-TA-LSTM + BERT† 94.2 91.5 92.8 92.7 89.6 91.1

Table 2: Results of different methods on NYT and WebNLG datasets. The reported results for the above baselines
are directly copied from the original published literature. † indicates the method leveraging the pre-trained language
model BERT. The bold represents the best results. The underlined represents the best results without BERT.

All experiments are conducted with an NVIDIA
GeForce RTX 2080 Ti.

Baselines and Evaluation Metrics. We com-
pare our method against three groups of state-of-
the-art methods of joint learning:

i) Multi-task baselines. MRT (Sun et al., 2018)
applies a minimum risk training method to high-
light connections between an entity model and a
relation model. RIN (Sun et al., 2020) uses a re-
current interaction network to dynamically learn.
SMHSA (Liu et al., 2020) uses an attention-based
joint model to identify the overlapping triplets.
CopyMTL-One and CopyMTL-Mul (Zeng et al.,
2020) utilize a multi-task framework to extract
multi-token entities.

ii) Tagging baselines. PA-LSTM-CRF (Dai
et al., 2019) uses a position-attention mechanism
to model n tag sequences. RSAN (Yuan et al.,
2020) utilizes a relation-attentive sequence labeling
framework. TPLinker (Wang et al., 2020) designs
a handshaking tagging scheme for joint entity and
relation extraction.

iii) Generative baselines. OneDecoder and
MultiDecoder (Zeng et al., 2018) utilize a Seq2Seq
model to generate relational triplets. PNDec
(Nayak and Tou Ng, 2020) uses pointer networks
with an encoder-decoder model. CGT (Ye et al.,
2021) adopts a framework of contrastive triple ex-
traction with a generative transformer.

We adopt Precision(P), Recall(R), and standard
Micro-F1 (F1) to evaluate the performance. A pre-
dicted triplet is regarded as correct only if the rela-
tion type and the two corresponding entities are all
the same as the golden standard annotation3. We
report the corresponding results of the test set when
the development set achieves the best results.

5.2 Main Results

As shown in Table 2, SDNCROSS-TA-LSTM is signif-
icantly superior to these multi-task baselines (over
at least 6.2% P, 0.7% R, 3.4% F1 on NYT and
13.5% P, 12.0% R, 12.8% F1 on WebNLG). It
shows that explicitly modeling the interdependence
of entity types and relation types related to entities
in the NER and RE tasks can obtain more useful
representations for joint entity and relation extrac-
tion.

Without considering the pre-training language
model BERT, SDNCROSS-TA-LSTM achieves better
performances than other tagging baselines and
generative baselines (over at least 0.8% P, 2.6%
R, 3.5% F1 on NYT and 5.0% R, 3.4% F1 on
WebNLG). This indicates that our model can pre-
dict as many accurate triples as possible while en-
suring a higher precision.

Recently, pre-trained language models such as

3For a fair comparison with previous recent works, we
select only the baselines with the exact match criteria.
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Methods NER RE
F1 ∆ F1 F1 ∆ F1

Ours 94.6 - 92.8 -
−LET 93.1 −1.5 91.4 −1.4
−LRT 93.7 −0.9 91.8 −1.0
−LET−LRT 91.2 −3.4 88.2 −4.6

Table 3: Ablation experiments on the NYT dataset.

BERT (Devlin et al., 2018) achieve state-of-the-art
results on joint entity and relation extraction. To
make a fair and direct comparison with our method,
we leverage the output of BERT as contextualized
word embeddings. SDNCROSS-TA-LSTM + BERT
achieves better results than TPLinker(BERT) (over
2.8% P, 0.8% F1 on NYT and 3.8% P, 5.1%
R, 4.4% F1 on WebNLG). SDNCROSS-TA-LSTM +
BERT outperforms CGT(BERT) over 7.3% R,
3.7% F1 on NYT and over 14.0% R, 7.7% F1

on WebNLG, and SDNCROSS-TA-LSTM + BERT is
comparable to CGT(BERT) in Precision (94.2% P
v.s. 94.7% P on NYT and 92.7% P v.s. 92.9% P
on WebNLG).

Generally speaking, generative triple extraction
requires a huge amount of manual annotation or
further constraint to improve the precision. But
our model focuses on how to extract more rela-
tion triples, which indicates the importance of the
entity type and relation type information for joint
entity and relation extraction. In fact, injecting the
effective entity and relation type information via
the interaction of entity types and relation types is
promising for joint entity and relation extraction.

To more explicitly illustrate the effectiveness
of our method, we make comparisons with some
deformed models: (i) SDNLSTM, which only
uses bi-directional LSTM as encoders without
any type knowledge and the cross-type inter-
action; (ii) SDNTA-LSTM, which uses two bi-
directional TA-LSTM to encode different type
information and only introduce the knowledge
of entity and relation type without considering
cross-type interaction; (iii) SDNCROSS-TA-LSTM,
which not only introduces the type knowledge
but also models the interaction between entity
and relation types; (iv) SDNTA-LSTM + BERT,
which adds BERT to (ii) SDNTA-LSTM; (v)
SDNCROSS-TA-LSTM +BERT, which adds BERT to
(iii) SDNCROSS-TA-LSTM. SDNTA-LSTM achieves
better results of 2.7% F1 on NYT and 3.3% F1

on WebNLG compared with SDNLSTM, indicat-

Figure 4: Analysis of the inference threshold θ

ing the effectiveness of TA-LSTM for capturing
more type informations. SDNCROSS-TA-LSTM out-
performs SDNTA-LSTM over 1.3% F1 on NYT
and over 2.8% F1 on WebNLG, which shows
that explicitly modeling the interaction between
entity and relation types within one relation
can further improve performance. In addition,
SDNCROSS-TA-LSTM + BERT and is significantly
superior to SDNTA-LSTM + BERT (over 1.5% F1

on NYT and 0.8% F1 on WebNLG), indicating the
effectiveness of cross-type attention mechanism.

5.3 Ablation Experiments

We conduct ablation experiments of auxiliary tasks
on NYT. The results are listed in Table 3.

When we only ablate LET , the results on the two
subtasks suffer significant declines (−1.5% F1 on
NER and −1.4% F1 on RE, respectively). When
we only ablate LRT , the results on NER and RE
also suffer significant declines (over −0.9% F1 on
both subtasks). When we both ablate LET and
LRT , our model achieves similar results (−3.4%
F1 on NER and −4.6% F1 on RE, respectively).
On the one hand, it demonstrates that two auxiliary
tasks of entity type prediction and relation type
prediction can highlight useful type information as
well as decrease the noise. On the other hand, it
indicates that our model depends heavily on both
auxiliary tasks to capture the right type of knowl-
edge.

5.4 Analysis of Inference Threshold

We conduct analysis experiments to explore the
value of threshold θ of the inference methods. Fig-
ure 4 illustrates how performance varies on differ-
ent inference threshold θ of the NYT and WebNLG
datasets. It can be seen that the threshold infer-
ence method effectively adjusts the performance
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Sentence Golden Result Result

“This is rare, and it’s
messy,” said Gary
Chaison, professor
of industrial relations
at Clark University
in Worcester, Mass..

(Gary Chaison, /business/person/company, Clark University)
(Gary Chaison, /people/person/place_lived, Worcester)
(Worcester, /location/location/contains, Clark University)

RIN:
(Gary Chaison, /business/person/company, Clark University)
(Worcester, /location/location/contains, Clark University)
SDNTA-LSTM:
(Gary Chaison, /business/person/company, Clark University)
(Gary Chaison, /people/person/place_lived, Worcester)
(Worcester, /location/location/contains, Clark University)

An article yesterday
about the Darfur crisis
in Sudan misstated
a Security Council
response to a report
to the Council by
a United Nations
envoy, Ahmedou Ould
-Abdallah.

(Darfur, /location/administrative_division/country, Sudan)
(Sudan, /location/country/administrative_divisions, Darfur)
(Sudan, /location/location/contains, Darfur)

RIN:
(Darfur, /location/administrative_division/country, Sudan)
(Sudan, /location/administrative_division/country, Darfur) 7

(Sudan, /location/location/contains, Darfur)
SDNTA-LSTM:
(Darfur, /location/administrative_division/country, Sudan)
(Sudan, /location/country/administrative_divisions, Darfur)
(Sudan, /location/location/contains, Darfur)

Table 4: Examples from the NYT test set. Red, blue, and green represent entities whose types are PER, LOC, and
ORG, respectively. 7 denotes incorrent relational triplets.

of SDN with different choices of θ. With the in-
crease of θ from 0.1 to 0.6, the F1 scores on NYT
and WebNLG show a consistent trend of first in-
creasing and then decreasing. When the θ values
of NYT and WebNLG are set to 0.4 and 0.3 re-
spectively, the average inference method achieves
the best performance on both datasets. Through
detailed analysis of NYT and WebNLG, we find
that this gap is due to the difference of the entity
length. More precisely, the average entity length
and max entity length on the NYT test set are 1.4
and 8, respectively. while the average entity length
and max entity length on the WebNLG test set are
2.2 and 15, respectively. Longer entities are harder
to identify entities and relations in the NER and
RE tasks.

5.5 Case Study

As shown in Table 4, we present two exam-
ples from the NYT test set as illustrations.
The relation type of “(Gary Chaison (PER) ,
Worcester (LOC))” is “/people/person/place_lived”.
RIN only identifies “(Gary Chaison, /busi-
ness/person/company, Clark University)” and
“(Worcester, /location/location/contains, Clark Uni-
versity)”, but fails to identify “(Gary Chaison,
/people/person/place_lived, Worcester)”. In ad-
dition, RIN does not recognize “(Sudan, /lo-
cation/country/administrative_divisions, Darfur)”
correctly. Because RIN dynamically learns the in-
teraction of the two subtasks without considering
any type of information, and some details may be
lost to some extent. In contrast, our method cor-
rectly extracts all relation triplets, which shows that
explicitly modeling the interaction between entity
types and relation types can synchronize their in-

formation and make them mutually beneficial for
joint entity and relation extraction.

6 Conclusion

In this paper, we propose a Synchronous Dual
Network (SDN) with cross-type attention for joint
entity and relation extraction. Firstly, we use two
isomorphic bi-directional type-attention LSTM as
encoders to learn the entity type enhanced repre-
sentations and the relation type enhanced repre-
sentations from two different perspectives. Then
the entity type information (or the relation type
information) is introduced into the relation type en-
hanced representations (or the entity type enhanced
representations) to explicitly model the interaction
between entity types and relation types via cross-
type attention mechanism. In addition, the pro-
posed type-attention LSTM is a general structure to
obtain the preferred type distribution. Experiments
on two public datasets verify the effectiveness of
the proposed model, achieving state-of-the-art per-
formance.
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