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Abstract

Low-resource Relation Extraction (LRE) aims
to extract relation facts from limited labeled
corpora when human annotation is scarce. Ex-
isting works either utilize self-training scheme
to generate pseudo labels that will cause
the gradual drift problem, or leverage meta-
learning scheme which does not solicit feed-
back explicitly. To alleviate selection bias
due to the lack of feedback loops in exist-
ing LRE learning paradigms, we developed
a Gradient Imitation Reinforcement Learning
method to encourage pseudo label data to im-
itate the gradient descent direction on labeled
data and bootstrap its optimization capability
through trial and error. We also propose a
framework called GradLRE, which handles
two major scenarios in low-resource relation
extraction. Besides the scenario where unla-
beled data is sufficient, GradLRE handles the
situation where no unlabeled data is available,
by exploiting a contextualized augmentation
method to generate data. Experimental results
on two public datasets demonstrate the effec-
tiveness of GradLRE on low resource rela-
tion extraction when comparing with baselines.
Source code is available1.

1 Introduction

Relation Extraction (RE) aims to discover the se-
mantic relation that holds between two entities and
transforms massive corpus into structured triplets
(entityhead, relation, entitytail). For example, from
“A letterhead was delivered to my officetail...", we
can extract a relation Entity-Destination
between head and tail entities. Neural RE meth-
ods leverage high-quality annotated data or hu-
man curated knowledge bases to achieve decent
results (Zeng et al., 2017; Zhang et al., 2017). How-
ever, these manually labeled data would be labor-
intensive to obtain. This motivates a Low Resource

1https://github.com/THU-BPM/GradLRE
†Corresponding Authors.

!! !!"!#!#

A letterhead was delivered to my officetail...
!! : Entity-Destination
!!" : Entity-Origin

Figure 1: Gradient descent direction on labeled data
(gl) and unlabeled data with correct or incorrect pseudo
label (gu, g

′

u).

Relation Extraction (LRE) task where annotations
are scarce.

Lots of efforts are devoted to improve the model
generalization ability beyond learning directly from
existing, limited annotations. Distant Supervision
methods leverage facts stored in external knowl-
edge bases (KBs) to obtain annotated triplets as
the supervision (Mintz et al., 2009; Zeng et al.,
2015). However, these methods should make a
strong assumption that two co-occurring entities
convey KB relations regardless of specific contexts,
which makes model generate relations based on
contextless rules and limits the generalization abil-
ity. To leverage unlabeled data, Rosenberg et al.
(2005) propose to assign pseudo labels on unla-
beled data and leverage pseudo labels to iteratively
improve the generalization capability of the model.
However, during the training process, self-training
models suffer from the gradual drift problem (Cur-
ran et al., 2007; Zhang et al., 2016) caused by noisy
pseudo labels. Hu et al. (2021) alleviate the noise in
pseudo labels by adopting a meta-learning scheme
during pseudo label generation, then leveraging
pseudo label selection and exploitation scheme to
obtain high-confidence pseudo labels. However,
when limited annotations are directly used during
training, the trained models inevitably possesses
selection bias towards, if not overfit on, limited
labeled data, which impedes LRE models from
further generalizing beyond the annotations.

To improve the generalization ability for LRE,
we propose to use existing annotations as a guide-

https://github.com/THU-BPM/GradLRE
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line instead of having them directly involved in
training, as well as introducing an explicit feedback
loop when consuming annotations. More specif-
ically, we first encourage pseudo-labeled data to
imitate labeled data on the gradient descent direc-
tions during the optimization process. We illustrate
this idea in Figure 1. gl represents the average gra-
dient descent direction on labeled data. gu and g

′
u

represent the correct and incorrect pseudo labels
on unlabeled data, which guides the gradient de-
scent direction in a positive/negative fashion (Du
et al., 2018; Sariyildiz and Cinbis, 2019; Yu et al.,
2020). Based on how well the pseudo-labeled data
mimics the instructive gradient descent direction
obtained from limited labeled data, we then de-
sign a reward to quantify the behavior and aim
to use the reward as an explicit feedback. This
learnable setting can be naturally formulated into
a reinforcement learning framework, which aims
to learn an imitation policy that maximizes the re-
ward through trial and error. When comparing with
methods where annotations are directly used in the
traditional learning schema, this formulation also
allows a feedback mechanism and thus increases
generalization ability beyond limited annotations.
We name our method as Gradient Imitation Rein-
forcement Learning in this paper.

We propose a framework called GradLRE,
which integrates Gradient Imitation Reinforcement
Learning and is able to handle two major scenarios
in LRE: 1) a typical scenario when limited labeled
data and large amounts of unlabeled data are avail-
able, and an extreme yet practical scenario where 2)
even unlabeled data is absent: only limited labeled
data is available. GradLRE handles the former
scenario via pseudo labeling optimized through
Gradient Imitation Reinforcement Learning and
tackles the later scenario by using a Contextualized
Data Augmentation module.

To summarize, the main contributions of this
work are as follows:

• We propose a gradient imitation reinforce-
ment learning method that alleviates the bias
from training directly with limited annotation,
and encourages the RE model to effectively
generalize beyond limited annotations.

• We develop a LRE framework GradLRE that
handles two low-resource relation extraction
scenarios by leveraging both Gradient Imita-
tion Reinforcement Learning and Contextual-
ized Data Augmentation.
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Figure 2: Overview of the proposed GradLRE frame-
work for Low Resource Relation Extraction. 1) and 2)
represent two LRE scenarios, respectively. Blue arrows
represent Gradient Imitation Reinforcement Learning
and Orange represents Contextualized Data Augmenta-
tion.

• We show that GradLRE outperforms strong
baselines. Extensive experiments validate the
effectiveness of the proposed techniques.

2 Proposed Model

The proposed framework GradLRE consists
of three modules: Relational Label Generator
(RLG), Gradient Imitation Reinforcement Learn-
ing (GIRL) and Contextualized Data Augmentation
(CDA). As illustrated in Figure 2, two low resource
relation extraction scenarios are handled. For the
first scenario where limited labeled data and large
amounts of unlabeled data are available, the input
of RLG is labeled data and unlabeled data. Labeled
data consists of sentences and relation mentions:
[Sentence, Entity1, Entity2, Relation]. For the sec-
ond scenario where only limited labeled data is
available, we adopt CDA to generate unlabeled
data and utilize these unlabeled data the same way
as in the first scenario.

In a traditional self-training setting, we fine-tune
RLG directly using the labeled data, and let RLG
assign pseudo labels on unlabeled data as pseudo-
labeled data. However, we argue that such learning
paradigm suffers from selection bias due to the lack
of feedback loops: the bias occurs when a model
itself influences the generation of data which is
later used for training. In this work, we complete
the feedback loop and alleviate such bias by lever-
aging GIRL to learn a policy that maximizes the
likelihood between the expected gradient optimiza-
tion direction from pseudo labels, and the average
gradient optimization direction on labeled data.

2.1 Relational Label Generator
The Relational Label Generator (RLG) aims to ob-
tain contextualized relational features for each in-
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put sentence based on the entity pair, and classify
the entity pair into specific relations. In this work,
we assume named entities in the sentence have been
recognized in advance.

For a sequence of words in a sentence x where
two entities E1 and E2 are mentioned, we fol-
low the labeling schema adopted in Soares et al.
(2019) and argument x with four reserved tokens
to mark the beginning and the end of each entity.
We inject the [E1], [/E1], [E2], [/E2] to x as
the input token sequence for RLG, for example,
“A [E1] letter [/E1] was delivered to my [E2] of-
fice [/E2]...". Considering that the relational rep-
resentation between entity pairs are usually con-
tained in the context, we leverage pretrained deep
bi-directional transformers networks: BERT (De-
vlin et al., 2019) to effectively encode entity pairs,
along with their context information. We concate-
nate the outputs corresponding to [E1] , [E2] po-
sitions as h ∈ R2·hR where h = [h[E1],h[E2]] and
hR is the contextualized relational representation
length. The RLG then classifies these representa-
tions into specific relations with a fully connected
network. We adopt this architecture to generate
labels on sentences, and denoted the RLG process
as fθ(x,E1, E2).

2.2 Gradient Imitation Reinforcement
Learning

Generally, we assign pseudo labels via RLG on
unlabeled data as pseudo-labeled data, and add
the selected pseudo-labeled data into the existing
labeled data to iteratively improve RLG. We argue
that without a feedback loop measuring the quality
of pseudo labels, the model is more likely to suffer
from selection bias and is impeded towards a better
generalization ability.

We aim to generate pseudo labels with less label-
ing biases and errors especially with scarce annota-
tions. To achieve this goal, we focus on improving
the RLG performance by introducing gradient im-
itation to define and quantify what an appealing
behavior looks like. We define the partial deriva-
tives of the loss function corresponding to RLG
parameters on the labeled data as standard gradient
descending, and assume that when pseudo-labeled
data are correctly labeled in RLG, partial deriva-
tives to the RLG parameters on the pseudo-labeled
data would be highly similar to standard gradient
descending. Following this assumption, we pro-
pose Gradient Imitation Reinforcement Learning

(GIRL), which optimizes RLG under a reinforce-
ment learning framework (Williams, 1992). Now
we explain the reinforcement learning process in
detail.
State: State is used to signal the optimization sta-
tus. We use s(t) to denote the state. s(t) consists of
the updated labeled dataset Dl at step t, along with
a standard gradient direction gl at step t.
Policy: Our policy is learned to assign correct
pseudo label on unlabeled data. The policy net-
work is parameterized by the RLG network fθ.
Action: The action is to predict relational la-
bel on unlabeled data x̃(t) as pseudo-labeled data
(x̃(t), ỹ(t)) given the State at step t. We consider
the relation that corresponds to the maximum prob-
ability after softmax as the pseudo label:

ỹ(t) = argmax(fθ(x̃
(t,E1,E2))). (1)

Reward: We use reward to signal labeling biases
from the current policy on pseudo-labeled data.
Our goal is to minimize the approximation error
of the gradients obtained over the pseudo-labeled
data. In other words, we maximize the correlation
between gradients over the pseudo-labeled data and
those over the labeled data.

We define the standard gradient descent direction
on the all N labeled data as gl and the expected
gradient descent direction on the pseudo-labeled
data as gp respectively:

gl
(n)(θ) = ∇θLl

(
x(n), y(n); θ

)
, (2)

gp
(t)(θ) = ∇θLp

(
x̃(t), ỹ(t); θ

)
, (3)

where ∇θ refers to the partial derivatives of the
cross entropy loss L corresponding to Policy fθ
with respect to θ. Considering that the outliers in
the labeled data will affect the direction of standard
gradient descent, we approximate gl over all N
labeled data and we define Ll and Lp as:

Ll =
1

N

N∑
n=1

loss(fθ(x
(n,E1,E2)), one_hot(y(n))),

(4)

Lp =loss(fθ(x̃
(t,E1,E2)), one_hot(ỹ(t))), (5)

where loss is the cross entropy loss function,
fθ(x

(n,E1,E2)) returns a probability distribution
over all relation categories for the n-th sample and
one_hot(y(n)) returns a one-hot vector indicating
the target label assignment.
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Since the most important guidance obtained by
the gradient vector gl is its gradient descending
direction, so we measure the discrepancy between
gl and gp for state s(t) by defining their cosine
similarity as the reward:

R(t) =
gl(θ)

Tgp(θ)

‖gl(θ)‖2 ‖gp(θ)‖2
. (6)

The range of R(t) is [-1,1]. For those pseudo-
labeled data (x̃(t), ỹ(t)) ∈ Dp with R(t) > λ,
λ = 0.5, we treat them as positive reinforcement
to improve the generalization ability of RLG net-
work. We add these selected pseudo-labeled data to
the labeled data and correct the standard gradient
descending direction:

Dl ← Dl ∪ Dp, (7)

gl ←
1

N + 1
(Ngl + gp). (8)

For Eq. (8), we set the weight of the updated gradi-
ent direction according to the number of samples,
where the standard gradient direction is calculated
using all N labeled samples and each pseudo la-
beled sample. The positive feedback obtained from
GIRL via trial and error can attribute the improve-
ment of RLG network (Policy) to assign correct
pseudo label for next unlabeled data x̃(t) (State).
Reinforcement Learning Loss
We adopt the REINFORCE algorithm (Williams,
1992) and Policy Gradient for optimization. We
calculate the loss over a batch of pseudo-labeled
samples. The RLG will be optimized by GIRL on
each batch according to the following reinforce-
ment learning loss:

L(θ) =
T∑
t=1

loss
(
fθ(x̃

(t,E1,E2)),

one_hot(ỹ(t))
)
∗R(t),

(9)

where loss is the cross entropy loss function, R(t)

is the reward and ỹ(t) ∼ π(·|x̃(t,E1,E2); θ). The π
function means Policy in reinforcement learning.
In our setting, it is parameterized as fθ, which is
learned to assign pseudo labels on unlabeled data
and we minimize L(θ) to optimize the θ. T repre-
sents a total number of time steps in a reinforce-
ment learning episode and is set to 16, the same
number as the batch size. For each high reward
R(t) > λ, λ = 0.5 pseudo-labeled data, we use it
to dynamically update the labeled dataset / stan-
dard gradient direction and guide the reinforcement
learning process to the next State.

Note that fθ is first pretrained using all the la-
beled data in a supervised way. During the pro-
cess of calculating reinforcement learning loss, our
model follows the Markov’s decision process and
the labeled data Dl and standard gradient descend-
ing direction gl will be dynamically corrected by
the selected pseudo-labeled data Dp, which means
that for each State, Policy will be updated over
time t. The RLG could solicit positive feedback
obtained using GIRL via trial and error.

2.3 Contextualized Data Augmentation

Except the typical LRE scenario where both lim-
ited labeled data and large amounts of unlabeled
data are available, GradLRE handles an extreme
yet practical LRE scenario additionally, where only
limited labeled data is available. As shown by the
orange arrow in Figure 2, we propose to use a con-
textualized augmentation method, namely CDA, to
generate more unlabeled data.

Given a sentence x where two entities E1 and
E2 are mentioned in the labeled data, CDA sam-
ples spans of the sentence as [MASK] until the
masking budget has been spent (e.g., 15% of x)
and finally fills the mask with tokens using the pre-
trained language model. Inspired by Joshi et al.
(2020), we sample a span length from a geometric
distribution ` ∼ Geo(p) where ` ∈ [1, 10]. p will
affect the probability of selecting different span
lengths. A larger p leads to a shorter span. We
follow Joshi et al. (2020) and choose p = 0.2. The
Geo(0.2) yields a mean span length of (`) = 3.8
and shorter spans are more inclined to be chosen.
We skip E1 and E2 as [MASK] and also require
the starting point of the span must be the begin-
ning of one word which ensures to mask complete
words.

For example, we may mask the word DELIV-
ERED TO in “A letter was delivered to my office in
this morning.” and obtain an augmented sentence
“A letter was sent from my office in this morning.”.
Compared with the original labeled data, the aug-
mented sentence may have a different relation la-
bel. We therefore use RLG, which has a strong
discriminate power, to assign a correct label to the
augmented unlabeled sentence. Since “no relation”
has been defined as one valid relation category in
the dataset, RLG has the capability to safely assign
one augmented sentence as “no relation” when it is
out of scope.
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Methods / %Labeled Data SemEval TACRED

5% 10% 30% 3% 10% 15%
LSTM (Hochreiter and Schmidhuber, 1997) 22.65±3.35 32.87±6.79 63.87±0.65 28.68±4.29 46.79±0.99 49.42±0.59

PCNN (Zeng et al., 2015) 41.82±4.48 51.34±1.87 63.72±0.51 40.02±5.23 50.35±3.28 52.50±0.39

PRNN (Zhang et al., 2017) 55.34±1.08 62.63±1.42 69.02±1.01 39.11±1.92 52.23±1.20 54.55±1.92

BERT (Devlin et al., 2019) 70.71±1.24 71.93±0.99 78.55±0.87 40.11±3.88 53.17±1.67 55.55±0.82

Self-TrainingBERT (Rosenberg et al., 2005) 71.34±1.68 74.25±1.10 81.71±0.79 42.11± 1.04 54.17±0.53 56.52±0.40

Mean-TeacherBERT (Tarvainen and Valpola, 2017) 70.05±3.89 73.37±1.42 80.61±0.81 44.34±1.78 53.08±1.01 53.79±1.38

RE-EnsembleBERT (Lin et al., 2019) 72.35±2.63 75.71±1.39 81.34±0.74 42.78±1.89 54.83±0.95 55.68±1.21

DualRE-PairwiseBERT (Lin et al., 2019) 74.35±1.76 77.13±1.10 82.88±0.67 43.06±1.73 56.03±0.55 57.99±0.67

DualRE-PointwiseBERT (Lin et al., 2019) 74.02±1.68 77.11±1.02 82.91±0.62 43.73±1.60 56.28±0.61 57.72±0.49

MRefGBERT (Li and Qian, 2020) 75.48±1.34 77.96±0.90 83.24±0.71 43.81±1.44 55.42±1.40 58.21±0.71

MetaSREBERT (Hu et al., 2021) 78.33±0.92 80.09±0.78 84.81±0.44 46.16±1.02 56.95±0.34 58.94±0.36

GradLREBERT (Ours) 79.65±0.68 81.69±0.57 85.52±0.34 47.37±0.74 58.20±0.33 59.93±0.31

BERT w. gold labels 84.64±0.28 85.40±0.34 87.08±0.23 62.93±0.41 63.66±0.23 64.69±0.29

Table 1: F1 (%) comparisons on the SemEval and TACRED datasets with various amounts of labeled data and 50%
unlabeled data.

3 Experiments

We conduct extensive experiments on two datasets
to prove the effectiveness of our Gradient Imitation
Reinforcement Learning for low resource relation
extraction tasks, and give a detailed analysis of
each module to show the advantages of GradLRE.

3.1 Datasets

We follow Hu et al. (2021) to conduct experi-
ments on two public RE datasets, including the
SemEval 2010 Task 8 (SemEval) (Hendrickx et al.,
2010), and the TAC Relation Extraction Dataset
(TACRED) (Zhang et al., 2017). SemEval is a
standard benchmark dataset for evaluating relation
extraction models, which consists of training, vali-
dation, test set with 7199, 800, 1864 relation men-
tions respectively, with 19 relations types in to-
tal (including no_relation), of which no_relation
percentage is 17.4%. TACRED is a large-scale
crowd-sourced relation extraction dataset which
is collected from all the prior TAC KBP relation
schema. The dataset consists of training, valida-
tion, test set with 75049, 25763, 18659 relation
mentions respectively, with 42 relation types in to-
tal (including no_relation), of which no_relation
percentage is 78.7%.

3.2 Baselines and Evaluation metrics

GradLRE is flexible to integrate different contex-
tualized encoders. From Table 1, we first compare
several widely used supervised relation encoders
with only labeled data: LSTM (Hochreiter and
Schmidhuber, 1997), PCNN (Zeng et al., 2015),
PRNN (Zhang et al., 2017), BERT (Devlin et al.,
2019). Among them, BERT achieved the state-of-
the-art performance. So we adopt BERT as the base

encoder for both GradLRE and other baselines for
a fair comparison.

For baselines, we compare GradLRE with other
six representative methods: (1) Self-Training
(Rosenberg et al., 2005) iteratively improves model
by predicting unlabeled data with pseudo labels
and adds these pseudo label data to labeled data.
(2) Mean-Teacher (Tarvainen and Valpola, 2017)
is jointly optimized by a perturbation-based loss
and a training loss to ensure that the model makes
consistent predictions on similar data. (3) DualRE
(Lin et al., 2019) treats relation extraction as a dual
task from relations to sentences and combines the
loss of a prediction module and a sentence retrieval
module. The difference between Pairwise and
Pointwise schemes lie in whether the retrieved doc-
uments are given scores or a relative order. (4) RE-
Ensemble (Lin et al., 2019) replaces the retrieval
module in the proposed DualRE framework with
the same prediction module. (5) MRefG (Li and
Qian, 2020) semantically connects the unlabeled
data to the labeled data by constructing reference
graphs, including entity reference, verb reference
and semantics reference. (6) MetaSRE (Hu et al.,
2021) is the state-of-the-art method that generates
pseudo labels on unlabeled data by meta learning
from the successful and failed attempts on classifi-
cation module as an additional meta-objective.

Finally, we present another model: BERT w.
gold labels, which indicates the upper bound of
LRE models when all unlabeled data has gold la-
bels during training with labeled data.

For the evaluation metrics, we choose F1 score
as the main metric. Note that following Hu et al.
(2021), the correct predictions of no_relation are
ignored.
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3.3 Implementation Details

For the two datasets, strictly following the settings
used in Hu et al. (2021), we use stratified sampling
to divide training set into labeled and unlabeled
datasets of various proportions to ensure all sub-
sets share the same relation label distribution. For
SemEval, we sample 5%, 10% and 30% of the
training set, for TACRED, we sample 3%, 10%
and 15% of the training set as labeled datasets. For
both datasets, we sample 50% of the training set as
unlabeled dataset. As suggested in Hu et al. (2021),
we split all unlabeled data into 10 segments. In
each iteration, RLG is optimized based on one seg-
ment of the data. The RLG gradually improves
as we obtain more high-quality pseudo labels one
iteration after another. We implement this strategy
for our model and the baselines. For the evaluation
metrics, we choose F1 score as the main metric.

For RLG, we use the BERT default tokenizer
with max-length as 128 to preprocess data. We
use pretrained BERT-Base_Cased as the initial pa-
rameter to encode contextualized entity-level rep-
resentation. The fully connected network is de-
fined with layer dimensions of 2hR-hR-label_size,
where hR = 768. We use BertAdam with 1e−4
learning rate and warmup with 0.1 to optimize the
loss. For GIRL, the total time step T is set to 16,
the same number as the batch size. We use AdamW
(Loshchilov and Hutter, 2018) with 5e−5 learning
rate to optimize the reinforcement learning loss.

3.4 Main Results

Table 1 shows the mean and standard deviation
F1 results with 5 runs of training and testing on
SemEval and TACRED when leveraging various
labeled data and 50% unlabeled data. All meth-
ods could gain performance improvements from
the unlabeled data when compared with the model
that only uses labeled data (BERT), which demon-
strates the effectiveness of unlabeled data in the
LRE setting. We could observe that GradLRE out-
performs all baseline models consistently. More
specifically, compared with the previous SOTA
model MetaSRE, GradLRE on average achieves
1.21% higher F1 on SemEval and 1.15% higher F1
on TACRED across various labeled data. When
considering standard deviation, GradLRE is also
more robust than all the baselines.

Considering LRE when labeled data is very
scarce, e.g. 5% for SemEval and 3% for TA-
CRED, GradLRE could achieve an average 1.27%

Figure 3: F1 (%) Performance with various unlabeled
data and 10% labeled data on SemEval (left) and TA-
CRED (right).

F1 boost compared with MetaSRE. When more
labeled data is available, 30% for SemEval and
15% for TACRED, the average F1 improvement
is consistent, but reduced to 0.85%. We attribute
the consistent improvement of GradLRE to the ex-
plicit feedback which GIRL is adopted and learning
via trial and error: we use Gradient Imitation as a
proxy for the classification loss in optimizing RLG.
The guidance from the gradient direction, as a part
of the gradient imitation process, is more instruc-
tive, explicit, and generalizable than the implicit
signals from training directly on labeled data.

We further vary the ratio of unlabeled data and
report performance in Figure 3. F1 performance
on a fixed 10% labeled data and 10%, 30%, 50%,
70%, 90% unlabeled data are reported. Note that
both labeled data and unlabeled data come from the
training set, so we can provide unlabeled data with
an upper limit of 90%. We could see that almost all
methods have performance gains with the addition
of unlabeled data and GradLRE achieves consis-
tently better F1 performance, with a clear margin,
when comparing with baselines under all different
ratios of unlabeled data.

3.5 Analysis and Discussion

Effectiveness of Gradient Imitation Reinforce-
ment Learning
The main purpose of GIRL is to guide RLG to
generate pseudo labels with the similar optimiza-
tion outcomes as labeled data on the unlabeled
data. GIRL minimizes the discrepancy between
the gradient vectors obtained from the labeled data
and generated data. To demonstrate the effective-
ness of Gradient Imitation Reinforcement Learn-
ing, we first conduct an ablation study in this sec-
tion. GradLRE w/o Gradient Imitation Reinforce-
ment Learning is essentially the same as the Self-
TrainingBERT baseline, which iteratively updates
model with the synthetic set containing labeled data
and generated data without Gradient Imitation Re-
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Figure 4: Pseudo label F1 (%) Performance with GIRL
based on SemEval (left) and TACRED (right).

My brother has entered my room without knocking.
Label: Entity-Destination
Prediction w/o GIRL: Other
Prediction w. GIRL: Entity-Destination

The disc in a disc music box plays this function,
with pins perpendicular to the plane surface...
Label: Content-Container
Prediction w/o GIRL: Component-Whole
Prediction w. GIRL: Content-Container

Ditto for his funny turn as a man who instigates
the kidnapping of his own wife in ...
Label: Cause-Effect
Prediction w/o GIRL: Other
Prediction w. GIRL: Cause-Effect

Table 2: Predictions with/without GIRL on SemEval,
where red and blue represent head and tail entities re-
spectively.

inforcement Learning. From Table 1, we observe
GradLRE w/o Gradient Imitation Reinforcement
Learning (Self-TrainingBERT ) gives us 5.38% loss
on F1, averaged over all various amounts of labeled
data on two datasets.

We identify that the performance gains of
GradLRE come from the improved pseudo label
quality by adopting GIRL. To validate this, we
draw a box plot to show the pseudo label F1. From
Figure 4, we could find for the two datasets with
different ratios of the labeled data, GIRL could un-

Figure 5: GradLRE gradient descent directions on la-
beled data and pseudo label data. The dotted line indi-
cates the average gradient direction on labeled data.

% Labeled Data L L + CDA L + U

SemEval
5% 72.71 75.52 79.65
10% 73.93 81.47 81.69
30% 80.55 84.63 85.52

TACRED
3% 41.11 43.34 47.37
10% 53.23 57.07 58.20
15% 55.35 58.89 59.93

Table 3: F1 (%) of GradLRE with various percentages
of labeled data under different LRE scenarios.

doubtedly improve the F1 performance of pseudo
labels. In the case of 30% SemEval and 15% TA-
CRED where labeled data is less scarce, GIRL can
obtain more accurate gradient directions based on
an increased set of labeled data. As a result, pseudo
label performance improvements are more signifi-
cant.

More specifically, we show the gradient descent
direction of GradLRE on labeled data and pseudo
label data in Figure 5. Considering the overly-large
parameters in RLG, we use Principal Component
Analysis (Wold et al., 1987) to reduce the dimen-
sion of the parameters to 2, and reflect the direction
of gradient descent according to the update of the
parameters. Although the optimization direction of
pseudo label data fluctuates at the beginning, GIRL
is gradually improving and ends up closer to the
ideal local minima. When GIRL is not used, the
optimization is appealing at the first because of the
initial positive gains from the self-training schema.
However, the error-prone pseudo labels obtained
without instructive feedback gradually push the
optimization away from the local minima, which
leads to reduced generalization ability.

We further study cases where pseudo labels are
improved with GIRL on SemEval, and present
them in Table 2. GradLRE w/o GIRL tends to
predict the pseudo label as Other with the most
occurrences, most likely because Other being
the dominating class in the dataset. GradLRE
w. GIRL is less sensitive to the label distribu-
tion in the data and assigns correct labels. We
also observe cases where GIRL is doing bet-
ter at distinguishing the nuances between simi-
lar relations such as Content-Container and
Component-Whole.
Handling various LRE scenarios

Considering both labeled/unlabeled data as the
resource, we introduce the following LRE scenar-
ios: 1) L+U: Limited labeled data and 50% unla-
beled data. 2) L+CDA: Only limited labeled data is
available. No unlabeled data is available – we lever-
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Figure 6: F1 (%) Performance with various unlabeled
data and 10% labeled data on SemEval (left) and TA-
CRED (right).

Original: A letter was delivered to my office in ...
Label: Entity-Destination
Generated: A letter was sent from my office in ...
Pseudo label: Entity-Origin

Original: The editor improved the manuscript
with his changes.

Label: Product-Producer
Generated: The editor improved the manuscript

with some improvements.
Pseudo label: Product-Producer

Original: The suspect dumped the dead body
into a local reservoir.

Label: Entity-Destination
Generated: The dam bulids the human body

into a local reservoir.
Pseudo label: Other

Table 4: CDA on labeled data to obtain generated data,
where red and blue represent head and tail entities re-
spectively, cyan represents the replaced words.

age Contextualized Data Augmentation (CDA) to
generate the same amount of data via augmenting
the labeled data. 3) L: This is the baseline where
the model is trained only on limited labeled data.
We present results in Table 3.

Compared to L, L+CDA achieves an average
4.01% improvement in F1, indicating the effective-
ness of augmentation. We also observe that L+CDA
obtain competitive performance when compared
with L+U on SemEval. On a more challenging TA-
CRED dataset, L+CDA achieves only 2.07% less
in F1, comparing with L+U when 6.36x less total
samples are initially acquired.

We also vary the ratio of unlabeled data (acces-
sible by L+U or augmented using L+CDA). From
Figure 6, L+CDA outperforms L consistently, with
the ratio of unlabeled data increasing, L+CDA can
get more discriminative data and obtain better per-
formance: it can achieve almost the same perfor-
mance as L+U on SemEval. On TACRED, perfor-
mance difference is less than 1.53% using various
ratio of unlabeled data.

We show some sample generated data produced

by CDA in Table 4. BERT Masked Language
Model could generate replacement words based
on the context information. We find that some
part of the sentences with the replaced words could
still maintain the original relational information,
although the semantic information of another part
of the sentence has changed, the RLG can still have
the capability to classify the sentence into the most
suitable relation.

4 Related Work

Relation Extraction aims to predict the binary re-
lation between two entities in a sentence. Recent
literature leverage deep neural network to encode
the features among two entities from sentences,
and then classify these features into pre-defined
specific relation categories. These methods could
gain decent performance when sufficient labeled
data is available (Zeng et al., 2015; Zhang et al.,
2017; Guo et al., 2020; Nan et al., 2020). How-
ever, it’s labor-intensive to obtain large amounts of
manual annotations on corpus.

Low resource Relation Extraction methods
gained a lot of attention recently (Levy et al., 2017;
Tarvainen and Valpola, 2017; Lin et al., 2019; Li
and Qian, 2020; Hu et al., 2021, 2020), since these
methods require fewer labeled data and deep neu-
ral networks could expand limited labeled informa-
tion by exploiting information on unlabeled data
to iteratively improve the performance. One ma-
jor method is the self-training work proposed by
Rosenberg et al. (2005). Self-training incremen-
tally assigns pseudo labels to unlabeled data and
leverages these pseudo labels to iteratively improve
the classification capability of the model. However,
these methods always endure gradual drift prob-
lem (Curran et al., 2007; Zhang et al., 2016; Arazo
et al., 2019; Han et al., 2018; Jiang et al., 2018; Liu
et al., 2021): during the training process, the gen-
erated pseudo label data contains noise and could
not been corrected through the model itself. Using
these pseudo label data iteratively cause the model
to deviate from the global minima. Our work alle-
viates this problem by encouraging pseudo-labeled
data to imitate the gradient optimization direction
on the labeled data, and introducing an effective
feedback loop to improve generalization ability via
reinforcement learning.

Reinforcement Learning is widely used in Na-
ture Language Processing (Narasimhan et al., 2016;
Li et al., 2016; Su et al., 2016; Yu et al., 2017;
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Takanobu et al., 2019). These methods are all de-
signed with rewards to force the correct actions
to be executed during the model training process,
so as to improve model performance. Zeng et al.
(2019) applies policy gradient method to model fu-
ture reward in a joint entity and relation extraction
task. In our work, we define reward as the cosine
similarity between gradient vectors calculated from
pseudo-labeled data and labeled data.

Data augmentation methods are leveraged in nat-
ural language processing to improve the general-
ization ability of the model by generating discrim-
inative samples (Kobayashi, 2018; Dai and Adel,
2020; Kumar et al., 2020). Gao et al. (2019) con-
textually augment data by replacing the one-hot
representation of a word by a distribution provided
by BERT over the vocabulary. However, they only
consider the replacement of a word which limits its
capability to expand the sentence semantics(Joshi
et al., 2020). In our work, we use [MASK] to re-
place a span of words and leverage BERT Masked
Language Modeling task to fill the [MASK].

5 Conclusion

In this paper, we propose a reinforcement learning
framework model GradLRE for low resource RE.
Different from conventional self-training models
which endure gradual drift when generating pseudo
labels, our model encourages pseudo-labeled data
to imitate the gradient optimization direction in
labeled data to improve the pseudo label quality.
We find our learning paradigm gives more instruc-
tive, explicit, and generalizable signals than the
implicit signals that are obtained by training model
directly with labeled data. Contextualized data
augmentation is proposed to handle the extremely
low resource RE situation where no unlabeled data
is available. Experiments on two public datasets
show effectiveness of GradLRE and augmented
data over competitive baselines.
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