
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2726–2736
November 7–11, 2021. c©2021 Association for Computational Linguistics

2726

Importance Estimation from Multiple Perspectives for
Keyphrase Extraction

Mingyang Song, Liping Jing∗and Lin Xiao
Beijing Key Lab of Traffic Data Analysis and Mining

Beijing Jiaotong University, China
{mingyang.song, lpjing, 17112079}@bjtu.edu.cn

Abstract

Keyphrase extraction is a fundamental task in
Natural Language Processing, which usually
contains two main parts: candidate keyphrase
extraction and keyphrase importance estima-
tion. From the view of human understanding
documents, we typically measure the impor-
tance of phrase according to its syntactic ac-
curacy, information saliency, and concept con-
sistency simultaneously. However, most exist-
ing keyphrase extraction approaches only focus
on the part of them, which leads to biased re-
sults. In this paper, we propose a new approach
to estimate the importance of keyphrase from
multiple perspectives (called as KIEMP) and
further improve the performance of keyphrase
extraction. Specifically, KIEMP estimates the
importance of phrase with three modules: a
chunking module to measure its syntactic accu-
racy, a ranking module to check its information
saliency, and a matching module to judge the
concept (i.e., topic) consistency between phrase
and the whole document. These three modules
are seamlessly jointed together via an end-to-
end multi-task learning model, which is helpful
for three parts to enhance each other and bal-
ance the effects of three perspectives. Experi-
mental results on six benchmark datasets show
that KIEMP outperforms the existing state-of-
the-art keyphrase extraction approaches in most
cases.

1 Introduction

Keyphrase Extraction (KE) aims to select a set of
reliable phrases (e.g., “harmonic balance method",
“grobner base", “error bound", “algebraic repre-
sentation", and “singular point" in Table 1) with
salient information and central topics from a given
document, which is a fundamental task in natu-
ral language processing. Most classic keyphrase
extraction methods typically include two mainly
components: candidate keyphrase extraction and
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Input Document:
harmonic balance ( hb ) method is well known principle
for analyzing periodic oscillations on nonlinear networks
and systems. because the hb method has a truncation
error, approximated solutions have been guaranteed by
error bounds. however, its numerical computation is very
time consuming compared with solving the hb equation.
this paper proposes proposes an algebraic representation
of the error bound using grobner base. the algebraic
representation enables to decrease the computational cost
of the error bound considerably. moreover, using singular
points of the algebraic representation, we can obtain
accurate break points of the error bound by collisions.

Output / Target Keyphrases:
harmonic balance method; grobner base; error bound;
algebraic representation; singular point; quadratic ap-
proximation

Table 1: Sample input document with output / target
keyphrases in KP20k testing set. Specially, keyphrases
typically can be categorized into two types: present
keyphrase that appears in a given document and absent
keyphrase which does not appear in a given document.

keyphrase importance estimation (Medelyan et al.,
2009; Liu et al., 2010; Hasan and Ng, 2014).

As shown in Table 1, each keyphrase usually con-
sists of more than one words (Meng et al., 2017).
To extract the candidate keyphrases from the the
given document which is typically characterized
via word-level representation, researchers leverage
some heuristics (Wan and Xiao, 2008; Liu et al.,
2009a,b; Nguyen and Phan, 2009; Grineva et al.,
2009; Medelyan et al., 2009) to identify the can-
didate keyphrases. For example, the word embed-
dings are composed to n-grams by Convolution
Neural Network (CNN) (Xiong et al., 2019; Sun
et al., 2020; Wang et al., 2020).

Usually, the candidate set contains much more
keyphrases than the ground truth keyphrase set.
Therefore, it is critical to select the important
keyphrase from the candidate set. In other words,
keyphrase importance estimation commonly is one
of the essential components in many keyphrase ex-
traction models. Since the keyphrase extraction
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task concerns “the automatic selection of important
and topical phrases from the body of a document”
(Turney, 2000). In other words, its goal is to esti-
mate the importance of the candidate keyphrases to
determine which one should be extracted. Recent
approaches (Sun et al., 2020; Wang et al., 2020)
recast the keyphrase extraction as a classification
problem, which extracts keyphrases by a binary
classifier. However, a binary classifier classifies
each candidate keyphrase independently, and con-
sequently, it does not allow us to determine which
candidates are better than the others (Hulth, 2004).
Therefore, some methods (Jiang et al., 2009; Xiong
et al., 2019; Wang et al., 2020; Sun et al., 2020) pro-
pose a ranking model to extract keyphrases, where
the goal is to learn a phrase ranker to compare the
saliency of two candidate phrases. Furthermore,
many previous studies (Liu et al., 2010; Wang et al.,
2019; Liu et al., 2009b) extract keyphrases with the
main topics discussed in the source document, For
example, Liu et al. (2010) proposes to build a topi-
cal PageRank approach to measure the importance
of words concerning different topics.

However, most existing keyphrase extraction
methods estimate the importance of keyphrases
on at most two perspectives, leading to biased ex-
traction. Therefore, to improve the performance
of keyphrase extraction, the importance of the can-
didate keyphrases requires to be estimated suffi-
ciently from multiple perspectives. Motivated by
the phenomenon mentioned above, we propose a
new importance estimation from multiple perspec-
tives simultaneously for the keyphrase extraction
task. Concretely, it estimates the importance from
three perspectives with three modules (syntactic
accuracy, information saliency, and concept consis-
tency) with three modules. A chunking module, as
a binary classification layer, measures the syntactic
accuracy of each candidate keyphrase. A rank-
ing module checks the semantics saliency of each
candidate phrase by a pairwise ranking approach,
which introduces competition between the candi-
date keyphrases to extract more salient keyphrases.
A matching module judges the concept relevance
of each candidate phrase in the document via a met-
ric learning framework. Furthermore, our model
is trained jointly on the above three modules, bal-
ancing the effect of three perspectives. Experimen-
tal results on two benchmark data sets show that
KIEMP outperforms the existing state-of-the-art
keyphrase extraction approaches in most cases.

2 Related Work

A good keyphrase extraction system typically con-
sists of two steps: (1) candidate keyphrase extrac-
tion, extracting a list of words / phrases that serve
as the candidate keyphrases using some heuristics
(Wan and Xiao, 2008; Nguyen and Phan, 2009;
Medelyan et al., 2009; Grineva et al., 2009; Liu
et al., 2009a,b); and (2) keyphrase importance es-
timation, determining which of these candidate
phrases are keyphrases using different importance
estimation approaches.

In the candidate keyphrase extraction, the heuris-
tic rules usually are designed to avoid spurious
phrases and keep the number of candidates to a
minimum (Hasan and Ng, 2014). Generally, the
heuristics mainly include (1) leverage a stop word
list (Liu et al., 2009b), (2) allowing words with
part-of-speech tags (Mihalcea and Tarau, 2004; Liu
et al., 2009a), (3) composing words to n-grams to
be the candidate keyphrases (Medelyan et al., 2009;
Sun et al., 2020; Xiong et al., 2019; Wang et al.,
2020). The above heuristics have proven effective
with their high recall in extracting gold keyphrases
from various sources. Motivated by the above meth-
ods, in this paper, we leverage CNNs to compose
words to n-grams as the candidate keyphrases.

In the keyphrase importance estimation, the ex-
isting methods can be mainly divided into two cat-
egories: unsupervised and supervised. The unsu-
pervised method usually are categorized into four
groups, i.e., graph-based ranking (Mihalcea and
Tarau, 2004), topic-based clustering (Liu et al.,
2009b), simultaneous learning (Zha, 2002), and
language modeling (Tomokiyo and Hurst, 2003).
Early supervised approaches to keyphrase extrac-
tion recast this task as a binary classification prob-
lem (Witten et al., 1999; Turney, 2002, 2000; Jiang
et al., 2009). Later, to determine which candidates
are better than the others, many ranking approach
is proposed to rank the saliency of two phrases
(Jiang et al., 2009; Sun et al., 2020). This pairwise
ranking approach, therefore, introduces competi-
tion between candidate keyphrases and has been
achieved good performance. Both supervised and
unsupervised methods construct features or models
from different perspectives to measure the impor-
tance of candidate keyphrases to determine which
keyphrases should be extracted. However, the ap-
proaches mentioned earlier consider at most two
perspectives when measuring the importance of
phrases, which leads to biased keyphrase extraction.
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Different from the existing methods, the proposed
KIEMP considers estimating the importance of the
candidate keyphrases from multiple perspectives
simultaneously.

3 Methodology

We formally define the problem of keyphrase ex-
traction as follows. In this paper, KIEMP takes
a document D = {w1, ..., wi, ..., wM} and learns
to extract a set of keyphrases K (each keyphrase
may be composed of one or several word(s)) from
their n-gram based representations under multiple
perspectives.

This section describes the architecture of
KIEMP, as shown in Figure 1. KIEMP mainly
consists of two submodels: candidate keyphrase
extraction and keyphrase importance estimation.
The former first identifies and extracts the can-
didate keyphrases. Then the latter estimates the
importance of keyphrases from three perspectives
simultaneously with three modules to determine
which one should be extracted.

3.1 Contextualized Word Representation
Recently, pre-trained language models (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019) have
emerged as a critical technology for achieving im-
pressive gains in a wide variety of natural language
tasks (Liu and Lapata, 2019). These models extend
the idea of word embeddings by learning contex-
tual representations from large-scale corpora using
a language modeling objective. In this situation,
Xiong et al. (2019) propose to represent each word
by its ELMo (Peters et al., 2018) embedding and
Sun et al. (2020) leverage variants of BERT (Devlin
et al., 2019; Liu et al., 2019) to obtain contextual-
ized word representations. Motivated by the above
approaches, we represent each word by RoBERTa
(Liu et al., 2019), which encodes D to a sequence
of vector H = {h1, ..., hi, ..., hM}:

H = RoBERTa{w1, ..., wi, ..., wM}, (1)

where hi ∈ Rd indicates the i-th contextualized
word embedding of wi from the last transformer
layer in RoBERTa. Specifically, the [CLS] token of
RoBERTa is used as the document representation.

3.2 Candidate Keyphrase Extraction
In the keyphrase extraction task, keyphrase usu-
ally contains more than one word, as shown in
Table 1. Therefore, it is necessary to identify the

candidate keyphrases via some strategies. Previous
work (Medelyan et al., 2009; Sun et al., 2020; Wang
et al., 2020; Xiong et al., 2019) allow n-grams
that appear in the document to be the candidate
keyphrases. Motivated by the previous approaches,
we consider the language properties (Xiong et al.,
2019) and compose the contextualized word repre-
sentations to n-grams by CNNs (similar to Sun et al.
(2020)). Specifically, the phrase representation of
the i-th n-gram cni is computed as:

hni = CNNn(hi:i+n), (2)

where hni ∈ Rd indicates the i-th n-gram repre-
sentation. Concretely, n ∈ [1, N ] is the length of
n-grams, and N indicates the maximum length of
allowed candidate n-grams. Specifically, each n-
gram has its own set of convolution filters CNNn

with window size n and stride 1.

3.3 Keyphrase Importance Estimation

In the keyphrase extraction models, keyphrase im-
portance estimation commonly is one of the es-
sential components. To improve the accuracy of
keyphrase extraction, we estimate the importance
of keyphrases from three perspectives simultane-
ously with three modules: chunking for syntac-
tic accuracy, ranking for information saliency, and
matching for concept consistency.

3.3.1 Chunking for Syntactic Accuracy
Many studies (Turney, 2002; Witten et al., 1999;
Turney, 2000) regard keyphrase extraction as a clas-
sification task, in which a model is trained to deter-
mine whether a candidate phrase is a keyphrase in
a syntactic perspective. For example, Xiong et al.
(2019); Sun et al. (2020) directly predict whether
the n-gram is a keyphrase based on its correspond-
ing representation. Motivated by these above meth-
ods, in this paper, the syntactic accuracy of phrase
cni is estimated by a chunking module:

I1(c
n
i ) = softmax(W1h

n
i + b1), (3)

where W1 and b1 indicate a trainable matrix and
a bias. The softmax is taken over all possible n-
grams at each position i and each length n. The
whole model is trained using cross-entropy loss:

Lc = CrossEntropy(yni , I1(c
n
i )), (4)

where yni is the label of whether the phrase cni is a
keyphrase of the original document.
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Figure 1: The KIEMP model architecture.

3.3.2 Ranking for Information Saliency
The binary classifier-based keyphrase extraction
model classifies each candidate keyphrase indepen-
dently, and consequently, it does not allow us to
determine which candidates are better than the oth-
ers (Hulth, 2004). However, the goal of keyphrase
extraction is to identify the most salient phrases for
a document (Hasan and Ng, 2014). Therefore, a
ranking model is required to rank the saliency of
the candidate keyphrases. We leverage a pairwise
learning approach to rank the candidate keyphrases
globally to compare the information saliency be-
tween all candidates. First, we put the candidate
keyphrases in the document that are labeled as
keyphrases, in the positive set P+, and the oth-
ers to the negative set P−, to obtain the ranking
labels. Then, the loss function is the standard hinge
loss in the pairwise learning model:

Lr =
∑

p+,p−∈K

max(0, δ1−I2(p+)+I2(p−)), (5)

where I2(·) represents the estimation of informa-
tion saliency and δ1 indicates the margin. It en-
forces KIEMP to rank the candidate keyphrases p+

ahead of p− within the same document. Specifi-
cally, the information saliency of the i-th n-gram
representation cni can be computed as follows:

I2(c
n
i ) = W2h

n
i + b2, (6)

where W2 is a trainable matrix, and b2 is a bias.
Through the pairwise learning model, we can rank
the information saliency of all candidates and ex-
tract the keyphrases with more salient information
sufficiently.

3.3.3 Matching for Concept Consistency

As phrases are used to express various meanings
corresponding to different concepts (i.e., topics),
a phrase will play different important roles in dif-
ferent concepts of the document (Liu et al., 2010).
A matching module is proposed via a metric learn-
ing framework to estimate the concept consistency
between the candidate keyphrases and their cor-
responding document. We first apply variation
autoencoder (Rezende et al., 2014) on the docu-
ments D and the candidate keyphrases K to ob-
tain their concepts. Each document D is encoded
via a latent variable z ∈ Rc which is assumed to
be sampled from a standard Gaussian prior, i.e.,
z ∼ p(z) = N (0, Id). Such variable has abil-
ity to determine the latent concepts hidden in the
documents and will be useful to extract keyphrase
(Wang et al., 2019). During the encoding process,
z can be sampled via a re-parameterization trick for
Gaussian distribution, i.e., z ∼ q(z|D) = N (µ, σ).
Specifically, we sample an auxiliary noise variable
ε ∼ N(0, I) and re-parameterization z = µ+σ�ε,
where � denotes the element-wise multiplication.
The mean vector µ ∈ Rc and variance vector
σ ∈ Rc will be inferred by a two-layer network
with ReLU-activated function, i.e., µ = µφ(D)
and σ = σφ(D) where φ is the parameter set. Dur-
ing the decoding process, the document can be
reconstructed by a multi-layer network (fk) with
Tanh-activated function, i.e., D̃ = fk(z). Further-
more, the candidate keyphrases are processed in
the same way as the documents.

Once having the latent concept representation
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of the document z and the phrase zni , the concept
consistency can be estimated as follows,

I3(c
n
i , D) = zni W3z. (7)

Here, W3 is a learnable mapping matrix. The loss
function is the triplet loss in the metric learning
framework calculated as follows:

Lm =
∑

p+,p−∈K

max(0, I3(p−, D)−I3(p+, D)+δ2),

(8)
where δ2 represents the margin. It enforces KIEMP
to match and rank the concept consistency of
keyphrases p+ ahead of the non-keyphrases p−

within their corresponding document D.
Furthermore, to simultaneously minimize the

reconstruction loss and penalize the discrepancy
between a prior distribution and posterior distribu-
tion about the latent variable z, the VAE process
can be implemented by optimizing the following
objective function for the documents Ld and the
candidate keyphrases Lk:

Ld = −Eq(z|D)

[
p(D|z)

]
+DKL

(
p(z)||q(z|D)

)
,

(9)

Lk = −Eq(z|K)

[
p(K|z)

]
+DKL

(
p(z)||q(z|K)

)
,

(10)
where DKL indicates the Kullback-Leibler diver-
gence between two distributions. And the final loss
of this module is calculated as follows:

Lt = Lm + λLd + (1− λ)Lk, (11)

where λ ∈ (0, 1) is the balance factor. Through
concept consistency matching, we expect to align
keyphrases with high-level concepts (i.e., topics
or structures) in the document to assist the model
in extracting keyphrases with more important con-
cepts.

3.4 Model Training and Inference
Multi-task learning has played an essential role
in various fields (Srna et al., 2018), and has been
widely used in the natural language processing
tasks (Sun et al., 2020; Mu et al., 2020) recently.
Therefore, our framework allows end-to-end learn-
ing of syntactic chunking, saliency ranking, and
concept matching in this paper. Then, we define
the training objective of the entire framework with
the linear combination of Lc, Lr, and Lt:

L = ε1Lc + ε2Lr + ε3Lt, (12)

where the hyper-parameters ε1, ε2, and ε3 balance
the effects of the importance estimation from three
perspectives. Specifically, ε1 + ε2 + ε3 = 1.

In this paper, KIEMP aims to extract keyphrases
according to their saliency. It contains three
modules syntactic accuracy chunking, informa-
tion saliency ranking, and concept consistency
matching. Chunking and matching are used to
enforce the ranking module to rank the proper can-
didate keyphrases ahead. Therefore, only the rank-
ing module is used in the inference process (test-
phase).

Dataset
Document Len. # Keyphrase Keyphrase Len.

Average Average Average

OpenKP 900.4 1.8 2.0

KP20k 179.8 5.3 2.0

Inspec 128.7 9.8 2.5

Krapivin 182.6 5.8 2.2

Nus 219.1 11.7 2.2

SemEval 234.8 14.7 2.4

Table 2: Statistics of six benchmark datasets. Document
Len. and Keyphrase Len. represent the number of words
in the document and keyphrase respectively.

4 Experimental Settings

4.1 Datasets

Six benchmark datasets are mainly used in our
experiments, OpenKP (Xiong et al., 2019), KP20k
(Meng et al., 2017), Inspec (Hulth, 2003), Krapivin
(Krapivin and Marchese, 2009), Nus (Nguyen and
Kan, 2007) and SemEval (Kim et al., 2010). Table 2
summarizes the statistics of each testing sets.

OpenKP consists of around 150K documents
sampled from the index of the Bing search engine.
In OpenKP, we follow the official split of train-
ing (134K documents), development (6.6K docu-
ments), and testing (6.6K documents) sets. The
keyphrases for each document in OpenKP were
labeled by expert annotators, with each document
assigned 1-3 keyphrases. As a requirement, all
the keyphrases appeared in the original document
(Xiong et al., 2019).

KP20k contains a large number of high-quality
scientific metadata in the computer science do-
main from various online digital libraries (Meng
et al., 2017). We follow the official setting of this
dataset and split the dataset into training (528K
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Hyper-parameter Dimension or Value

λ 0.5

ε1, ε2, ε3 1/3

δ1, δ2 1.0

Optimizer AdamW

Learning Rate 1× 10−5

Batch Size 32

Warm-Up Proportion 10%

RoBERTa Embedding (Rd) 768

Concept Dimension (Rc) 64

Max Sequence Length 512

Maximum Phrase Length (N) 5

Table 3: Parameters used for training KIEMP.

documents), validation (20K documents), and test-
ing (20K documents) sets. From the training set of
KP20k, we remove all articles that are duplicated
in themselves, either in the KP20k validation and
testing set. After the cleanup, the KP20k dataset
contains 504K training samples, 20K validation
samples, and 20K testing samples.

To verify the robustness of KIEMP, we also
test the model trained with KP20k dataset on four
widely-adopted keyphrase extraction data sets in-
cluding Inspec, Krapivin, Nus, and SemEval.

In this paper, we focus on keyphrase extraction.
Therefore, only the keyphrases that appear in the
documents are used for training and evaluation.

4.2 Baselines

This paper focuses on the comparisons with the
state-of-the-art baselines and chooses the following
keyphrase extraction models as our baselines.

TextRank An unsupervised algorithm based on
weighted-graphs proposed by Mihalcea and Ta-
rau (2004). Given a word graph built on co-
occurrences, it calculates the importance of can-
didate words with PageRank. The importance of a
candidate keyphrase is then estimated as the sum
of the scores of the constituent words.

TFIDF (Jones, 2004) is computed based on can-
didate frequency in the given text and inverse doc-
ument frequency

CopyRNN (Meng et al., 2017) which uses the
attention mechanism as the copy mechanism to
extract keyphrases from the given document.

BLING-KPE (Xiong et al., 2019) first concate-
nates the pre-trained language model (ELMo (Pe-
ters et al., 2018)) as word embeddings, visual as

well as positional features, and then uses a CNN
network to obtain n-gram phrase embeddings for
binary classification.

JointKPE (Sun et al., 2020) jointly learns a
chunking model (ChunkKPE) and a ranking model
(RankKPE) for keyphrase extraction.

SMART-KPE+R2J (Wang et al., 2020) presents
a multi-modal method to the keyphrase extraction
task, which leverages lexical and visual features
to enable strategy induction as well as meta-level
features to aid in strategy selection.

DivGraphPointer (Sun et al., 2019) combines
the advantages of traditional graph-based rank-
ing methods and recent neural network-based ap-
proaches. Furthermore, they also propose a diver-
sified point network to generate a set of diverse
keyphrases out of the word graph in the decoding
process.

Div-DGCN (Zhang et al., 2020) proposes to
adopt the Dynamic Graph Convolutional Networks
(DGCN) to acquire informative latent document
representation and better model the compositional-
ity of the target keyphrases set.

SKE-Large-CLS (Mu et al., 2020) obtains span-
based representation for each keyphrase and further
learns to capture the similarity between keyphrases
in the source document to get better keyphrase pre-
dictions.

In this paper, for ease of introduction, all the
baselines are divided according to the following
three perspectives, syntax, saliency, and combin-
ing syntax and saliency. Among them, BLING-
KPE, CopyRNN, ChunkKPE belong to the former,
TFIDF, TextRank, as well as RankKPE belong
to the second, and DivGraphPointer, Div-DGCN,
SKE-Large-CLS, SMART-KPE+R2J, as well as
JointKPE belongs to the last.

4.3 Evaluation Metrics

For the keyphrase extraction task, the performance
of keyphrase model is typically evaluated by com-
paring the top k predicted keyphrases with the tar-
get keyphrases (ground-truth labels). The evalu-
ation cutoff k can be a fixed number (e.g., F1@5
compares the top-5 keyphrases predicted by the
model with the ground-truth to compute an F1

score). Following the previous work (Meng et al.,
2017; Sun et al., 2019), we adopt macro-averaged
recall and F-measure (F1) as evaluation metrics,
and k is set to be 1, 3, 5, and 10. In the evaluation,
we apply Porter Stemmer (Porter, 2006) to both
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Model
OpenKP KP20k

R@1 R@3 R@5 F1@1 F1@3 F1@5 F1@5 F1@10

Unsupervised Methods

TFIDF (Jones, 2004) 0.150 0.284 0.347 0.196* 0.223* 0.196* 0.105 0.130

TextRank (Mihalcea and Tarau, 2004) 0.041 0.098 0.142 0.054* 0.076* 0.079* 0.180 0.150

Supervised Methods with Additional Features

BLING-KPE (Xiong et al., 2019) 0.220 0.390 0.481 0.285* 0.303* 0.270* - -

SMART-KPE+R2J (Wang et al., 2020) 0.307 0.532 0.625 0.381 0.405 0.347 - -

Supervised Methods without Additional Features

CopyRNN (Meng et al., 2017) 0.174 0.331 0.413 0.217* 0.237* 0.210* 0.327 0.278

DivGraphPointer (Sun et al., 2019) - - - - - - 0.368 0.292

Div-DGCN (Zhang et al., 2020) - - - - - - 0.349 0.313

SKE-Large-CLS (Mu et al., 2020) - - - - - - 0.392 0.330

ChunkKPE (Sun et al., 2020) 0.283 0.486 0.581 0.355 0.373 0.324 0.408 0.337

RankKPE (Sun et al., 2020) 0.290 0.509 0.604 0.361 0.390 0.337 0.417 0.343

JointKPE (Sun et al., 2020) 0.291 0.511 0.605 0.364 0.391 0.338 0.419 0.344

KIEMP 0.298 0.517 0.615 0.369 0.392 0.340 0.421 0.345

Table 4: Performances of keyphrase extraction model on the OpenKP development set and the KP20k testing set.
The best results of our model are highlighted in bold, and the best results of baselines are underlined. * indicates
these numbers are not included in the original paper and are estimated with Precision and Recall. The results of the
baselines are reported in their corresponding papers.

target keyphrases and extracted keyphrases when
determining the match of keyphrases and match of
the identical word.

4.4 Implementation Details

Implementation details of our proposed models
are as follows. The maximum document length is
512 due to BERT limitations (Devlin et al., 2019),
and documents are zero-padded or truncated to this
length. The training used 6 GeForce RTX 2080 Ti
GPUs and took about 31 hours and 77 hours for
OpenKP and KP20k datasets respectively. Table 3
lists the parameters of our model. Furthermore, the
model was implemented in Pytorch (Paszke et al.,
2019) using the huggingface re-implementation of
RoBERTa (Wolf et al., 2019).

5 Results and Analysis

This section investigates the performance of the
proposed KIEMP on six widely-used benchmark
datasets (OpenKP, KP20k, Inspec, Krapivin, Nus,
and Semeval) from three facets. The first one
demonstrates its superiority by comparing it with
ten baselines in terms of several metrics. The sec-
ond one is to verify the sensitivity of the concept
dimension. The last one is to explicitly show the

keyphrase extraction results of KIEMP via two ex-
amples (two testing documents).

5.1 Overall Performance

The overall performance of different algorithms
on two benchmarks (OpenKP and KP20k) is sum-
marized in Table 4. We can see that the super-
vised methods outperform all the unsupervised al-
gorithms (TFIDF and TextRank). This is not sur-
prising since the supervised methods are trained
end-to-end with supervised data. In all the super-
vised baselines, the methods using additional fea-
tures are better than those without additional fea-
tures. The reason is that the models with additional
features are equal to encode keyphrases from mul-
tiple features perspectives. Therefore, it is helpful
for the model to measure the importance of each
keyphrase, thus improving the performance of the
result of keyphrase extraction. Intuitively, this is
the same as our proposed method. KIEMP con-
siders the importance of keyphrases from multiple
perspectives and fairly measures the importance of
each keyphrase. But the difference is that we do
not need additional features to assist. And in many
practical applications of keyphrase extraction, there
is no additional feature (i.e., visual features) infor-
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Figure 2: Results of keyphrase extraction model on four
testing sets (Semeval, Inspec, Krapivin, and Nus). The
results of JointKPE are re-evaluated via the code which
is provided by its corresponding paper.

mation to use in most cases. Compared with recent
baselines (ChunkKPE, RankKPE, and JointKPE),
KIEMP performs stably better on all metrics on
both two datasets. These results demonstrate the
benefits of estimating the importance of keyphrases
from multiple perspectives simultaneously and the
effectiveness of our multi-task learning strategy.

Furthermore, to verify the robustness of KIEMP,
we also test the KIEMP trained with KP20k dataset
on four widely-adopted keyphrase extraction data
sets. It can be seen from Figure 2 that KIEMP is
superior to the best baseline (JointKPE). We con-
sider that this phenomenon comes from two ben-
efits. One is that the high-level concepts captured
by a deep latent variable model may contain topic
and structure features. These features are essential
information to evaluate the importance of phrases.
Another one is that concept consistency matching
uses a deep latent variable model to capture con-
cepts. Here, the latent variable is characterized
by a probability distribution over possible values
rather than a fixed value, which can enforce the
uncertainty of the model and further lead to robust
phrase representation learning.

Concept Dimension (Rc)
OpenKP

R@1 R@3 R@5

64 0.298 0.517 0.615

256 0.297 0.513 0.610

512 0.296 0.509 0.609

768 0.293 0.508 0.606

Table 5: Effectiveness of different dimensions of latent
concept representation. The best results are highlighted
in bold.

5.2 Sensitivity of the Concept Dimension

Here, we verify the effectiveness of using different
concept dimensions. From Table 5, we can find
that the increase of the dimension of latent con-
cept representation has little effect on the result of
keyphrase extraction. In contrast, the smaller the
dimension, the better the result. Furthermore, in
Table 4, the improvement of our proposed KIEMP
model on the F1@1 evaluation metric is higher
than the F1@3 and F1@5 evaluation metrics on the
KP20k dataset. We consider the main reason is that
our concept representation may capture the high-
level conceptual information of phrases or docu-
ments, such as topics and structure information.
Therefore, KIEMP with concept consistency match-
ing module focuses more on extracting keyphrases
closest to the main topic of the given document.

5.3 Case Study

To further illustrate the effectiveness of the pro-
posed model, we present a case study on the results
of the keyphrases extracted by different algorithms.
Table 6 presents the results of KIEMP without con-
cept consistency matching and KIEMP. From the
first example, we can see that our KIEMP model
is more inclined to extract keyphrases closer to the
central semantics of the input document, which
benefits from our concept consistency matching
model. From the second example, we can see that
the keyphrases extracted by KIEMP without con-
cept consistency matching contain some redundant
or meaningless phrases. The main reason may be
that the KIEMP without concept consistency match-
ing does not measure the importance of phrases
from multiple perspectives, which leads to biased
extraction. On the contrary, the keyphrases ex-
tracted by KIEMP are all around the main concepts
of the example document, i.e., “leadership”. It fur-
ther demonstrates the effectiveness of our proposed
model.

6 Conclusions and Future Work

A new keyphrase importance estimation from the
multiple perspectives approach is proposed to es-
timate the importance of keyphrase. Benefiting
from the designed syntactic accuracy chunking,
information saliency ranking, and concept consis-
tency matching modules, KIEMP can fairly extract
keyphrases. A series of experiments have demon-
strated that KIEMP outperformed the existing state-
of-the-art keyphrase extraction methods. In the
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(A) Part of the Input Document:

The Great Plateau is a large region of land that is secluded from other parts of Hyrule, as its steep slopes prevent anyone
from traveling to and from it without special equipment, such as the Paraglider. The only active inhabitant is the Old
Man, a mysterious ... (URL: https://zelda.gamepedia.com/Great_Plateau)

Target Keyphrase:
(1) great plateau ; (2) breath of the wild ; (3) hyrule

KIEMP without concept consistency matching:
(1) great plateau ; (2) hyrule ; (3) breath of the wild ; (4) paraglider ; (5) zelda

KIEMP:
(1) great plateau ; (2) breath of the wild ; (3) hyrule ; (4) paraglider ; (5) starting region

(B) Part of the Input Document:

Transformational leaders also depend on visionary leadership to win over followers, but they have an added focus on
employee development. For example, a transformational leader might explain how her plan for the future serves her
employees’ interests and how she will support them through the changes ...
(URL: https://yourbusiness.azcentral.com/managers-different-leadership-styles-motivate-teams-8481.html)

Target Keyphrase:
(1) managers ; (2) leadership ; (3) teams

KIEMP without concept consistency matching:
(1) motivating ; (2) motivate ; (3) charismatic leadership ; (4) transformational leadership ; (5) employee development

KIEMP:
(1) leadership styles; (2) managers ; (3) charismatic leadership ; (4) transformational leadership ; (5) leadership

Table 6: Example of keyphrase extraction results (selected from the OpenKP dataset). Phrases in red and bold are
target keyphrases predicted by the different models (KIEMP without concept consistency matching and KIEMP).

future, it will be interesting to introduce an adap-
tive approach in KIEMP to filter the meaningless
phrases.
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