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Abstract

Incorporating lexical knowledge into deep

learning models has been proved to be very ef-

fective for sequence labeling tasks. However,

previous works commonly have difficulty deal-

ing with large-scale dynamic lexicons which

often cause excessive matching noise and prob-

lems of frequent updates. In this paper, we

propose DyLex, a plug-in lexicon incorpora-

tion approach for BERT based sequence la-

beling tasks. Instead of leveraging embed-

dings of words in the lexicon as in conven-

tional methods, we adopt word-agnostic tag

embeddings to avoid re-training the representa-

tion while updating the lexicon. Moreover, we

employ an effective supervised lexical knowl-

edge denoising method to smooth out match-

ing noise. Finally, we introduce a col-wise

attention based knowledge fusion mechanism

to guarantee the pluggability of the proposed

framework. Experiments on ten datasets of

three tasks show that the proposed framework

achieves new SOTA, even with very large scale

lexicons1.

1 Introduction

Sequence labeling is the task of assigning cate-

gorical labels to a text sequence. Many conven-

tional NLP tasks, such as named entity recogni-

tion (NER), Chinese word segmentation (CWS),

and slot-filling based natural language understand-

ing (NLU), can be formalized as the sequence la-

beling problem. The deep learning methods, espe-

cially the recently proposed BERT and its variants,

have achieved great success in such sequence la-

beling tasks. However, the BERT-based methods

are generally built based on word-piece or charac-

ter embeddings. The word information (e.g., word

boundary or type) is not fully exploited, which

makes it difficult to accurately determine the entity

boundary or correctly predict entity type.

*Equal contribution.
1https://github.com/huawei-noah/

noah-research/Dylex

please open the IronMan

play Just a Little While Longer

now on IronMan

what is IronMan

music?movie?

ambiguous and long name

Figure 1: Iron Man can be a name of a smart device

or a movie and the system would be unable to react

properly upon “Please play Iron Man” from a user. An-

other case as “Play just a little while longer now on

Iron Man” requires the system to classify “Play” be-

tween music and movie domains, and whether “now”

should be combined with “just a little while longer” as

a whole.

As shown in Figure 1, it is infeasible to under-

stand user’s utterance correctly without using de-

terministic domain knowledge that “Iron Man” is

the alias of a Smart Speaker or “just a little while

longer” is a famous song. In commercial systems,

the lexicon is widely used as an effective way to

store various domain knowledge. In practice, the

size of a lexicon can range from ten to a few mil-

lion, and we usually need to update the contents of

lexicons frequently, which dramatically increases

the difficulty of incorporating lexicons into deep

models. In this work, we will study how to ef-

fectively incorporate large-scale dynamic lexicons

into BERT-based sequence labeling models.

Recent works on incorporating lexicon knowl-

edge (Zhang and Yang, 2018; Ding et al., 2019;

Mu et al., 2020; Li et al., 2020) can be summarized

as follows. First, they match an input sentence

with several lexicons to obtain all matched items.

Second, leveraging the matched item information

through modifying the structure of the transformer

layer or the feature representation layer. However,

https://github.com/huawei-noah/noah-research/Dylex
https://github.com/huawei-noah/noah-research/Dylex
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1) current methods normally learn additional em-

beddings of the words in the lexicons, which bring

us a challenge - if the lexicons get updated, the

model must be re-trained; 2) they only use the

words in the lexicon but ignore the category of

words, which is important for many tasks.

In this paper, we propose a general framework

DyLex for incorporating frequently updated lexi-

cons into sequence labeling models. The matching

results of the input are reconstructed as a word-

agnostic tag sequence. Then we design a super-

vised knowledge denoising module to smooth out

noisy matches, and the remaining matches are fur-

ther used as additional feature input for knowledge

fusion. This step is based on a col-wise attention

to seamlessly fuse word-piece embeddings of input

sentence and the lexicon features. Moreover, since

we do not explicitly learn embeddings of the words

in lexicons, there is no need to retrain the entire

model when updating the lexicons.

We conduct extensive experiments with the

CWS, NER, and NLU tasks on various datasets.

The results show that our model consistently out-

performs the strong baselines and achieves new

state-of-the-art results.

We summarize the contribution of this work as

follows:

1) We propose a general framework for effec-

tively introducing external lexical knowledge

into sequence labeling tasks. Our framework

supports dynamic updates of lexicons to facil-

itate industrial deployment.

2) We devise a novel knowledge denoising mod-

ule to make full use of large-scale lexicons.

3) Our framework outperforms strong baselines

and achieves SOTA results on three different

sequence labeling tasks.

2 Approach

In this section, we will present how to incorporate

large-scale lexicons into BERT. As illustrated in

Figure 2, the proposed DyLex framework contains

two parts, namely the BERT-based sequence tag-

ger and Lexicon Knowledge extractor. The Lexicon

Knowledge (LexKg) extractor has three submod-

ules: Matching, Denoising and Fusing.

2.1 BERT as Encoder

Devlin et al. (2019) introduces a new language rep-

resentation model called BERT, which has become

Algorithm 1: Fast Matching

Input: Trie Tree Tr built from Lexicon D,

utterance U

Output: Candidate tag sequence T

T = [];

for i = 0; i ≤ length(U) do

for j = i; j ≤ length(U) do

if U [i : j] in T then

// reconstruct tags

tags← get_tags(i, j, U, Tr)

tags append to T ;

end

end

return T ;

Function get_tags(i, j, u, Tr):

// get lexical class

class← Tr.match(u[i : j])
tags← label u[i : j] with class, other

position char label O

return tags

the building blocks of modern NLP systems. BERT

is constructed based on transformer (Vaswani et al.,

2017) layer, which employs multi-head attention

to perform self-attention over a sequence individ-

ually and finally applies concatenation and linear

transformation to the results from each head. Ev-

ery single head attention in multi-head attention is

calculated in a scaled dot product form:

Att(Q,K, V ) = softmax

(

QKT

√
dk

)

V, (1)

where Q,K, V are input matrices, respectively.

Then self-attention can be formalized as:

SelfAtt(X) = Att(XWQ, XWK , XWV ), (2)

where WQ,WK ,WV are parameter matrices to be

learned.

2.2 The LexKg Extractor

Matching Conventional methods normally learn

additional word embeddings of lexicons to incor-

porate lexicon knowledge, thus it is required to

retrain the entire model once the lexicons are up-

dated. Our method is independent of the lexicon

size and lexicon word content by designing a word-

agnostic representation. Specifically, the Matching

module takes a word sequence as input, then uses a

prefix tree-based fast matching algorithm (see algo-

rithm 1) to quickly retrieve the lexicons, and finally



2681

O Bn In Bs Is O O

Matching

Denoising

BERT

Encoder

Fusion

Tagger

SelfAttn Layer

Classifier

Q

SelfAttn Layer

Selecting
Denoising

Fusion

K,V

play Taylor Swift’s Sparks Fly for me

(a) (b)

play Taylor Swift’s Sparks Fly for me

0 | 1

Matching

Denoising

Selecting

L
ex

K
g
    E

x
tracto

r

× Bs O O O O O O
√ O Bn In O O O O
√ O O O Bs Is O O
× O O O O Bs O O

Bs O O O O O O
O Bn In O O O O
O O O Bs Is O O
O O O O Bs O O

√ O Bn In O O O O
√ O O O Bs Is O O

Bn: B-name Bs: B-song

In:  I-name Is:  I-song

Figure 2: (a) The overall architecture of the proposed DyLex framework, it consists of two parts, namely BERT-

based sequence tagger and LexKg Extractor. The Extractor has three submodules: the Matching, the Denoising

and the Fusing. (b) A concrete example of lexicon matching and denoising.

produces multiple word-agnostic tag sequences.

Figure 2 (b) shows a concrete example.

To be detailed, we use the prefix Trie tree (Brass,

2008) to store and retrieve the lexicons. The non-

leaf nodes of Trie are made up of word-pieces of

lexicon words tokenized by BERT tokenizer, while

the leaf nodes are made up by the types of the lex-

icon words, namely tag name (e.g. ‘B-song’ and

‘I-song’ as shown in Figure 2 (b)). For each sub-

sequence of the input, the Trie may match several

different candidates. Every single match can be

categorized by a tag attached with a leaf node, the

rest of the sequence will be filled with ‘O’ tags.

Formally, we denote the input sequence as U .

A tag sequence obtained by fast matching is T (i),

and superscript i represents the index of the tag

sequence. The Matching submodule can be formal-

ized as:

Eu = BERT(U) (3)

E
(i)
t = Embedding(T (i)) (4)

E
(i)
d = E

(i)
t + Eu, (5)

where Eu ∈ R
l×hz (here l is sequence length and

hz is hidden size) is the representation produced

by BERT encoder, E
(i)
t ∈ R

l×hz represents the

embedding of i-th tag sequence, and E
(i)
d ∈ R

l×hz

is the corresponding output of this module.

Denoising The proposed fast matching algorithm

can quickly obtain all potential matched sub-

sequences with the lexicons. However, due to the

large scale size of the lexicon, even for an input

sequence with only a few words, there may be

dozens of incorrect matches. Using Figure 2 (b)

as an example, only Row 2 (i.e. the matching to

singer Taylor Swift’s) and Row 3 (i.e. the match-

ing to song Sparks Fly) are expected matchings,

whereas all the other tag sequences contain incor-

rect matchings, namely the matching nosie men-

tioned in this work, which will inevitably decrease

final performance. Thus we devise a novel super-

vised knowledge denoising module to smooth them

out.

The supervising signal can be automatically

derived from the golden sequence labels of the

training dataset. In the example of Figure 2 (b),

each row corresponds to a single matching tag se-

quences, and Row 2 and Row 3 are used as positive

training samples whereas negative for the other

two. Note that, our method can still work even if

the category of lexicon (e.g. name or song) is not

provided, in that case, a tag sequence degenerates

to mark out a lexicon word boundary.

Formally, we first get the representation of i-th

tag sequence from its embedding E
(i)
d with self-

attention

R
(i)
d = SelfAtt(E

(i)
d ). (6)

When classifying each tag sequence, we also need

to consider relationships among them. For example,

Row 3 and Row 4 in Figure 2 (b) can not be True
at the same time since they share some contradict-

ing spans. Taking that into consideration, we first
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concatenate the [cls] in Rd (i.e. first column) of

all tag sequences to form a matrix Rcls ∈ R
nd×hz ,

where nd denotes the number of tag sequences (e.g.

its value is 4 in the example of Figure 2 (b)) and

hz denotes the hidden representation size. Then

we pass the matrix Rcls to a self attention layer to

model the interrelation among them,

Y = SelfAttn(Rcls) (7)

P(Z = True | Rd) = σ(Linear(Y )), (8)

where σ represents the sigmoid function, and

Z ∈ R
nd is the classification result. The repre-

sentation of a positively classified tag sequence

is denoted as R
(i)+
d . These selected positive rep-

resentations will be fused with the original BERT

embedding Eu.

Knowledge Fusing In this stage, our framework

aims to produce a lexical knowledge enhanced rep-

resentation Ek by fusing BERT-based encoding Eu

with several selected tag sequences R+
d via the pro-

posed col-wise attention. Use the j-th token of

input sequence as an example, we take its BERT-

based representation E
(j)
u to act as Query, and its

corresponding tag representation R
(i,j)+
d as Key

and Value, then col-wise attention can formulate:

K = V = [R
(1,j)+
d ; . . . ;R

(m,j)+
d ] (9)

E
(i)
k = Att(E(j)

u , K, V ), (10)

where m = |R+
d |. Then concatenate E

(i)
k for all l

positions to get Ek.

2.3 The Tagger

At last EO is produced by combining Eu with Ek,

and here we use a linear classification layer, as used

by BERT tagger.
EO = Eu + Ek (11)

O = σ(Linear(EO)) (12)

where O is the classification result for each token.

We can see that the proposed framework is not

an intrusive method but rather pluggable. As we

take the encoder’s output as input and return a

knowledge enhanced text representation, the origi-

nal model structure is not modified.

3 Experiments

We conduct experiments on several NLP tasks,

including CWS (Chinese word segmentation),

NER (named entity recognition), and NLU (nat-

ural language understanding). The experimental

hyperparameter settings are listed in appendix F.

Task Item Category Tag

CWS words -
B: Begining of a word

I: Continuation of a word

NER words Song name
B-song: Begining of a song name

I-song: Continuation of a song name

NLU words Location name
B-loc: Begining of a location name

I-loc: Continuation of a location name

Table 1: Examples of lexicon’s content in different

tasks.

3.1 Primary Baselines

BERT-based Sequence Tagger The framework

uses BERT as an encoder to represent the input

sequence. As can be seen in Figure 2, we can get

this baseline by removing the LexKg extractor part

of DyLex.

Glyce (Meng et al., 2019) Glyce is the glyph-

vectors for Chinese character representations. With

the lexicon, it has achieved the best performance

on Chinese word segmentation so far.

FLAT and HSCRF+Softdict (Li et al., 2020; Liu

et al., 2019a) Named entity recognition can ben-

efit greatly from lexicons. FLAT utilizes lexicons

with the Lattice structure for Chinese entity recog-

nition, and HSCRF with softdict is used for En-

glish named entity recognition, both of them have

achieved strong results.

3.2 Lexicon Construction

The lexicon mentioned in this article refers to a

collection, the entry of which contains item and

Category. The item corresponds to the words, and

the category corresponds to the type of the words.

The category of words is customized according to

the task. For example, the category in the NER task

can be the song name. Tag is a BIO format that

marks the type of a word. Table 1 shows notation

and appendix E is a detailed lexicon fragment.

The lexicon tag mentioned above is used to mark

word categories, namely the value in the lexicon,

which is strongly related to the task. Figure 2(b)

and the ‘Tag’ column in Table 1 display some ex-

amples.

The lexicons used in our experiments are con-

sistent with the ones used in baseline methods. In

the NLU task, since there has not been any related

work with using lexicons, we extract labeled spans

from the training corpus and merge them with the

lexicon used in NER task. The lexicon sizes used

in our experiments are listed in appendix B.
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Methods LEX Weibo MSRA Resume Ontonotes AVG

BiLSTM-CRF (Huang et al., 2015) ✗ 56.75 91.87 94.41 71.81 78.71

TENER (Yan et al., 2019) ✗ 58.39 93.01 95.25 72.82 79.86

BERT (Devlin et al., 2019) ✗ 68.20 94.95 95.53 80.14 84.70

LSTM+ExSoftWord (Ma et al., 2020) ✓ 56.02 92.38 95.43 72.40 79.05

Lattice-LSTM (Zhang and Yang, 2018) ✓ 58.79 93.18 94.46 73.88 80.07

LR-CNN (Gui et al., 2019a) ✓ 59.92 93.71 95.11 74.45 80.79

FLAT+BERT+CRF (Li et al., 2020) ✓ 68.55 96.09 95.86 81.82 85.58

DyLex ✓ 71.12 96.49 95.99 81.48 86.27

Table 2: F1 scores of different methods on Chinese NER dataset. AVG stands for the average of each row.

Methods LEX Conll2003 OntoNotes5.0 AVG

BiLSTM-CRF (Huang et al., 2015) ✗ 91.03 86.28 88.65

TENER (Yan et al., 2019) ✗ 91.33 88.43 89.88

LSTM-CNNs (Chiu and Nichols, 2016) ✗ 91.62 86.28 88.95

BERT (Devlin et al., 2019) ✗ 92.40 89.13 90.76

CSE (Akbik et al., 2018) ✗ 92.72 89.71 91.40

SENNA (Collobert et al., 2011) ✓ 89.56 - -

JERL (Luo et al., 2015) ✓ 91.20 - -

ID-CNN (Strubell et al., 2017) ✓ 90.54 86.84 88.69

GRN (Chen et al., 2019a) ✓ 91.44 87.67 89.55

HSCRF (Liu et al., 2019a) ✓ 92.75 89.94 91.34

LUKE (Yamada et al., 2020) ✓ 94.30 - -

DyLex ✓ 94.30 90.19 92.25

Table 3: F1 scores of different methods on English NER dataset. The setting is the same with Table2.Note that

LUKE incorporate the entity information during the pre-training phase.

Model LEX PKU CITYU

Yang et al. (2017a) ✗ 96.30 96.94

Ma et al. (2018) ✗ 96.10 97.23

Huang et al. (2020a) ✗ 96.60 97.60

BERT (Devlin et al., 2019) ✗ 96.50 97.60

Glyce (Meng et al., 2019) ✓ 96.70 97.90

DyLex ✓ 97.14 98.60

Table 4: F1 Score on PKU and CITYU datasets.

3.3 Task1: Chinese Word Segmentation

CWS aims to divide a sentence into meaningful

chunks. It is a primary task for Chinese text pro-

cessing. Using lexicons in CWS tasks is a com-

monly used operation. Brand new words and inter-

net buzzwords emerge every day, and it is essential

to add these words into lexicons for better perfor-

mance.

In this work, we experiment on two popular

CWS datasets, i.e., PKU and CITYU(Emerson,

2005). The lexicon used in this experiment is

consistent with jieba word segmentation lexicon2,

which consists of a simplified Chinese lexicon from

2https://github.com/fxsjy/jieba

jieba and an extra traditional Chinese lexicon from

Taiwan version of jieba. We converted all tradi-

tional Chinese into simplified Chinese for all lexi-

cons and datasets.

To fairly compare our model with the SOTA

models, we use the same settings on dataset split

with Meng et al. (2019).

As shown in Table 4, our method outperforms

all the other compared baselines. Compared with

Glyce, which is a strong baseline, our method ob-

tains improvement of 0.44% and 0.7% on PKU and

CITYU respectively.

3.4 Task2: Named Entity Recognition

Named entity recognition is a typical sequence la-

beling task, and it heavily relies on external knowl-

edge. Incorporating lexicon as external knowl-

edge can help determine the span and type of enti-

ties. To fully verify the capability of the proposed

framework in NER, we evaluate our framework

on Ontonotes (Weischedel and Consortium, 2013),

MSRA (Levow, 2006), Resume (Zhang and Yang,

2018), and Weibo (Peng and Dredze, 2015; He

and Sun, 2017) for Chinese, and Conll2003 (Sang

https://github.com/fxsjy/jieba
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MODELS
TEST SINGLE MULTI MEDIA

DISAMB
intent slot intent slot intent slot intent slot

BERT 96.67 95.12 13.83 54.66 77.13 81.22 95.46 92.88 -

DyLex 97.43 96.65 77.81 92.10 90.89 93.03 95.96 95.09 97.74

Table 5: Performance on the industrial dataset (F1). The TEST set is divided into three parts, SINGLE, MULTI,

and MEDIA. The slot in SINGLE can only correspond to one tag in lexicon, and the one in MULTI can correspond

to multiple tag. The sentence in MEDIA has obvious indicator words, such as words like “play music”.

Models LEX
Snips ATIS

AVG
Intent Slot matchsen Intent Slot matchsen

Atten-joint (Liu and Lane, 2016) ✗ 96.7 87.8 74.1 91.1 94.2 78.9 87.13

Slot-Gated (Goo et al., 2018) ✗ 97.0 88.8 75.5 94.1 95.2 82.6 88.86

SF-ID (E et al., 2019) ✗ 97.4 92.2 80.5 97.7 95.8 86.7 91.71

Joint BERT (Chen et al., 2019b) ✗ 98.6 97.0 92.8 97.5 96.1 88.2 95.03

HSCRF∗ (Liu et al., 2019a) ✓ 98.7 97.6 93.1 97.7 96.0 88.4 95.25

DyLex ✓ 99.8 99.1 98.1 98.2 95.7 88.5 96.52

Table 6: NLU performance on Snips and ATIS datasets. The metrics are intent classification accuracy, slot filling

F1, and sentence-level semantic frame accuracy (%). The results marked with * are reported from our recurrence.

and Meulder, 2003) and Ontonotes (Pradhan and

Ramshaw, 2017) for English. The statistics of these

datasets are detailed in Table C1. The lexicon used

in Chinese NER tasks is the same as Li et al. (2020),

and the one in English is the same as Liu et al.

(2019a).

We first evaluate our framework on the Chinese

datasets, and the results are shown in Table 2. Ex-

cept for the Ontonotes, our approach achieves the

best results over all methods with lexicons, aver-

agely 0.69% higher than FLAT. Compared with

BERT, which is the best method without using lex-

icon, our approach improves even more dramati-

cally, with 1.57% higher.

We evaluate our framework on two English

datasets (i.e., Conll2003, OnotNotes5.0). The con-

clusion is similar to Chinese Datasets, as shown

in Table 3. Comparing with the HSCRF and CSE,

our method is 0.91% and 0.85% higher on average,

with and without lexicon respectively. LUKE (Ya-

mada et al., 2020) scores the same as our method

on the conll 2003 data set, and also uses informa-

tion related to entities. they achieved it through

pre-training, which is orthogonal to our method.

3.5 Task3: Natural Language Understanding

NLU is a more challenging sequence labeling task,

which aims to recognize the intent of spoken lan-

guage and extract slots. As shown in Figure 1, in

many practical application scenarios, one cannot

tell the real intent unless the entity is provided as

prior knowledge.

We evaluate the framework on an industrial data

set and two public data sets. The chinese industrial

data set is a commercial dataset for mobile phone

assistant. The public datasets are Snips3 and ATIS

(Tür et al., 2010). The details of the three datasets

are shown in appendix D.

The overall performance of our framework on

the industrial dataset is listed in Table 5. For the test

set, there are 0.76% and 1.53% improvements in in-

tent detection and slot filling, respectively. Specifi-

cally, the gain is more obvious in the SINGLE and

MULTI set. The BERT can not distinguish intent

between “play music” and “play video” since the

model lacks the prior knowledge of whether ”Love

Story” is a song or a movie. In the MEDIA set,

all sentences contain demonstrative words, such as

“play music [xxx]” and “play video [xxx]”. This

type of sentence does not depend on the type of xxx.

It is easy to make judgments through the demon-

strative words (i.e., music and video), but there is

still a 0.5% increase in intent detection, and the

increment in the slot filling is even more obvious,

reaching 2.21%.

The experimental results on Snips and ATIS

are shown in Table 6, the setting follows previ-

ous works (E et al., 2019; Goo et al., 2018). It

can be seen that our framework outperforms the

other methods in all three metrics (except slot of

3https://github.com/snipsco/nlubenchmark/
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Figure 3: (a) The Influence of matching length (the x-axis represents the matched word’s length, and the y-axis

represents the proportion of correct results in all matching results). (b) F1 score on top-n candidates by reverse

order of match length. (top-n means fetching n the longest matching results).

ATIS): slot filling (F1), intent detection (Acc), and

sentence accuracy (Acc), with 1.27% higher on av-

erage than the previous best method. For ATIS, the

improvement is not as much as other methods. This

is mainly because the dataset is relatively small and

the slot is sparse, lexicons are underutilized.

4 Discussion

4.1 The Study of Match Length

Given an utterance, the FM(algorithm 1) often pro-

duces numerous matching results for each position.

On the one hand, we are not sure which result is

correct. To retain the correct result, we should keep

as many results as possible. On the other hand,

most matching results are invalid, bringing a lot of

matching noise and increasing computation cost.

We have to make a balance between them. As

shown in the Figure 3(a), the longer the length is,

the higher the accuracy is. Based on this observa-

tion, we should select matching results by reverse

order of match length.

We also studied the number of selected results

for each position in the sentence. It is more likely

to keep the right matches with a larger number, but

it brings more noise. From Figure 3(b), F1 on the

three data sets do not increase as the number grows.

Taking efficiency into account, we generally select

n = 1 or n = 2.

4.2 Effect of Dynamic Lexicon

One advantage of our proposed method is the abil-

ity to load lexicons dynamically. Instead of using

the embedding of updated lexicon entries, we only

use the lexicon words’ category tags. Thus we can

expand the scale of lexicons arbitrarily without re-

training. We studied the effect of lexicon size on

0% 25% 50% 75% 100%
Lexical size

0.95

0.96

0.97

0.98

0.99

1.00

F1

PKU
Snips-slot
Snips-intent

Figure 4: The F1 of different task with different lexical

size. When the size is 100%, it means using the entire

lexicon in the corresponding experiment above.

performance. From Figure 4, we can see that with-

out using a lexicon, the performance are close to

the results of BERT base. With the increasing size

of lexicon, the performance will also be improved.

4.3 Look Back on Denoising

Indistinguishable lexicon matching will bring huge

noise. The quality of denoising will affect the per-

formance of the model. From Table 7, we can see

that whether it is Exp-Dict or Sp-Dict, the more

precise the denoising, the more improvement will

be achieved compared to BERT without using a

lexicon. The Sp-Dict here is a specialized collec-

tion of domain lexicons. For example, the lexicon

only contains entities of the relevant category in

the NER task, and the scale is relatively small. In

this case, the matching noise brought by Sp-Dict is

much smaller. From the Table 7, we can observe

that the accuracy of denoising in Sp-dict is better

than that in Exp-dict, which directly leads to im-

pressive improvement in the experiment. This also

confirms the importance of denoising.
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Task Datasets BERT
Exp-Dict Sp-Dict

Denoising Dylex Denoising Dylex

CWS
PKU 96.50 97.90 97.14(+0.64) 99.26 98.11(+1.61)

CITYU 97.60 97.91 98.06(+0.46) 99.14 98.72(+1.12)

NER-Chinese

Ontonotes 80.14 97.83 81.48(+1.34) 98.37 82.31(+2.17)

MSRA 94.65 98.10 96.40(+1.75) 98.74 96.85(+2.20)

Resume 95.53 97.92 95.99(+0.46) 98.82 96.40(+0.87)

Weibo 68.20 96.93 71.12(+2.92) 97.83 71.53(+3.33)

NER-English
Conll2003 92.40 98.66 94.30(+1.90) 98.81 94.44(+2.04)

Ontonotes5.0 89.13 97.24 90.19(+1.06) 98.19 91.40(+2.27)

Table 7: Column BERT represents the F1 on each task, the Denoising column represents the accuracy of the

denoising module, and the Dylex column is the F1 of our method and its increment versus BERT. Exp-dict is the

lexicon corresponding to each experiment above, and Sp-Dict indicates specialized domain-related lexicons.

4.4 Fusion in Hard or Soft Way

After Denoising, the results Rd should be fused

with Eu for downstream tasks. The fused methods

can be soft or hard. In the soft setting, all of the

Rd are weighted summed before fusing with Eu.

The advantage of this is we can use gradient back-

propagation to train the model. Different from the

soft method, Eu in the hard method is selected ac-

cording to the threshold. As shown in Table 8, the

overall performance of hard fusion is better since

it mainly fuses more accurate results. Besides, we

also adopt Teacher Forcing (Williams and Zipser,

1989) in soft/hard methods, but it does not yield

promising accuracies.

Methods
MSRA Resume

Exp-

Dict

Sp-

Dict

Exp-

Dict

Exp-

Dict

Soft 95.26 95.51 95.13 94.91

Hard 96.40 96.85 95.99 96.40

Table 8: The F1 of two selecting strategies.

5 Related Work

With the advance of deep learning, sequence la-

belling tasks, such as segmentation and NER, have

achieved excellent performance. More and more

methods tend to be character-based(Chen et al.,

2006; Lu et al., 2016; Dong et al., 2016), especially

in languages, such as Chinese, Japanese, Korean,

etc., that require word segmentation. These lan-

guages do not have a natural segmentation delimiter

as white space in Latin languages. Character-based

input in these languages can avoid accumulation

of word segmentation errors, then get better perfor-

mances(He and Wang, 2008; Liu et al., 2010; Li

et al., 2014). However, the downside of the purely

character-based method is that the word informa-

tion is not fully exploited.

To make full use of word information, incorpo-

rating a lexicon is an effective method. Existing

works on incorporating lexicon can be categorized

as feature based, lattice based and graph based

methods according to implementation complexity.

Feature based Feature based method is a simpler

way. Some works directly use lexical information

with simple matching features and the others use

auxiliary tasks to leverage the lexical information.

Zhang et al. (2018) builds the template first and

uses the template matching lexicon to build fea-

tures, which help word segmentation tasks. Mu

et al. (2020) uses a simple lexicon matching loca-

tion information as features. Li et al. (2014) and

Peters et al. (2017) adopt word-level language mod-

eling objective and multi-task to use word informa-

tion implicitly. Yang et al. (2017b) transfer cross-

domain and cross-lingual knowledge via multi-task

learning.

Lattice based Lattice based method is to use

lattice structure. Zhang and Yang (2018) pro-

poses Lattice-LSTM for incorporating word lex-

icons into the character-based NER model. Rather

than heuristically choosing a word for the charac-

ter when matching multiple words in the lexicon,

they also introduce an elaborate modification to

the sequence modeling layer of the LSTM-CRF

model(Huang et al., 2015). Considering that the

short path in the lattice structure will cause the

word-based structure to degenerate into a character-

based structure, Liu et al. (2019b) propose a novel

word character LSTM(WC-LSTM) model to add
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word information via four strategies. Since the

lattice structure is complex and dynamic, most

existing lattice-based models cannot fully utilize

GPUs’ parallel computation and usually have a

low inference-speed. Li et al. (2020) propose a

Transformer-based model for Chinese NER, which

converts the lattice structure into a flat structure.

Graph based Graph based method uses a di-

rected graph structure to fuse lexiconal information.

Gui et al. (2019b) uses a GNN-based method to

explore multiple graph-based interactions among

characters, potential words, and the whole-sentence

semantics to effectively alleviate the word ambi-

guity. Sui et al. (2019) employ a collaborative

graph network to assign both self-matched and the

nearest contextual lexical terms. To automatically

learn how to incorporate multiple gazetteers into

a NER system, Ding et al. (2019) propose a novel

approach based on graph neural networks with a

multidigraph structure. The structure captures the

information the gazetteers offer.

6 Conclusion and Future Work

In this paper, we propose DyLex, a framework in-

corporating dynamic lexicon to improve BERT-like

models’ performance in sequence labeling tasks.

To alleviate the problems caused by large-scale dy-

namic lexicons, we introduce word-agnostic tag

embeddings and a knowledge denoising module.

As a result, our framework outperforms the state-

of-the-art works on many sequence labeling tasks.

In future, how to extend it to text classification

is a challenge, since denoising corpus cannot be

automatically constructed at this time.
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A Case Study

Input(1) Play this is colour by panda Bear.
In dict o track track track o artist artist

Baseline o album album album o artist artist
DyLex o track track track o artist artist

Input(2) Use netflix to play bizzy bone kiss me good-night Serge-ant major
In dict o service o o artist artist track track track track track

Baseline o service o o track track track track track track track
DyLex o service o o artist artist track track track track track

Input(3) I want to add hind etin to my la mejor musica dance 2017 playlist
In dict o o o o entity entity o owner plst plst plst plst plst plst

Baseline o o o o artist artist o owner plst plst plst plst plst plst
DyLex o o o o artist artist o owner plst plst plst plst plst plst

Input(4) what is the weather like in north salt lake and afghanistan
In dict o o o o o o city city city o country

Baseline o o o o o o country country country o country
DyLex o o o o o o city city city o country

Input(5) I want to book a cafe for 3 in fargo
In dict o o o o o res_type o o o city

Baseline o o o o o res_type o o o country
DyLex o o o o o res_type o o o city

Input(6) play the new noise theology ep
In dict o object object object object object intent

Baseline o plst plst plst plst plst PlayMusic
DyLex o object object object object object SearchCreativeWork

Input(7) Find a man needs a maid Bear.
IntentIn dict o object object object object object object

Baseline o movie movie o movie movie movie SearchScreeningEvent
DyLex o object object object object object object SearchCreativeWork

Input(8) 播 放 林 星 辰 的 音 乐 盒
In dict o o artist artist artist o track track track Intent

Baseline o o artist artist track track track track track PlayMusic
DyLex o o artist artist artist o track track track PlayMusic

Input(9) 播 放 林 星 辰 的 音 乐 盒
In dict o o track track track track track track track Intent

Baseline o o artist artist track track track track track PlayMusic
DyLex o o track track track track track track track PlayMusic

Input(10) 外 国 政 要 发 表 新 年 贺 词 满 怀 信 心 应 对 挑 战
In dict B I B I B I B I B I B I I I B I B I

Baseline B I B I B I B I B I B I I I B B B I
DyLex B I B I B I B I B I B I I I B I B I

Input(11) 环 南 中 国 海 自 行 车 赛 落 幕 澳 门
In dict B B I I I B I I I B I B I

Baseline B B B I I B I I I B I B I
DyLex B B I I I B I I I B I B I

Input(12) 这 起 发 生 在 校 园 内 的 重 大 安 全 责 任 事 故
In dict B B B I B B I B B B I B I B I I I

Baseline B B B I B B I B B B I B I B I B I
DyLex B B B I B B I B B B I B I B I I I

As showed in above, we randomly select some examples of inconsistent predictions before and after

adding the lexicons, example [1-5] is from NER, example [6-9] is from NLU, and example [10-12] is from

CWS . Each example contains the input sentence, the related matching result, the baseline prediction, and

DyLex prediction. Highlighted parts indicate inconsistent results. We make some interesting observations.

CASE I Different type of entities can be placed under a same context. For example [1], “play” can

be followed by TRACK or ALBUM (play [XX]). Model would be confused of whether XX is a TRACK

or a ALBUM. In this case lexicons can provide enough type information to acquire a correct result.
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CASE II Chinese word segmentation granularity is flexible according to the context. “南中国

海(South China Sea)” can be segmented into “南(South)” and “中国海(China Sea)”, or it can be regarded

as a single word [11]. At this point, an external lexicon will be benefit for controlling the granularity.

CASE III It happens that the word combination in slot have different interpretations, usually when

the length of a slot is too long. That may cause the discontinuity of slot extraction. For example, we

can see an improper O is inserted in the baseline prediction [7]. By incorporating lexicons, the boundary

information can enhance the integrity of slot extraction.

CASE IV Dylex can adapt its prediction to updating lexicons. As example[8-9] illustrated, given

different lexicon entries, our framework can understand what “林星辰的音乐盒” is, then dynamicly

provide correct slot.

B Lexicon size uesd in different experiment

Task Datasets Exp-Dict Sp-Dict

CWS
PKU 570K 57.7K

CITYU 579K 70.5K

NER-CN

Ontonotes 97.2K 68.6K

MSRA 98.1K 80.5K

Resume 97.9K 68.9K

Weibo 96.9K 62.9K

NER-EN
Conll2003 1.3M 33K

Ontonotes5.0 1.3M 47K

NLU

ATIS 1.3K 1.3K

Snips 12K 12K

Industrial NLU 16M 16M

Table B1: Lexicon size(number of term) uesd in different experiment

C Overiew of NER dataset

Ontones MSRA Resume Weibo Conll2003 OntoNotes5.0

train 15,470 46,675 3,821 1,350 14,987 115,812

charavg 36.92 45.87 32.15 54.37 - -

wordavg 17.59 22.38 24.99 21.49 13.5 9.40

entityavg 1.15 1.58 3.48 1.42 1.56 0.71

Table C1: Overiew of NER dataset

D Overiew of NLU dataset

Type Dataset Train Dev Test Intents Slots

Industrial - 80,000 30,000 30,000 500 400

Public
Snips 13,084 700 700 7 72

ATIS 4,478 500 893 21 120

Table D1: The stastics of NLU datasets.
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The Chinese industrial NLU dataset is a corpus specially used to train mobile phone assistants. The

data set includes 80k Training set, 30k Dev set and 30k Test set. The annotation contains 500 types of

intentions commonly used by mobile assistants , which are divided into 8 categories such as setting and

control. There are 400 slots categories in total. The data is labeled using crowdsourcing. The cost is about

1 dollar per sentence. Each sentence was marked by 3 people, and finally the result was determined by

voting. At last, there is a acceptance sampling, and professionals will spot check the quality of each batch,

and the error is controlled within 1%.

E A concrete example of a lexicon

Item Category

cathy mu ∼no ##z PER

pieter pieter ##sz barbie ##rs PER

bell high school ORG

fredrik ri ##sp PER

liverpool ORG

venice gardens LOC

brant ##ford golden eagles ORG

jerry and ##rus PER

taylor leon PER

kata ##rina e ##wer ##lo ##f PER

anne finch PER

hanna st ##yre ##ll PER

the big blue MISC

math ##are united ORG

var ##ana ##si college of pharmacy ORG

gilbert ##sville LOC

Table E1: A fragment of the lexicon used in this article. The Item on the left is the wordpiece of the words, and

the corresponding category on the right.

F Hyperparameters

batch_size [32, 64]

learning_rate 2e-5

optimizer Adam

weight_decay 0.01

dropout 0.1

max_seq_length 128

dict_candidate 16 #the maximum number of matches per sentence

top_n 1 #number of matches reserved for each position

warmup_proportion 0.1

epochs 20

use_first True #only the first character category is used to predict the entity type

Table F1: The hyperparameters used in the experiment. Other hyperparameters default are consistent with BERT.


