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Abstract

Auxiliary information from multiple sources
has been demonstrated to be effective in zero-
shot fine-grained entity typing (ZFET). How-
ever, there lacks a comprehensive understand-
ing about how to make better use of the ex-
isting information sources and how they af-
fect the performance of ZFET. In this paper,
we empirically study three kinds of auxiliary
information: context consistency, type hierar-
chy and background knowledge (e.g., proto-
types and descriptions) of types, and propose
a multi-source fusion model (MSF) targeting
these sources. The performance obtains up to
11.42% and 22.84% absolute gains over state-
of-the-art baselines on BBN and Wiki respec-
tively with regard to macro F1 scores. More
importantly, we further discuss the characteris-
tics, merits and demerits of each information
source and provide an intuitive understanding
of the complementarity among them.

1 Introduction

Fine-grained entity typing (FET) aims to detect
the types of an entity mention given its context
(Abhishek et al., 2017; Xu and Barbosa, 2018; Jin
et al., 2019). The results of FET benefit lots of
downstream tasks (Chen et al., 2020; Hu et al.,
2019; Zhang et al., 2020a; Liu et al., 2021; Chu
et al., 2020). In many scenarios, the type hierar-
chy is continuously evolving, which requires newly
emerged types to be accounted into FET systems.
As a result, zero-shot FET (ZFET) is welcomed
to handle the new types which are unseen during
training stage (Ma et al., 2016; Ren et al., 2020;
Zhang et al., 2020b).

The major challenge of ZFET is to build the se-
mantic connections between the seen types (during
training) and the unseen ones (during inference).
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[Mention] [Context] [Type]

Source1: Context Consistency
Consistent: Corporation and Midway are two of the five
airlines with which Budget has agreements.
Inconsistent: Drug and Midway are two of the five airlines
with which Budget has agreements.

Source2: Type Hierarchy

Organization

Government

Corporation

……

Source3: Background Knowledge

Prototypes: western_union, quebecor, merrill, rtc, …
Description: a business firm whose articles of incorporation
have been approved in some state.

Figure 1: Illustration of the proposed multi-source fu-
sion model (MSF).

Auxiliary information has been proved to be es-
sential in this regard (Xian et al., 2019), with a
variety of approaches focused on scattered infor-
mation (Ma et al., 2016; Zhou et al., 2018; Obeidat
et al., 2019; Ren et al., 2020; Zhang et al., 2020b).
However, the power of auxiliary information has
not been sufficiently exploited in existing solutions.
Besides, the effects of each information source also
remain to be clearly understood.

In this paper, we propose a Multi-Source Fusion
model (MSF) integrating three kinds of popular
auxiliary information for ZFET, i.e., context con-
sistency, type hierarchy, and background knowl-
edge, as illustrated in Figure 1. (i) Context
consistency means a correct type should be se-
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mantically consistent with the context if we re-
place the mention with the type name in the con-
text. Type name is the surface form of a type,
which is a word or a phase, e.g., type name of
/organization/corporation is corpora-
tion. (ii) Type hierarchy is the ontology structure
connecting seen and unseen types. (iii) Background
knowledge provides the external prior information
that depicts types in detail, e.g., prototypes (Ma
et al., 2016) and descriptions (Obeidat et al., 2019).

MSF is composed of three modules, with each
targeting a specific information source. (i) In the
CA (Context-Consistency Aware) module, we mea-
sure the context consistency by large-scale pre-
trained language models, e.g., BERT (Devlin et al.,
2019). By masking mentions and predicting the
names of ground truth types through finetuning on
the data of seen types, CA is expected to measure
the context consistency of unseen types more pre-
cisely. (ii) In the HA (Type-Hierarchy Aware) mod-
ule, we use Transformer encoder (Vaswani et al.,
2017) to model the hierarchical dependency among
types. There have been substantial works exploring
type hierarchy in the supervised typing task (Shi-
maoka et al., 2017; Xu and Barbosa, 2018; Xiong
et al., 2019), but only some preliminary research
in ZFET (Ma et al., 2016; Zhang et al., 2020b).
(iii) In the KA (Background-Knowledge Aware)
module, we introduce prototypes (Ma et al., 2016)
and WordNet descriptions (Miller, 1995) as back-
ground knowledge of types. KA is embodied as
natural language inference with a translation-based
solution to better incorporate knowledge.

Extensive experiments are carried out to verify
the effectiveness of the proposed fusion model. We
also conduct a deep analysis on the characteristics,
merits and demerits of each information source.
We find that, similar to type hierarchy, background
knowledge also implies some hierarchical informa-
tion through the shared prototypes and the descrip-
tions semantically similar with their parent types.
Besides, the context consistency is an essential clue
in handling long-tail unseen types and longer con-
texts. Moreover, we further discuss the comple-
mentarity among different information sources and
their contributions to the proposed fusion model.

In summary, our contributions are as follows:

• We propose a multi-source fusion model in-
tegrating multiple information sources for
ZFET, which achieves new state-of-the-art re-
sults on BBN and Wiki.

• We are the first work to conduct a comprehen-
sive study on the strengths and weaknesses of
three auxiliary information sources for ZFET.
Besides, we also make a deep analysis about
how different information sources comple-
ment each other and how they contribute to
the proposed fusion model.

2 A Multi-Source Fusion Model

2.1 Overview

Zero-shot Fine-grained Entity Typing (ZFET) is
defined on a type set T = Ttrain ∪ Ttest, which
forms a hierarchy. During inference, ZFET aims
to identify the correct types for a mention m based
on its context c, where the target types are unseen
during the training stage, i.e., Ttrain ∩ Ttest = ∅.

As shown in Figure 1, we propose a Multi-
Source Fusion model (MSF) that captures infor-
mation from these sources and integrates them to
make a better prediction under the zero-shot sce-
nario. In the following, we first describe the details
of each module (Sec 2.2, 2.3 and 2.4), and then
present the joint loss function and inference details
(Sec 2.5).

2.2 Context-Consistency-Aware (CA) Module

We base the CA module upon the pre-trained BERT
(Devlin et al., 2019) and fine-tune it for assessment
of context consistency.

2.2.1 Fine-tuning by Masking Mentions
Vanilla BERT randomly masks some input tokens
and then predicts them. Nevertheless, in fine-
tuning stage for ZFET, CA only masks the en-
tity mentions and predicts their type names in-
stead. For instance, given the context in Figure
1, we replace the entity mention Northwest
with a [MASK] token and let CA module pre-
dict the name corporation of the target
type /organization/corporation with a
higher score. In more general cases, the length
of a type name may exceed 1. Thus, the number
of [MASK] tokens for replacement depends on
the length of the type name (e.g., for type name
living thing, we replace the corresponding
mention with [MASK] [MASK]).

2.2.2 Loss Function for CA Module
For each mention m in the training set, we denote
its ground-truth types as Tpos. For each type t in
Tpos, we replace m with l [MASK] tokens in the
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context of m, where l is the length of t’s type name.
We define the score st and loss `t for type t as

st =
1

|nt|

|nt|∑
k=1

pnt,k
, `t = − 1

|nt|

|nt|∑
k=1

log pnt,k

(1)
where pnt,k

is the probability for the k-th token of
type name nt predicted by BERT. Considering all
the types in Tpos, the overall loss for mention m is:

Lm,CA =
∑

t∈Tpos

`t (2)

Note, the vocabulary of BERT contains all the con-
stituent tokens of all the type names in Ttrain and
pnt,k

is the output of the Softmax function over
the vocabulary, minimizing the loss above will also
punish scores of negative types in Ttrain.

2.3 Type Hierarchy-Aware (HA) Module

In HA module, we use Transformer encoder
(Vaswani et al., 2017) with mask-self-attention to
capture the hierarchical information for better type
representations. Besides, we take the encoder from
Lin and Ji (2019) to learn the features of mentions
and contexts. Then a similarity function is defined
to compute the matching score between a mention
and a candidate type based on the context.

2.3.1 Mention-Context Encoder
In the mention-context encoder, an entity mention
and its context are represented as the weighted
sum of their ELMo word representations. Then
the mention representation rm and context repre-
sentation rc are concatenated as the final represen-
tation: rmc = rm ⊕ rc, where rm, rc ∈ Rdm ,
rmc ∈ R2dm , ⊕ denotes concatenation.

2.3.2 Hierarchy-Aware Type Encoder
Given a type set T = Ttrain∪Ttest and its hierarchy
structure Ψ, we denote the initialized type embed-
dings1 as E = [et1 , et2 , ..., etN ], which are the
inputs of Transformer encoder, where eti is the em-
bedding for the i-th type ti,N is the size of T . Note
that the positional embeddings are removed since
the input type sequence is disordered. To inject the
hierarchical information, we perform the mask-self-
attention operation on types. Specifically, during
the process of computing self-attention in Trans-
former encoder, a type only attends to its parent
type in the hierarchy and itself, while the attention

1The initialization details are presented in Appendix A

to the remaining types will be masked. We omit
other details and denote the final representation for
each type t ∈ T as rt ∈ Rdt .

2.3.3 Loss Function for HA Module
Given a mentionm and a candidate type t ∈ Ttrain,
we first map the mention representation rmc and
type representation rt into a shared space by

φ (rmc,A) : rmc → Armc

θ (rt,B) : rt → Brt ,
(3)

where A ∈ Rds×2dm and B ∈ Rds×dt are learn-
able matrices. The matching score is defined as

yt = φ (rmc,A) ·θ (rt,B) = (Armc)
>Brt (4)

During training, we match mention m with all
the types in Ttrain, so the loss function for m is:

Lm,HA = CrossEntropy (y, ŷ) , (5)

where ŷ ∈ R|Ttrain| denotes the binary vector for
the ground-truth types of m with 1 for positive and
0 for negative. |Ttrain| denotes the size of Ttrain.
y ∈ R|Ttrain| denotes the predicted score vector.

Although the HA module does not directly learn
any knowledge from instances of Ttest, by encod-
ing the type hierarchy Ψ using mask-self-attention,
Transformer encoder will capture the semantic cor-
relation between types in Ttrain and Ttest, thus pro-
ducing reliable representations for types in Ttest.

2.4 Background Knowledge-Aware (KA)
Module

We introduce prototypes and descriptions as two
kinds of knowledge in the KA module.

Prototypes refer to the carefully selected men-
tions for a type based on Normalized Point-wise
Mutual Information (NPMI), which provide a
mention-level summary for types (Ma et al., 2016).

Descriptions are queried from WordNet glosses
(Miller, 1995) by type names, which provide a brief
high-level summary for each type.

2.4.1 Inference from Background Knowledge
We hope to infer whether a mention m matches a
candidate type t, given the prototypes, type descrip-
tion and the context. In this work, we embody the
KA module as natural language inference (NLI)
from multiple premises (Lai et al., 2017). An ex-
ample is presented in Figure 2, with input the same
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Multiple Premises
• Context-based premise: Northwest and Midway are two

of the five airlines with which Budget has agreements.
• Prototypes-based premise: /organization/corporation

has the following prototypes: western_union, …
• Description-based premise: /organization/corporation

denotes a collection of business firms whose articles of
incorporation have been approved in some state.

Hypothesis
• /organization/corporation is a correct type for the

mention Northwest.

Figure 2: An example to illustrate the multiple-
premises and the hypothesis for KA.

as Figure 1. We construct three premises corre-
sponding to the context, prototypes and descrip-
tion respectively. The target hypothesis encodes
that “the type is correct for the mention”. For both
premises and hypothesis, we organize them into
natural language sentences.

We reuse the Mention-Context Encoder in
Sec 2.3.1 to obtain representations for the context-
based premise, i.e., rmc = rm⊕rc, where rm and
rc represent the mention and context respectively.
To encode the prototypes-based and description-
based premises, we also use the same encoder,
where the type is aligned with the mention while
the rest of the sentence is aligned with the context
of the mention. We denote the premises based on
prototypes and description as rtp = rt ⊕ rp and
rtd = rt ⊕ rd, where rt, rp, rd ∈ Rdm are consid-
ered as the representations for the type, prototypes-
based and description-based sentences respectively.
Since the hypotheses for the same mention target-
ing different types have the same word sequences
except for the type spans , we simplify the repre-
sentation of hypothesis as rh = rt ⊕ rm ∈ R2dm ,
where rt and rm are the type and mention repre-
sentations directly taken from rmc and rtp, In the
KA module, the encoders for all the premises and
hypothesis share the parameters in ELMo.

Loss Function for KA Module Motivated by
TransE (Bordes et al., 2013) and TransR (Lin et al.,
2015), we propose a simple translation-based so-
lution for NLI by extending the translation opera-
tions over triples to quadruples, i.e., (context-based
premise, prototypes-based premise, description-
based premise, hypothesis).

Given a mention m and a candidate type t, we
first use the matrix W to project all the representa-
tions to a new space for inference:

{r̃mc, r̃tp, r̃td, r̃h} = W {rmc, rtp, rtd, rh} (6)

where W ∈ Rdw×2dm . We hope that r̃mc + r̃tp +
r̃td ≈ r̃h when the hypothesis can be inferred
from the premises, i.e., the type t is correct for the
mention m under the context c. Thus, we try to
minimize their squared euclidean distance

Dt = ‖r̃mc + r̃tp + r̃td − r̃h‖22 , (7)

with norm constraints, i.e., ‖r̃mc‖22 = ‖r̃tp‖22 =
‖r̃td‖22 = ‖r̃h‖22 = 1. Then the score for type t
is defined as: pt = −Dt. The closer the distance,
the higher the score. Finally, the loss function for
mention m is:

Lm,KA =
∑

t∈Tpos,t′∈Tneg

max(0, 1− (pt − pt′))
|Tpos|

,

(8)
where Tpos are the ground-truth types of Ttrain
for m with size |Tpos|, while Tneg are the negative
types in Ttrain, i,e., Tneg = Ttrain \ Tpos.

2.5 Training and Inference
Overall Loss Given a training mention m, we
derived the loss from the aforementioned modules.
Finally, the overall loss to train the fusion model is:

L =
∑
m∈M

Lm,CA + Lm,HA + Lm,KA , (9)

whereM denotes the training mention set.

Inference Given a test mention m and a candi-
date type t in Ttest, we first compute the scores
from each module: st (by CA module), yt (by HA
module) and pt (by KA module). Then we normal-
ize them according to

x′ = sigmoid(
x− µx
σx

), x ∈ {st, yt, pt} , (10)

where x is the score vector from a module for men-
tion m towards all types t ∈ Ttest with x as com-
ponent. µx and σx denote the mean and standard
deviation of the vector x. The final decision score
by our fusion model for type t is:

scoret = λ1s
′
t + λ2y

′
t + λ3p

′
t , (11)

where λ1, λ2, λ3 ≥ 0 are hyper-parameters and
λ1 + λ2 + λ3 = 1.

3 Experimental Setup

3.1 Datasets and Evaluation Metrics
We evaluate our model on two widely-used datasets:
BBN (Weischedel and Brunstein, 2005) and Wiki
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(Ling and Weld, 2012). The version processed by
Ren et al. (2016) is adopted for our experiments.
Detailed statistics on two datasets are listed in Table
1. We do not use OntoNotes (Gillick et al., 2014)
since it is hard to define the name, description and
hierarchy for its special type /other. Types of
both BBN and Wiki are organized into a 2-level
hierarchy. There are 47 types in BBN and 113 types
in Wiki. Following Ma et al. (2016); Zhang et al.
(2020b), we use the coarse-grained (Level-1) types
such as /organization for training (denoted as
seen types), while the fine-grained (Level-2) types
such as /organization/corporation are
reserved for testing (denoted as unseen types).

Dataset BBN Wiki
train test train test

# sentences 32.7K 6.3K 1.5M 276
# mentions 86.1K 12.3K 2.7M 563

Table 1: Statistics of training and test datasets.

Following prior works (Ling and Weld, 2012;
Ma et al., 2016), we report all the popular metrics
in our main results for a better comparison, i.e.,
strict accuracy (Acc), macro-averaged F1 (Ma-F1),
micro-averaged F1 (Mi-F1) and micro-averaged
precision (Mi-P).

3.2 Comparison Models
We abbreviate our Multi-Source Fusion model as
MSF, and compare it with the following baselines:
(1) Proto-HLE (Ma et al., 2016) which introduces
prototype-driven hierarchical label embedding for
ZFET; (2) ZOE (Zhou et al., 2018) which infers
the types of a given mention according to its type-
compatible Wikipedia entries; (3) DZET (Obeidat
et al., 2019) which derives type representations
from Wikipedia pages and leverages a context-
description matching approach for type inference;
(4) NZFET∗ (Ren et al., 2020) which employs
entity type attention to make the model focus on
information relevant to the entity type; (5) MZET∗
(Zhang et al., 2020b) which adopts a memory net-
work to connect the seen and unseen types.

Specifically, we compare MSF with its single-
source modules: the Context-Consistency-Aware
module (CA), the Type-Hierarchy-Aware mod-
ule (HA) and the Background-Knowledge-Aware
module (KA), as well as the variation MSFavg

which simply averages scores from single-source
modules (i.e., λ1, λ2, λ3 = 1/3 in Equation 11).

All the results are reimplemented except the ones
indicated by *. The implementation details and

hyperparameter settings (e.g., λ1, λ2, λ3 for MSF )
are presented in Appendix A.

4 Experimental Results

4.1 Main Results
Table 2 and Table 3 present the results on BBN and
Wiki, evaluated on both the unseen fine-grained
types and the seen coarse-grained types.

Zero-shot Performance From Table 2, we see
that our model significantly outperforms the base-
lines across the metrics. MSF gains up to 11.42%
over DZET on BBN and 22.84% over ZOE on
Wiki according to Ma-F1. Compared with MSFavg,
which treats each information source as equally
important, MSF considers the importance of each
source and achieves better performance on both
datasets. Besides, the single-source modules of
MSF (i.e., CA, HA and KA) also produce rela-
tively promising results, among which KA yields
the best scores. Nevertheless, MSF still surpasses
these modules by a large margin, which verifies the
necessity of information fusion for the ZFET task.

Supervised Performance Table 3 demonstrates
the advantage of MSF in predicting the seen types,
with Ma-F1 increased by 2.01% over Proto-HLE
on BBN and 2.25% over DZET on Wiki. Besides,
CA, HA and KA still maintain a highly competitive
performance in this regard. Combined with Table
2, we find that the proposed MSF has a particular
superiority on the unseen types, since the auxiliary
information from multiple sources tends to be more
helpful when short of annotated training samples.

4.2 Ablation Studies
We conduct ablation studies on the single-source
modules of MSF. The results are shown in Table 4.

Ablations of CA We observe that the vanilla
CA (i.e., the BERT-based CA module without
fine-tuning, denoted as “CA w/o finetuning”) has
reached a certain level of performance. This in-
dicates the potential of BERT for context consis-
tency assessment thanks to its large-scale unsuper-
vised pre-training technique. After fine-tuning with
our modified mask mechanism, CA surpasses its
vanilla version by 23.13% and 10.28% on BBN
and Wiki respectively.

Ablations of HA We show that Transformer-
based type encoder greatly contributes to the HA
module. To validate it, we replace Transformer
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Model BBN Wiki
Acc (%) Ma-F1(%) Mi-F1(%) Mi-P(%) Acc(%) Ma-F1(%) Mi-F1(%) Mi-P(%)

Proto-HLE 49.65 49.65 49.65 49.65 23.76 23.76 23.36 23.76
ZOE 58.00 58.95 62.16 65.33 33.67 34.82 34.50 35.03

DZET 62.60 62.60 62.60 62.60 32.67 32.67 32.12 32.67
NZFET∗ - - - 45.91 - - - 24.25
MZET∗ 28.80 30.10 31.60 - - - - -

CA 50.36 50.36 50.36 50.36 36.63 37.37 36.98 37.62
HA 62.49 62.49 62.49 62.49 35.15 36.99 36.98 37.62
KA 66.32 66.32 66.32 66.32 41.58 43.80 43.80 44.55

MSFavg 70.90 70.90 70.90 70.90 50.00 52.58 52.55 53.47
MSF (ours) 74.02 74.02 74.02 74.02 55.45 57.66 57.42 58.42

Table 2: Performance on the unseen types. The best scores of baselines and all the models are underlined and
bold-faced respectively. Since all the test mentions from BBN correspond to only one ground truth seen/unseen
type, our implementations simply predict the candidate type with the highest score for BBN. This makes some
results of different metrics the same on BBN.

Model BBN Wiki
Acc (%) Ma-F1(%) Mi-F1(%) Mi-P(%) Acc(%) Ma-F1(%) Mi-F1(%) Mi-P(%)

Proto-HLE 87.25 87.25 87.25 87.25 68.17 72.37 70.62 73.92
ZOE 58.86 63.06 59.82 66.28 68.30 68.62 71.13 70.24

DZET 86.02 86.02 86.02 86.02 82.73 87.21 84.88 88.85
NZFET∗ - - - - - - - -
MZET∗ 70.70 71.00 71.00 - - - - -

CA 80.98 80.98 80.98 80.98 75.90 79.59 77.32 80.94
HA 84.57 84.57 84.57 84.57 83.99 88.46 86.08 90.11
KA 86.05 86.05 86.05 86.05 82.55 87.43 85.22 89.21

MSFavg 88.65 88.65 88.65 88.65 84.17 88.91 86.60 90.65
MSF (ours) 89.26 89.26 89.26 89.26 84.71 89.46 87.11 91.19

Table 3: Performance on the seen types.

Source Model BBN Wiki
context

consistency
CA 50.36 37.37
CA w/o finetuning 27.23 27.09

type
hierarchy

Proto-HLE 49.65 23.76
MZET∗ 30.10 -
HA 62.49 36.99
HA-Glove 52.48 18.32
HA-HierMatrix 58.96 20.67

background
knowledge

Proto-HLE 49.65 23.76
DZET 62.60 32.67
KA 66.32 43.80
KA w/o Description 63.28 32.67
KA w/o Prototypes 59.54 26.10

Table 4: Ablation results of CA, HA and KA, evaluated
on the unseen types of BBN by Ma-F1 (%).

encoder with averaged Glove word embeddings to
obtain type representations and denote it as “HA-
Glove”. Besides, we also implement the variation
of HA that removes the Transformer encoder and
simply multiplies the type embeddings by a binary
hierarchical matrix as (Ma et al., 2016) to model the
type hierarchy (denoted as “HA-HierMatrix”). We
see that HA greatly advances its counterparts that
do not use Transformer encoder. Also notice that
HA-HierMatrix performs better than HA-Glove,
indicating hierarchical constraint enforced by Hi-
erMatrix is also important for type representation

learning. In addition, HA also shows a strong ad-
vantage over Proto-HLE and MZET∗ which also
take the relationships among types into account.

Ablations of KA We remove either descriptions
or prototypes from KA and denote them as “KA
w/o Description” and “KA w/o Prototypes”. The
results reveal that, both descriptions and prototypes
consistently contribute to KA, wherein prototypes
seem to play a more important role on both datasets.
In fact, the prototypes used in KA are carefully
selected by Ma et al. (2016) while the descriptions
from WordNet only contain the brief high-level
summaries of types. Additionally, two baselines
(i.e., Proto-HLE and DZET) which also leverages
background knowledge are included for a more
comprehensive comparison. We notice that KA
w/o Prototypes is slightly inferior to DZET which
also uses type descriptions by a type-description
matching approach. However, when prototypes and
descriptions are combined, the superiority of KA
with NLI framework is obvious.

4.3 Characteristics, Merits and Demerits of
Each Information Source

In this section, we focus on the impact of long-tail
types and context length for ZFET. Based on the
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observations, we discuss the characteristics, merits
and demerits of different modules targeting each
information source (i.e., CA, HA and KA).

4.3.1 Impact of Long-tail Types
We examine the performance of each module on
the test subset of long-tail (with less than 200 test
cases) unseen types. We compute the precision,
recall and F1 value for each type and report the
average values over all these types in Table 5. The
results show CA obtains the best F1avg score on
the long-tail types. In fact, CA is based on the
pretrained BERT that contains much implicit in-
formation of the unseen long-tail types. Moreover,
CA masks the mentions and completely depends
on the contexts for prediction. This reduces the risk
for CA to remember the mentions for prediction
and improves the generalization capability.

KA produces better Pavg score than HA, which
verifies that background knowledge is helpful in
distinguishing among easily confused types. How-
ever, KA often makes mistakes on the unseen types
that share little knowledge with the seen types,
which makes KA perform poorly in Ravg.

We also notice that the combination of different
information sources brings a significant improve-
ment to the performance of MSF regarding Pavg,
but a drop regarding Ravg on the contrary. This
inspires us to take more advantages of CA while
minimizing the disturbance from KA and HA to
promote the model’s generalization capacity on
long-tail types in the future.

Model Pavg(%) Ravg(%) F1avg(%)
CA 28.03 35.07 25.25
HA 6.99 14.24 5.92
KA 12.77 8.11 7.06

MSF 43.72 19.34 21.16

Table 5: The results on long-tail unseen types in BBN.

4.3.2 Impact of Context Length
We separate the test samples into three groups by
the context length, and compare the Ma-F1 scores
in each group, as shown in Figure 3. We see that
CA, HA, KA and MSF all perform better on the
mentions with longer contexts, since longer con-
texts tend to be more informative than the shorter
ones. MSF outperforms the single-source mod-
ules CA, HA and KA in both the situations with
short and median contexts. Nevertheless, the per-
formance of MSF is poorer than CA in the long-
context scenario. This indicates that the informa-

tion from context consistency is with higher con-
fidence in handling longer contexts. Whereas in-
troducing HA and KA modules may prevent the
performance growth compared with only using CA
module in this case. Conversely, a distinct drop ap-
pears when CA is evaluated on the mentions with
short contexts.

short(<20) median(20~100) long(>100)
Length of Context (Number of Words)

0

20

40

60

80

M
a-
F1
 (%

)

CA
HA
KA
MSF

Figure 3: Performance on the unseen types of BBN
relative to the context length.

4.4 Complementarity among Different
Information Sources

We present the overlaps and disjoint parts of the
true cases predicted by the single-source modules
in Figure 4. About 31.33% of the test mentions
are successfully categorized by all the three mod-
ules, while the rest are misidentified by at least one
module. We notice that HA and KA share the most
true cases (up to 61.04%, i.e., 31.33% + 29.71%)
among the pairwise intersections. A possible rea-
son is that HA and KA use the same mention-
context encoder based on ELMo. Another reason
is that the premises and hypothesis constructed by
KA implicitly encode some hierarchical informa-
tion like HA. For example, part of the prototypes
are shared between the parent and child types.

16.2%

0.79%
0.65%

3.1%

2.17%

29.71%
31.33%

CA HA

KA
Hard Examples:

16.05%

Figure 4: Venn diagram of the true test cases of unseen
types correctly predicted by CA, HA and KA on BBN.
The annotated percentages (Acc) are proportional to the
entire test set.
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Figure 5: The intersections and differences between the true case sets of unseen types predicted by MSF and CA
(a), HA (b), KA (c) or CA ∪ HA ∪ KA (d) on BBN. CA ∪ HA ∪ KA denotes the union of true cases correctly
predicted by CA, HA or KA.

KA demonstrates greater capacity than HA with
5.27% (i.e., 2.17% + 3.1%) additional true cases
that HA fails to recognize, since background knowl-
edge helps to distinguish among the confusing sib-
ling types sharing the same parent type. However,
there still exist 1.44% (i.e., 0.65% + 0.79%) cases
where HA does better than KA. This is because
the hierarchy-wise information incorporated to KA
is less obvious than that inside HA. Meanwhile,
KA also suffers from the problem of low recall in
long-tail types as discussed in Sec 4.3.1.

Another noticeable observation is that quite a
proportion of cases (16.2%) are difficult for HA
and KA to recognize, but easy for CA. This in-
dicates the consistency between type names and
contexts is a nonnegligible clue for the improve-
ment of performance in ZFET.

4.5 Contributions of Multiple Information
Sources to MSF

We also look into the intersections and differences
between the true case sets of MSF and CA/HA/KA,
as well as their union in Figure 5. We see that MSF
takes more advantage of HA and KA, with 57.73%
and 61.5% overlaps, respectively. Although CA
provides lots of auxiliary information for MSF,
there still exist 6.84% true cases of CA wrongly
predicted by MSF after fusion. Besides, the 4.76%
missing part of HA and the 4.82% of KA also re-
main to be more fully exploited. Thus, it is worth
exploring deeply to make the best of each informa-
tion source during model fusion. In addition, Fig-
ure 5(d) shows that 2.07% complex examples are
correctly predicted by MSF while are mistaken by
all the three single-source modules. 12.01% sam-
ples are correctly identified by at least one of the
modules but are mistaken by MSF. Besides, there
are 13.96% hard examples misidentified by both
the single-source modules (i.e., CA ∪ HA ∪ KA)

and the multi-source fusion model (i.e., MSF).

5 Related Work

As a zero-shot paradigm of FET, ZFET suffers
from a huge information gap between the seen and
unseen types due to the lack of annotated data. In
spite of simply computing type representations by
averaging the embeddings of words comprising
their names (Yuan and Downey, 2018), a variety
of auxiliary information has been explored to fill
this gap. Huang et al. (2016) proposes a hierarchi-
cal clustering model with domain-specific knowl-
edge base for unsupervised entity typing. Ma et al.
(2016) first introduces prototypical information to
learn type embeddings and encodes type hierarchy
by multiplying the type embeddings with a binary
hierarchical matrix. Zhou et al. (2018) matches
the entity mention with a set of Wikipedia entries
and classifies the mention based on the Freebase
types of its type-compatible entries. Obeidat et al.
(2019) leverages Wikipedia descriptions of types
and designs a context-description matching model.
Ren et al. (2020) employs entity type attention to
make the model focus on context semantically rel-
evant to the type. Zhang et al. (2020b) transfers
the knowledge from seen types to the unseen ones
through memory network. As for context consis-
tency, Xin et al. (2018) first takes the language
models as constraint in supervised typing tasks.
Recently, Qian et al. (2021) studies unsupervised
entity typing without using knowledge base, where
pseudo data with fine-grained labels are automati-
cally created from large unlabeled dataset.

6 Conclusion

In this paper, we explored multiple information
sources for ZFET. We proposed a multi-source fu-
sion model to better integrate these sources, which
has achieved state-of-the-art performance in ZFET.
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Besides, we conducted a deep analysis about the
characteristics, merits and demerits of each infor-
mation source, and discussed the complementarity
among different sources. In particular, the con-
text consistency information from the pre-trained
language model is relatively useful in complex sce-
narios with long-tail types or long contexts. Along
this way, we will conduct more in-depth research to
take full advantage of context consistency. Besides,
we will also explore more reasonable methods for
information fusion in ZFET.
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A Implementation Details

For Proto-HLE and DZET we employ their type
representation methods but reuse our ELMo-based
mention-context encoder for representations of
mentions and contexts. In ZOE, we remove the
test mentions of target dataset from the Wikipedia
entry source and report the performance under our
zero-shot setting.

For CA, our implementation is based on the
pre-trained BERT (BERT-base, uncased) available
in the HuggingFace Library2. For HA, we adopt
GloVe 200-dimensional word embeddings for the
initialization of type embeddings. The type embed-
dings are frozen during training. The Transformer
encoder is trained from scratch with 4 heads and
2 layers with hidden dimension of 2048. For KA,
the numbers of prototypes used for BBN and Wiki
are 5 and 30 respectively. For the fusion of CA,
HA and KA, λ1, λ2, λ3 are tuned according to the
performance on the development set by Macro F1,
and their values are as follows.

Dataset λ1 λ2 λ3

BBN 0.393 0.041 0.566
Wiki 0.348 0.424 0.228

Table 6: Values of λ1, λ2, λ3 for MSF on BBN and
Wiki.

2https://github.com/huggingface


