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Abstract
This paper studies the keyphrase generation
(KG) task for scenarios where structure plays
an important role. For example, a scien-
tific publication consists of a short title and
a long body, where the title can be used
for de-emphasizing unimportant details in the
body. Similarly, for short social media posts
(e.g., tweets), scarce context can be augmented
from titles, though often missing. Our con-
tribution is generating/augmenting structure
then encoding these information, using exist-
ing keyphrases of other documents, comple-
menting missing/incomplete titles. Specifi-
cally, we first extend the given document with
related but absent keyphrases from existing
keyphrases, to augment missing contexts (gen-
erating structure), and then, build a graph of
keyphrases and the given document, to ob-
tain structure-aware representation of the aug-
mented text (encoding structure). Our empir-
ical results validate that our proposed struc-
ture augmentation and structure-aware encod-
ing can improve KG for both scenarios, out-
performing the state-of-the-art1.

1 Introduction

Keyphrases not only help human readers to gain im-
mediate insights about a given document, but also
make documents queryable, e.g., by hashtagging
social posts with predicted keyphrases. Among
keyphrase tasks, we focus on tasks that allow words
that are not present in the given document, which
often be called absent words, to be keyphrases, as
the input document can be often context-scarce:
Many potentially relevant keyphrases are missing
in the given document, since the keyphrase can be
expressed in terms different from those present in
the document (i.e., vocabulary mismatch).

Our goal is to generate keyphrases that are likely
to be words absent from the document, especially

∗Corresponding author.
1Our code is available at https://github.com/

jihyukkim-nlp/StrAugKG.

Field Text
Title Methods to tell if a question can be

answered from a paragraph
Question ... Is there any existing research in

telling whether or not a question is
answerable ? ...
... I considered textual entailment,
but it doesn’t seem to be exactly what
I’m looking for ...

Existing ..., “natural language processing”,
Keyphrases “formal languages”, ...
Gold “question answering”,
Keyphrases “natural language processing”

Table 1: An example of a social Q&A post consisting
of a title and the main body question: We present gold
keyphrases labeled by the user, and existing keyphrases
labeled for other related posts. Bold-face words can
indicate the topic of the post.

in the following scenarios: (a) scientific publica-
tions with diverse vocabularies, or (b) short social
posts, where we found that, from public and real-
life datasets we used in our evaluation, 37% of
keyphrases in scientific publications, 67% of hash-
tags, on average, in social media posts are absent in
the given document. Thus, we formulate our prob-
lem as keyphrase generation (KG) (Meng et al.,
2017) of predicting keyphrases, including absent
words as well as present words, adopting encoder-
decoder architecture.

A recent trend is leveraging document structure
for KG (Chen et al., 2019b), where metadata in
documents, e.g., document title, clarifies the mean-
ing of documents (Kim et al., 2021). For illus-
tration, Table 1 shows a social Q&A post consist-
ing of title (the first row) and main body question
(the second row), where we need to predict gold
keyphrases “question answering” and “natural lan-
guage processing” (the last row). The concise title
enables readers to focus on important parts of the
main question (bold-face words), while ignoring
details. However, titles often exclude meaningful
keyphrases (e.g., “natural language processing” in
Table 1) due to their inherent length limitation, and

https://github.com/jihyukkim-nlp/StrAugKG
https://github.com/jihyukkim-nlp/StrAugKG
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making matters worse, titles may not exist at all in
some social media posts (e.g., tweets).

Our contribution is to construct a structured doc-
ument X+, even when the structure is not given,
by leveraging observed keyphrases from other doc-
uments in the training dataset, to improve both en-
coding and decoding. For encoding, keyphrases
can be used to emphasize relevant parts in X ,
similarly done with the title. For decoding, the
keyphrases can augment vocabulary, e.g., “natural
language processing”, from which the decoder can
copy words. We stress that our work is designed to
work for both closed and open set scenarios, repre-
sented by social and scientific document scenario
respectively, with the following distinctions:

• Closed set: Hashtags in social media posts
are frequently reused (i.e., keyphrases can be
copied from observed keyphrases from the
training set for decoding).

• Open set: A significant amount of keyphrases
of scientific publications (about 20% in our
target scenario) have never been observed in
the training dataset (i.e., keyphrases candidate
set is open-ended).

Our proposed solution is two-phased: The first
phase, to construct a structured document X+, aug-
ments the given document X by retrieving relevant
keyphrasesR from existing keyphrases in the train-
ing dataset. Then, the second phase follows, to
encode structure-aware representations on X+. We
use graph representation to effectively integrate X
and R, where the graph can be flexibly designed
depending on closed/open set scenarios.

Our empirical results validate that generating
and encoding document structures significantly im-
prove performance, outperforming the state-of-the-
art, for both social and scientific documents.

2 Related Work

We briefly explain our target task of KG and intro-
duce our distinction of leveraging structures.

Observing words in the document is a crucial
signal for keyphrase tasks, especially for keyphrase
extraction (KE) requiring keyphrases to appear in
the given document. In contrast, we focus on
KG, as our target scenarios require not having
such restrictions. KG, to generate absent words,
is often modeled as neural encoder-decoder ar-
chitecture (Sutskever et al., 2014), which gener-
ates the keyphrase sequence given the input docu-
ment (Meng et al., 2017). KG approaches can be

further categorized into two settings: one-to-one
(O2O) and one-to-seq (O2S) (Yuan et al., 2020; Ye
et al., 2021). In O2O, a model is trained to gen-
erate a single keyphrase for each document, and
then, for evaluation, the model generates multi-
ple keyphrases using beam search decoding with
a large beam size (e.g., 200). On the other hand,
in O2S, a model is trained to generate multiple
keyphrases where multiple keyphrases for each doc-
ument are concatenated into a single sequence with
a predefined delimiter. Our model follows O2O,
as O2O is known to be better for predicting ab-
sent keyphrases (Meng et al., 2021) and as absent
keyphrases are frequently observed in our target
scenario with scarce context. The distinction of
our proposal for KG is to leverage structures in
documents, to improve both encoder and decoder.

Structures in documents are essential sources of
prediction signals (Kim et al., 2021). For exam-
ple, for a scientific publication consisting of a title
and the main body, the structured document en-
joys the complementary strength of the two fields:
While the main body contains many keywords (i.e.,
high recall), title, though much shorter, concisely
describes the main focus of the paper (i.e., high pre-
cision). To leverage such structure, TGNet (Chen
et al., 2019b) uses the title to guide the encoder
to accurately capture core contents. However, the
given title is observed to be often insufficient due
to length limitation (Li et al., 2010), which we con-
sistently observed in our evaluations.

As a further extreme, short social media posts
may not have titles. Furthermore, because of the
length limitation (e.g., 140 character tweets), most
keywords may not appear in the given post (i.e.,
low recall). In such scenarios, one can construct
structured posts, to augment posts with missing
keywords. For example, TAKG (Wang et al., 2019)
utilizes topic modeling, where topics shared across
other documents enable the encoder to leverage
contexts observed in other related posts. However,
a small, fixed number of topics (e.g., 15 or 30) are
limited in differentiating diverse documents with
similar topics.

Our distinction is overcoming incomplete or
missing structure, by generating a virtual structure
from existing keyphrases (keyphrases in the train
set), from which we “retrieve” terms that can serve
as titles or topics for encoding. KG-KE-KR (Chen
et al., 2019a) similarly leverages keyphrase re-
trieval, but they do not use this for structure-aware
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encoding and use only for decoding. In contrast,
we jointly contextualize the given document and
the retrieved keyphrases, to allow both fields to ex-
change contexts from each other. We empirically
validate that our proposed structure-augmented en-
coding significantly boosts performance.

3 Approach

Given a document X = {xi}NXi=1 with NX unique
words, KG models aim to output a set of tar-
get keyphrases, which can be implemented using
encoder-decoder architecture. We train a model to
predict a single keyphrase, then, for inference, we
generate multiple keyphrases using beam search de-
coding. We denote a single keyphrase with length
T by Y = [y1, . . . , yT ].

In the following sections, we first describe a
baseline encoding targeting plain text X (§3.1),
and then, we explain our distinction of generating
structure (§3.2.1) and encoding structure (§3.2.2).

In this section, we do not consider pre-existing ti-
tle T , but our framework straightforwardly extends
for such titles, as we later discuss in §4.4.1.
3.1 Baseline: Plain Text Encoding
Targeting plain texts, a novel graph-based en-
coder was proposed in DivGraphPointer (Sun et al.,
2019), outperforming sequence-based encodings
such as GRU (Cho et al., 2014) or LSTM (Hochre-
iter and Schmidhuber, 1997).

For graph construction, a fully connected graph
is used, where nodes are unique words in X . For
edges, two adjacency matrices

←−
AXij and

−→
AXij , using

position-based proximity, are obtained for forward
and backward direction respectively:
←−
AXij =

∑
pXi

∑
pXj

max((pXi − pXj )−1, 0)

−→
AXij =

∑
pXi

∑
pXj

max((pXj − pXi )−1, 0),
(1)

where pX[i/j] ∈ P(x[i/j]) is a position offset of a
unique word x[i/j] in X .

Given the graph, to contextualize node
representations, Graph Convolutional Network
(GCN) (Kipf and Welling, 2017) is adopted. We
denote the number of stacked graph convolution
layers by L, the number of node features by D,
and contextualized representations of nodes for l-
th layer by HXl ∈RNX×D where HX1 is obtained
from a word embedding matrix. As comprehen-
sive notations, we denote learnable parameters by

v for vector and W for matrix, with different su-
per/subscripts.

Starting from HX1 , context vectors CXl ∈RNX×D

are gathered from neighbor nodes using graph
convolution, then combined with HXl to produce
HXl+1 (Dauphin et al., 2017):

CXl =
←−
ÂXHXl

←−
WX

l +
−→
ÂXHXl

−→
WX

l

+HXl W̃
X
l

(2)

HXl+1 = HXl +CXl × σ(GXl ), (3)

where σ denotes sigmoid function, and
←−
ÂX ,

−→
ÂX

are normalized matrices with eigenvalues close to
1 for stable training (Kipf and Welling, 2017). In
Eq (3), residual addition is employed with GXl ∈
RNX×D, which helps gradient back-propagation
through deep layers (He et al., 2016; Dauphin et al.,
2017). GXl is obtained in the same way to CXl in
Eq (2) but with different learnable parameters.

We adopt the same graph construction and GCN
contextualization, for encoding X . Built upon the
GCN encoder, our distinction is to generate and
encode structure for X .

3.2 Proposed: Structure-Augmented KG

Beyond plain text, we aim to leverage structures
in documents. Though leveraging the title-body
structure in scientific publications has been shown
effective (Chen et al., 2019b), the given titles are
often found to be incomplete because of limited
length (Li et al., 2010), or unavailable (e.g., tweets).

Our goal is, given incomplete or missing struc-
ture, to generate and encode structures, to replace
missing titles or complement incomplete titles.

3.2.1 Generating Structure
To generate structured document X+, we leverage
existing keyphrases of other documents, specifi-
cally similar documents to X , by adopting an as-
sumption that similar documents tend to have sim-
ilar keyphrases. Specifically, for each keyphrase
r in the training dataset, we first collect support-
ing documents, having r as one of the ground-
truth keyphrases, then concatenate them as a single
document, denoted by Sr, and use Sr to index r.
We then use BM25 search (Robertson and Walker,
1994) with X as a query, to retrieve top-K relevant
keyphrasesR = [r1, . . . , rK ]2. Finally, we extend
X withR, to construct a structured document X+.

2We used pyserini (Lin et al., 2021) for retrieval.
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A stable 3D energetic Galerkin BEM approach for wave 
propagation interior problems. … mixed boundary
conditions, … boundary integral equations …

(a) Social Post (Closed Set 𝒴 )

(b) Scientific Article (Open Set 𝒴)

Methods to tell if a question can be answered from a 
paragraph … neural network …

“natural language processing”, “formal languages”,…,

3. Encode graph

natural
language

processing

question
answered paragraph

ℛ

𝒳

formal
language

neural network
Connected graph, integrated by green edges

Copied keyphrase
“natural language processing”
from ℛ.

4. Decode 𝒴

“wave propagation”, “boundary element method”…

Novel keyphrase
“energetic Galerkin
boundary element method”
by combining words in 𝒳, ℛ.

Retrieved keyphrases ℛ

Retrieved keyphrases ℛ

wave
propagation

𝒳,ℛ

element

energetic Galerkin

problems

Multi-graph, integrated by green nodes

method

BEM
(Boundary 
Element 
Method)

4. Decode 𝒴

Given post 𝒳 … …

2. Integrate ℛ with 𝒳
(construct graph)

1. Retrieve ℛ
from existing keyphrases

Given article 𝒳

Structured document 𝒳%

Structured document 𝒳%

boundary

Figure 1: Overall approach: Red-colored words or phrases are texts included in decoded keyphrases. Black edges
and blue edges are proximity between nodes, obtained from X and R respectively, where the thickness indicates
the degree of relatedness between nodes. To construct an integrated graph for social posts, we connect two graphs
(from X and R), using green edges, and for scientific articles, we construct a multigraph with two types of edges
(for X andR), by merging nodes having the same words, depicted by green nodes.

Having relevant keyphrases R enhances both
encoding and decoding phases, as described next.

3.2.2 Encoding Structure
Once we augment X withR, our next step is to in-
tegrate X andR into X+, and jointly contextualize
contents in X+ by exchanging contexts between
the two fields.

For effective integration, we represent X+ as an
integrated graph, that can be flexibly designed,
based on the following principle: A pair of two
highly related nodes should be connected by an
edge or merged into a single node, while unrelated
nodes should be separated from each other.

For encoding X , we adopt the GCN contextual-
ization, described in §3.1. On the other hand, for
R, graphs are differently encoded for open- and
closed-set scenarios, as below.

• Closed set Y: Keyphrases in R are likely to
be reused for the target keyphrases Y , where
keyphrase in R is assigned as a node. The
keyphrase can be copied as Y based on the
node representation.

• Open set Y: Keyphrases may not be reused,
such that words inR should be combined with
other words to generate novel keyphrases, for
which we assign the node with a keyword in
R.

In the following two sections, we introduce our
Graph-based Structured Document Encoder, or

GSEnc, specifically for closed (§3.2.3) and open
set Y (§3.2.4) respectively.

3.2.3 GSEnc for closed set Y
Targeting closed set keyphrases, we jointly contex-
tualize word nodes from X and keyphrase nodes
from R, by building a graph each, then generate
connecting edges between the two for propagating
contexts across graphs.

Constructing and encoding graph for X follow
§3.1. On the other hand, for R, we set a single
phrase node for each keyphrase, instead of multi-
ple word nodes, to enable a decoder to copy the
keyphrase as-is based on the node features. For
edge construction, instead of position-based prox-
imity in Eq (1) which is not available for keyphrase
nodes, we adopt co-occurrence-based proximity,
as frequently co-occurred keyphrases tend to have
similar topics3. Specifically, we compute adjacency
matrix AR as conditional probabilities based on
co-occurrence between keyphrases, then, contexts
are gathered using graph convolution, similar to Eq
(2).

ARjk = p(rk|rj) (4)

CRl = ÂRHRl Ŵ
R
l +HRl W̃

R
l , (5)

where HRl ∈ RK×D is node features for R in
l-th layer, p(rk|rj) is the probability that rk co-

3We say two keyphrases co-occur when the two keyphrases
are gold keyphrases for the same document.
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occurs given rj , which is computed using the train-
ing dataset, and ÂR is normalized matrix from
AR, as in ÂX from AX .

We now discuss how to connect the two graphs
for X and R (green edges in Figure1). For such
connection, we are inspired by connecting query
(keyphrase in our case) and document, using rele-
vance feedbacks, such as clicks on matching query-
document pair. As we have no such feedback be-
tween each keyphrase rj ∈ R and X , we can adopt
zero-shot query log synthesis (Ma et al., 2021), by
using pseudo-relevance feedback (Rocchio, 1971):
We treat supporting documents Srj as feedback
documents with pseudo-relevance to rj , to connect
rj with X using top-M overlapped words, denoted
by S∗rj , between Srj and X . For selecting top-M ,
an unsupervised signal frequently used is tf-idf,
to favor words appearing frequently in Srj (i.e.,
representative words) but infrequently in other doc-
uments (i.e., discriminative words) (Xu and Croft,
2017). Alternatively, query generators can be su-
pervised as a separate task, requiring additional
training data, so we adopt the former.

Given S∗rj , we construct an edge between xi and
rj , if and only if xi is included in S∗rj , then we
enable the encoder to estimate a proper edge weight←→
A ij , using graph attention network (Veličković
et al., 2018)4, such that only relevant contexts are
exchanged between X andR.

←→
A ij = f(←→v >[

←→
WHXi,l||

←→
WHRj,l]) (6)

CX→Rl = softmax(
←→
A>)

←→
WHXl ∈ RK×D (7)

CR→Xl = softmax(
←→
A )
←→
WHRl ∈ RNX×D, (8)

where f(·) is LeakyReLU nonlinearity (Maas et al.,
2013), and “||” denotes concatenation. In addition,
we further leverage pseudo-relevance feedbacks, to
augment contexts of rj , by using Srj to initialize
node features for rj : HR1,j = E>f(Srj ) ∈ RD,
where E is a trainable word embedding matrix, and
f weighs each word in Srj . For f , we adopt tf-idf5.

Finally, we add all gathered contexts and com-

4We use single-head attention. In our experiments, perfor-
mances between single/multi-head attention were comparable.

5Since the number of documents in Srj can vary among
keyphrases, we normalized tf-idf weights to have unit norm.

bine these with H
[X/R]
l , similar to Eq (3).

HXl+1 = HXl +CXl × σ(GXl )
+CR→Xl × σ(GR→Xl )

(9)

HRl+1 = HRl +CRl × σ(GRl )
+CX→Rl × σ(GX→Rl ),

(10)

where the Gs are obtained in the same way to Cs
but with different learnable parameters.

3.2.4 GSEnc for open set Y
Targeting open set keyphrases, we jointly contextu-
alize word nodes from both X andR.

Since nodes forX andR have the same granular-
ity (i.e., word-level nodes), instead of connecting
two graphs (for X and R) using edges, we con-
struct a single integrated graph, by merging a node
forX and a node forRwhenever the two nodes cor-
respond to the same word (green nodes in Figure1).
Such integration enables contexts scattered across
the two fields to be effectively gathered into the
merged node, from which other nodes connected to
the merged node also can exchange their contexts
with each other through the merged node. Though
sharing nodes, we use separate edges for X andR,
for structure-aware encoding. That is, the merged
graph becomes a multigraph; we connect a pair of
nodes with two types of edges (black edges for X
and blue edges for R in Figure1). We denote the
contextualized features for nodes on the merged
graph, including nodes from both X and R, by

H
X+

merged
l .
As in Eq (2), using graph convolution and the

two types of edges, we aggregate neighbor contexts
from X and R, into C

Xmerged
l and C

Rmerged
l respec-

tively, while obtaining G
Xmerged
l ,GRmerged

l similarly.
For adjacency matrix for keywords in R, we use
position-based proximity between two keywords
within each keyphrase inR, as in Eq (1). Then, we

combine both contexts to update H
X+

merged
l .

H
X+

merged
l+1 = H

X+
merged

l

+C
Xmerged
l × σ(GXmerged

l )

+C
Rmerged
l × σ(GRmerged

l ).

(11)

Given the contextualized node features at the
last GCN layer, such as (HXL , HRL ) or H

X+
merged

L , for
closed set Y or open set Y respectively, we feed the
features into the decoder, to generate keyphrases.
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3.3 Decoder

The goal of the decoder is to generate a target
keyphrase Y=[y1, . . . , yT ] with length T , based
on the contextualized features on X+ from the
encoder. While standard KG models either copy
words from X or generate words from the prede-
fined vocabulary V , we have R as an additional
source, which provides valid keyphrase candidates
already used for similar documents. To leverage
R for decoding, depending on the application, we
allow the decoder to copy either (a) keyphrases
(closed set Y) or (b) words (open set Y), fromR.

(a) Closed set Y: copying keyphrases In so-
cial media posts, a few keyphrases (e.g., trend-
ing hashtags) cover most of the potential target
keyphrases. Thus, when Y is included inR, copy-
ing a keyphrase (e.g., “natural language processing”
in Figure 1) fromR makes efficient decoding.

To copy relevant keyphrases, we compute rel-
evance score φj of each rj∈R to X , using inner
product between HRL,j and the summarized features
for X , denoted by h̃X :

φj = HRL,j
>h̃X , h̃X =

NX∑
i=1

αiH
X
L,i (12)

αi = softmaxi(v>pooltanh(WpoolH
X
L,i)). (13)

Given {φj}Kj=1, we copy top-ranked keyphrases
amongR, regarding {φj}Kj=1. For training, we use
mean square error (MSE)6 as the objective function:
LMSE =

∑K
j=1 ||φj − φ∗j ||22, where φ∗j = 1 if rj =

Y and φ∗j = 0 otherwise.

(b) Open set Y: copying keywords On the
other hand, in scientific publications, copying
a word from R (e.g., “element”, “method” in
Figure 1) enables the decoder to generate novel
keyphrases (e.g., “energetic Galerkin boundary
element method”), by combining the word with
words from the other two sources (e.g., “energetic
Galerkin” from X ).

We adopt a single layer GRU decoder equipped
with copy mechanism (See et al., 2017). For sim-

plicity, we denote H
X+

merged
L by H and the number

of nodes in the merged graph by N . For t-th word
(i.e., yt) decoding, copy scores pcopy

t are computed
using attention: pcopy

t,k = softmax(v>1 W1[Hk||ot]),

6We also tried cross entropy, but found the MSE to be
better empirically.

where ot denotes the decoder hidden state. How-
ever, pcopy

t only covers yt present in X+. To pre-
dict arbitrary yt using V , generation scores pgen

t are
computed by p

gen
t = softmax(EV(W2[ĥt||ot])),

where EV ∈ R|V|×D is a learnable word embed-
ding matrix for V , and ĥt (=

∑N
k=1 p

copy
t,k Hk) sum-

marizes relevant contexts from X+, using p
copy
t

as relevance scores. The final score pfinal
t is com-

puted as a combination of the two scores using a
gate value zt: pfinal

t =p
copy
t ×zt+pgen

t ×(1− zt), and
zt = σ(v>3 [ĥt||ot]). Once yt is decoded accord-
ing to pfinal

t , we update the decoder hidden state ot:
ot+1 = GRU(yt,ot), where yt∈RD is the feature
vector for the decoded token yt.

For yt, previous work uses a word embedding
matrix. However, when yt is a rare word, which
is often replaced by “[UNK]” symbol, yt from the
embedding matrix contains little information on
the word. We thus leverage structure-aware repre-
sentation H, to capture the meaning of yt based
on the contexts within X+. Specifically, when yt
is copied from X+, similar to pfinal

t , we compute
yt as combination of H and EV from X+ and V
respectively: yt=Hyt∈X+×zt+Eyt∈V×(1 − zt),
where Hyt∈X+ , Eyt∈V are corresponding vectors
for yt from H and EV respectively.

Following convention (Meng et al., 2017), to pre-
dict multiple keyphrases, we use beam search with
beam size 200, and then use top-ranked keyphrases
as final predictions. For training, we use cross
entropy loss on yt as the objective function.

4 Experiment

4.1 Dataset

Dataset # of # of unique # of KP % of
D KP per D abs KP

Twitter 44K 4K 1.13 71.4
Weibo 46K 2K 1.06 75.7
SE 49K 12K 2.43 54.3
KP20k 510K 670K 2.94 36.7

Table 2: Statistics for three social datasets and a scien-
tific publication dataset. “D” and “KP” are short for
document and keyphrases respectively. “abs KP” de-
notes absent keyphrases. SE denotes StackExchange.

We conducted experiments on social media
posts and scientific publication, with missing or
incomplete structures. We present statistics on the
datasets in Table 2.

For social media posts, we used three public
datasets including not only microblog posts such
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as Twitter and Weibo, but also a Q&A platform
such as StackExchange (Wang et al., 2019)7. In
the Twitter and Weibo datasets, user-assigned hash-
tags are treated as keyphrases of a corresponding
post. Hashtags in the middle of a post were treated
as present keyphrases, and hashtags either before
or after a post were treated as absent keyphrases
and are removed from the post. For the StackEx-
change dataset, a given document is a question, and
keyphrases are manually annotated by users. Dif-
ferent from microblogs, for each question, there is
a title and a description such that the given docu-
ment is a concatenation of the title and the descrip-
tion for the question. For training and evaluation,
document-keyphrase pairs are partitioned into train,
validation, and test splits consisting of 80%, 10%,
and 10% of the entire data respectively.

As in (Wang et al., 2019), we adopted macro-
averaged F1@k and mean average precision (mAP)
as evaluation metrics. To compute F1@k, we count
the number of correct keyphrases among the top-
k predictions (denoted by hit@k), then, precision
and recall are computed as hit@k divided by the
number of predictions (i.e., k) and the number of
gold keyphrases respectively. We report F1@1/3
for Twitter/Weibo and F1@3/5 for StackExchange
considering the average number of keyphrases in
datasets (1.13, 1.06, and 2.43 respectively). For all
datasets, we report mAP over the top-5 predictions.

For scientific publication, we use KP20k
dataset (Meng et al., 2017). Since the original
dataset includes duplicates between train/test docu-
ments, we use a preprocessed dataset without du-
plicates, released by (Chen et al., 2019a)8. The
dataset has 510K, 20K, 20K documents for train,
validation, and test datasets respectively. As in the
baselines, we use F1@5/10 as evaluation metrics.

For all datasets, following (Meng et al.,
2017), we applied stemming using Porter Stem-
mer (Porter, 1980)9 as preprocessing, where dupli-
cate keyphrases were removed after stemming.

4.2 Baselines

We compared our models with previous state-of-
the-art KG baselines as well as KE baselines.

For KE baselines, we use TextRank (Mihalcea
and Tarau, 2004) and TF-IDF which are the most

7https://github.com/yuewang-cuhk/TAKG
8https://github.com/Chen-Wang-CUHK/

KG-KE-KR-M
9https://www.nltk.org/_modules/nltk/

stem/porter.html

popular unsupervised keyword ranking models, and
a neural sequence tagging model (Zhang et al.,
2016) (denoted by Seq-Tag) that predicts keyphrase
spans within the given document.

For KG baselines, we use CopyRNN (Meng
et al., 2017) and CorrRNN (Chen et al., 2018) in
common for both social media posts and scientific
publication. CopyRNN adopts standard encoder-
decoder architecture with copy mechanism. Cor-
rRNN exploits correlation between keyphrases to
predict diverse keyphrases. We compare our pro-
posed model with the previous state-of-the-art base-
lines, including TAKG (Wang et al., 2019) for so-
cial media post datasets, that augments contexts of
the given posts using topic modeling, and KG-KE-
KR-M (Chen et al., 2019a) for KP20k, that uses
the retrieved keyphrasesR to provide the decoder
with additional contexts. Note that, different from
ours, KG-KE-KR-M separately encodes X andR,
thus do not enjoy structure-aware representations.

To validate the effectiveness of joint contextual-
ization of X andR on the graph, we also conduct
an ablation study, where we compare our proposed
model to the ablation model that separately encodes
the graph for X and the graph for R (denoted by
w/o integration). For social media posts, we ex-
clude all edges between X andR (green edges in
Figure 1). For scientific publication, we separately
encode two graphs (each for X or R) instead of
a merged multigraph. The ablation model is simi-
lar to KG-KE-KR-M that also separately encodes
X and R, while differing in the encoder (graph
encoder, instead of sequence encoder).

4.3 Implementation Details

For fair comparisons, we use the same hyperparam-
eters and training strategy to the baselines, such
as the size of the predefined vocabulary V , batch
size of 64, Adam optimizer (Kingma and Ba, 2015)
with 0.001 initial learning rate, and gradient clip-
ping (Pascanu et al., 2013) with 1.0 threshold.

As exceptions, we set the best value for D,
L, K, and M , based on validation performance.
The best D, among {150, 300}, was 300 for all
datasets. The best L, among {2, 3, 4, 5}, was 2
for social datasets and 3 for KP20k. The best
K, among {10, 20, 30, 40, 50}, was 20/20/30, for
Twitter/Weibo/StackExchange respectively. Be-
cause of the larger number of keyphrases per docu-
ment in StackExchange (2.43) than Twitter (1.13)
and Weibo (1.06), K should be larger in StackEx-

https://github.com/yuewang-cuhk/TAKG
https://github.com/Chen-Wang-CUHK/KG-KE-KR-M
https://github.com/Chen-Wang-CUHK/KG-KE-KR-M
https://www.nltk.org/_modules/nltk/stem/porter.html
https://www.nltk.org/_modules/nltk/stem/porter.html
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Model
Social media post Scientific articles

Twitter Weibo StackExchange KP20k
F1@1 F1@3 mAP F1@1 F1@3 mAP F1@3 F1@5 mAP F1@5 F1@10

KE baselines
TF-IDF 1.2 1.1 1.9 1.9 1.5 2.5 13.5 12.7 12.6 8.7 11.3
TextRank 1.7 1.9 1.9 0.2 0.5 0.6 6.0 8.3 4.8 15.1 13.2
Seq-Tag 22.83 12.32 22.43 16.32 9.01 16.53 17.616 12.812 19.013 - -

KG w/o structure
CopyRNN 36.611 26.85 43.112 32.03 22.72 38.01 31.53 27.42 33.51 30.61 27.30
CorrRNN 35.08 26.14 41.65 31.67 22.25 37.58 30.93 27.02 32.96 29.12 26.42
KG-KE-KR-M - - - - - - - - - 31.70 28.20

KG w/ structure
TAKG (topic) 38.53 27.80 45.12 35.03 24.42 41.34 33.42 29.21 35.51 - -
TGNet (title) - - - - - - 32.03 27.83 34.14 31.43 28.13

KG w/ structure (ours)
GSEnc (keyphrase) 38.87 28.12 45.56 42.86 29.53 50.04 35.23 30.92 37.83 32.93 29.02

w/o integration 36.84 27.05 43.32 38.64 27.03 45.73 33.23 29.32 35.52 31.93 27.92

Table 3: Keyphrase prediction performance. Bold-face indicates the best performance with significance (p < 0.05
using Student’s paired t-test). We report average performance with standard deviation with different random seeds
of 5 runs (e.g., 29.41 indicates 29.4± 0.1).

change. For fair comparison with KG-KE-KR-M
that uses the retrieved keyphrases, we used the
same R used in KG-KE-KR-M, for KP20k. For
M for social media posts (§3.2.3), we search the
best value among {10, 25, 50, 100}. The best M
was 50 for both Twitter and Weibo, while it was 25
for StackExchange. Since documents are longer in
StackExchange (88 words on average) than Twitter
(20) and Weibo (33) with length limitation, smaller
M makes more conservative edge construction.

Our experiments were conducted using a sin-
gle GeForce RTX 2080Ti NVIDIA GPU. We used
Pytorch (Paszke et al., 2019) for implementation.

4.4 Evaluation

In this section, we confirm the effectiveness of
structures in documents for KG, and validate the
superiority of the proposed structure over other
structures. Results are shown in Table 3.

Since large portion of ground-truth keyphrases
are absent keyphrases (i.e., context-scarce X ), KE
models show significantly worse performances
compared to KG models, on both datasets.

Among KG models, structures in document sig-
nificantly improve performances, for both datasets,
where TAKG with latent topics and TGNet with
title significantly outperform the other KG mod-
els without structures, except KG-KE-KR-M on
KP20k. However, both a small number of latent
topics and short titles have limited information. In
contrast, by retrieving relevant keyphrases from ex-
isting keyphrases, we augment the given document
with sufficient topical information. As a result,
GSEnc outperforms all baselines, except TAKG on

Twitter with comparable performance.
For social datasets, in addition to having supe-

rior or comparable performance over baselines, our
proposed model, by avoiding sequential decoding,
requires much lower computational costs than other
KG models. Regarding computational efficiency,
our model can process each text in about 22 ms (21
ms for retrievingR and less than 1 ms for the rest)
while other KG approaches consume about 90 ms.

Meanwhile, we stress that it is important to
jointly contextualize X and R, to enjoy mutual
benefits between them; we found that performance
significantly decrease on all datasets, when we sep-
arately encode them (w/o integration in Table 3).

4.4.1 IntegratingR with given titles

Model Input KP20k SE
F1@3 F1@5

TGNet X+T 31.4 32.0

GSEnc (ours)
X+R 32.9 35.4
X+R+T 32.9 36.3

Table 4: Evaluation results using different structures:
SE denotes for StackExchange dataset.

When titles are available, we can useR, to com-
plement concise, but incomplete titles (high preci-
sion, low recall), by providing missing terms in the
title (increasing recall). In this section, we explain
how to integrate R and title (denoted by T ), for
better structured documents, and evaluate the effec-
tiveness of such integration. We use KP20k and
StackExchange datasets where titles of documents
are written by the authors of the documents.

Since the title words are already represented as
nodes in X , we can simply add another edge type,
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as similarly done in §3.2.4, to make three types
of edges for the same node pair: edges from X ,
R, and the given title respectively. As in edges
for X , we use position-based proximity between
title words, for edge weights. Given the title edges,
we use contexts gathered from the title, to update
contextualized representations, similar to Eq (3,9).
The results are shown in Table 4.

We observe that R is more representative in
KP20k than StackExchange, where the F1 accu-
racy ofR on gold keywords was 22.3 and 11.5, for
KP20k and StackExchange respectively. This can
be explained by the document length difference:
When R is less relevant, for shorter documents
in StackExchange, titles with high precision cap-
ture relevant keyphrases inR, such that X+R+T
outperformsX+R, whileX+R is sufficiently accu-
rate, otherwise. Our proposed approach, by lever-
aging both fields, work well in both cases, outper-
forming TGNet that uses only title structure.

4.4.2 Future work

Model (Input) ID test OOD test
KP20k Inspec

CopyRNN (X ) 30.6 25.1
GSEnc (X+R) 32.9 24.4

Table 5: Different effects of leveraging R, for in-
distribution (ID) and out-of-distribution (OOD) test
datasets. We present F1@5 performance of CopyRNN
and GSEnc (ours), that uses X and X + R as inputs,
respectively.

Leveraging existing keyphrases in train set is
specifically effective when test distribution is simi-
lar to the train distribution, i.e., in-distribution test
set, as we validated in our experiments. On the
other hand, for out-of-distribution test set, where
train/test distributions are different from each other,
existing keyphrases may not be helpful. We em-
pirically tested different effects of leveraging R,
by training models using KP20k training dataset
and evaluating the models on KP20k test set (in-
distribution) and Inspec (Hulth, 2003) test set
(out-of-distribution). While, in KP20k datasets,
keyphrases are labeled by authors of documents,
keyphrases in Inspec are labeled by third-party
annotators. In Table 5, we can observe that R
does not improve on out-of-distribution test set,
while showing significant improvements on in-
distribution test set.

To overcome, as a future work, our retriever
can be extended to use external sources such as

open-domain knowledge graphs (Shi et al., 2017)
or Wikipedia texts (Yu and Ng, 2018), that general-
ize well to out-of-distribution data. However, such
external sources will be less effective than inter-
nal sources (e.g., existing keyphrases), when most
of target documents are in-distribution documents.
We will explore effective integration strategies be-
tween internal/external sources, to enjoy comple-
mentary strengths of those, for better performance
on both in-distribution and out-of-distribution doc-
uments.

5 Conclusion

We studied the problem of KG for scientific text
and social posts, representing context-scarce sce-
narios with open and closed keyphrase set, respec-
tively. Our work is two-phased, for augmenting and
encoding missing/incomplete structure. Empirical
evaluation results validate that our proposed model
outperforms the state-of-the-art in both problems.
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