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Abstract

Event factuality indicates the degree of cer-
tainty about whether an event occurs in the
real world. Existing studies mainly focus on
identifying event factuality at sentence level,
which easily leads to conflicts between differ-
ent mentions of the same event. To this end,
we study the problem of document-level event
factuality identification, which determines the
event factuality from the view of a document.
For this task, we need to consider two im-
portant characteristics: Local Uncertainty and
Global Structure, which can be utilized to im-
prove performance. In this paper, we pro-
pose an Uncertain Local-to-Global Network
(ULGN) to make use of these two character-
istics. Specifically, we devise a Local Uncer-
tainty Estimation module to model the uncer-
tainty of local information. Moreover, we pro-
pose an Uncertain Information Aggregation
module to leverage the global structure for in-
tegrating the local information. Experimen-
tal results demonstrate the effectiveness of our
proposed method, outperforming the previous
state-of-the-art model by 8.4% and 11.45% of
F1 score on two widely used datasets.

1 Introduction

Event factuality refers to the degree of certainty
about whether events actually occur or not in the
real world. Generally, event factuality can be clas-
sified into five categories (Saurı, 2008): Certain
Positive (certainly happening, denoted as CT+),
Certain Negative (certainly not happening, CT-),
Possible Positive (possibly happening, PS+), Possi-
ble Negative (possibly not happening, PS-) and Un-
derspecified (events’ factuality cannot be identified,
Uu). For example, in the sentence “An economist
thinks that the tax rate probably increases soon”,
the event “increases” may happen. Therefore, an
event factuality identification (EFI) model should

∗Equal contribution.

Event: United States reaches an agreement with Mexico

Text:
According to Politico.com, the United States probably
reaches (PS+) an agreement with Mexico on the new
trade deal before December, 2017.

[S1] 

However, Mexican Economy Minister Ildefonso
Guajardo denied that they plan to reach (CT-) any
agreement with the U.S. on the trade deal talks.

[S2] A journalist agreed the view, said the two sides may
reach (PS+) an agreement within hours.

[S3] 

The government has not been informed that any
agreement will be reached (CT-) yet, said another two
Mexican officials.

[S4] 

Some media speculate that they will possibly reach
(PS+) an agreement. 

[S8] 

Document-level Event Factuality: CT-

Figure 1: An example document with both sentence-
and document-level event factuality. The factuality be-
tween sentence- and document-level may be different.

be able to predict the factuality of the event is PS+.
EFI is an important task in natural language pro-
cessing (NLP) area, which is beneficial for a wide
range of NLP applications, such as rumor detec-
tion (Qazvinian et al., 2011), sentiment analysis
(Klenner and Clematide, 2016) and machine read-
ing comprehension (Richardson et al., 2013).

Existing EFI studies mainly focus on sentence-
level EFI, i.e., judging event factuality based on an
individual sentence in which the event is located.
In recent years, various neural models have been
proposed for sentence-level EFI, and achieve state-
of-the-art performance (Rudinger et al., 2018; Qian
et al., 2018; Veyseh et al., 2019). Despite these
successful efforts, sentence-level EFI suffers from
an inevitable restriction in practice: it easily leads
to conflicts between different mentions of the same
event. Take Figure 1 as an example, the “reach”
event is mentioned multiple times in a document,
which has various factuality values in different sen-
tences. The factuality of the event “reach” in S2
is PS+ according to the speculative word “may”,
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while in S3, its factuality is CT- due to the negative
word “denied”. According to our statistics on the
English and Chinese event factuality datasets (Qian
et al., 2019), 25.7% (English) and 37.8% (Chinese)
of instances have the problem of event factuality
conflict at sentence level for the same event, which
is not negligible. Fortunately, the event factuality
can be uniquely determined from the perspective
of a document, which is able to naturally address
the problem of sentence-level event factuality in-
consistency. Therefore, it is necessary to move EFI
forward from sentence level to document level.

However, identifying document-level event fac-
tuality is non-trivial. As shown in Figure 1, the fac-
tuality between document-level and sentence-level
may be quite different. In this scenario, document-
level event factuality cannot be deduced from each
sentence-level factuality separately, but depends
on the comprehensive semantic information of the
entire document. To this end, we first learn the
local information, and then integrate local represen-
tations to the global representation for prediction.
In this process, we need to consider two impor-
tant characteristics: Local Uncertainty and Global
Structure, which can be leveraged to improve per-
formance. In the following, we will introduce the
two characteristics and give the reasons why they
are critical for document-level EFI.

Local Uncertainty: As illustrated in Figure 1,
different sentences (i.e., local information) describe
different cognitive individuals’ judgements towards
the event factuality. However, the degree of uncer-
tainty of these judgements is different. For exam-
ple, as direct participants in the “reach” event, Mex-
ican officials (in S4) can judge the event factual-
ity with lower uncertainty (i.e., higher confidence)
than other cognitive individuals (e.g., a journal-
ist in S2). Apparently, the information of S4 is
more important than that of S2 when predicting the
document-level event factuality. It would be bet-
ter if we could explicitly model the uncertainty of
local information. Therefore, the first challenging
problem is how to model the uncertainty of local
information.

Global Structure: When integrating local infor-
mation, utilizing global structure (i.e., document
structure) could yield a better global representation.
The global structure is manifested in two aspects:
positional structure and semantic structure. For po-
sitional structure, as shown in Figure 1, the content
of the document is roughly organized in chronolog-

ical order, which can reflect the evolution of events.
For semantic structure, there is a semantic correla-
tion between local information. For instance, the
content of S2 is the support of the view about the
event factuality in S1, while the content of S3 is the
denial of that in S1. There is no doubt that captur-
ing the global structure enables a better understand-
ing of documents. Thus, the second challenging
problem is how to leverage the document structure
for integrating local information.

In this paper, we propose a novel method termed
as Uncertain Local-to-Global Network (ULGN) to
address aforementioned problems. Specifically, to
model the uncertainty of local information, we pro-
pose a Local Uncertainty Estimation module. It
utilizes a probability distribution to represent the lo-
cal information, rather than a deterministic feature
vector. For ease of modeling, we adopt Gaussian
distributions. Namely, the local information is now
parameterized by a mean and variance. The former
acts like the normal feature vector as in the con-
ventional model, whereas the latter measures the
feature uncertainty. The higher the uncertainty of
the local information is, the larger its correspond-
ing variance is. To leverage the global structure
for synthesizing local information, we devise an
Uncertain Information Aggregation module. The
module first constructs a global graph based on the
document structure, and then employs an uncertain
graph convolution layer to aggregate the local infor-
mation. It considers the uncertainty of local infor-
mation via variance-based attention. Experimental
results on two widely used datasets demonstrate
that our method substantially outperforms previous
state-of-the-art models.

Overall, the main contributions of this work can
be summarized as follows:

• We propose a novel Uncertain Local-to-
Global Network (ULGN) for document-level
event factuality identification. To our best
knowledge, we are the first to consider local
uncertainty and global structure for the task.

• To model the uncertainty of local informa-
tion, we propose a local uncertainty estima-
tion module. To leverage the global structure
for integrating local information, we devise
an uncertain information aggregation module.

• Experimental results indicate that our ap-
proach significantly outperforms previous
state-of-the-art methods, achieving 8.4% and
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Figure 2: The architecture of our proposed uncertain local-to-global network for document-level event factuality
identification. UGCL represents Uncertain Graph Convolution Layer introduced in Section 2.2.2.

11.45% improvements of F1 score on two
widely used datasets. The source code of this
paper is available at https://github.com/
CPF-NLPR/ULGN4DocEFI.

2 Methodology

We propose an uncertain local-to-global network
(ULGN) for document-level EFI. Figure 2 schemat-
ically visualizes our approach, which consists of
three major components: (1) Local Uncertainty
Estimation (§2.1), which represents the local in-
formation by using a probability distribution; (2)
Uncertain Information Aggregation (§2.2), which
leverages the global structure to integrate the local
information; (3) Reparameterization for Prediction
(§2.3), which utilizes the reparameterization trick
(Kingma and Welling, 2013) to obtain the global
representation for final prediction. We will illus-
trate each component in detail.

2.1 Local Uncertainty Estimation

We treat sentences and event mentions as the local
information. Our local context encoder is based
on the Transformer architecture (Vaswani et al.,
2017). We adopt the BERT (Devlin et al., 2019) to
encode the local information,1 which has achieved
the state-of-the-art performance for EFI task (Vey-
seh et al., 2019). The local context encoder takes

1Note that the encoder is not our focus in this paper. In fact,
other models like convolutional neural networks (Zeng et al.,
2014) and long short-term memory networks (Hochreiter and
Schmidhuber, 1997) can also be employed as encoders.

each sentence of a document as input, which is
defined as follows:

fsi = BERT(Si), i = 1, 2, . . . , Ns (1)

where Si denotes the i-th sentence and Ns is the
number of sentences in the document. We use
the [CLS] token representation of the last layer in
BERT as the sentence representation. The repre-
sentation of the event mention ei (i = 1, 2, . . . , Ne,
where Ne is the number of times the event is men-
tioned.) is defined by averaging the representations
of contained words, denoted as f ei .

After obtaining the feature vector of the local in-
formation, we need to estimate its uncertainty. To
this end, we use a Gaussian distributionN (µi,σ

2
i )

to represent the local information, instead of a de-
terministic feature vector. The µi and σ2

i refer
to mean vector and variance matrix respectively,
which is formulated as follows:

µi =Wµfi, σ2
i =Wσfi, (2)

where fi denotes the original representation of the
sentence or event mention (i.e., f si or f ei ). Wµ and
Wσ are trainable parameters.

In this way, each local information is represented
ashi = N (µi,σ

2
i ) (i = 1, 2, . . . , Ns+Ne), which

not only gives the contextualized representation
of local information (i.e., mean vector), but also
estimates the uncertainty of local information (i.e.,
variance matrix).

https://github.com/CPF-NLPR/ULGN4DocEFI
https://github.com/CPF-NLPR/ULGN4DocEFI
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2.2 Uncertain Information Aggregation
2.2.1 Global Graph Construction
To leverage the global structure for integrating
the local information, we first construct a Global
Graph. As shown in Figure 2, the graph has three
kinds of nodes: mention node, sentence node and
document node. The mention nodes and sentence
nodes can provide the local information for pre-
diction. The global graph has one document node
that aims to capture the information of the entire
document. According to the document structure,
we define the following five types of edges:

• Adjacent sentence edge: We connect a sentence
node with its previous and next sentence nodes.

• Document-sentence edge: We connect the docu-
ment node with all sentence nodes.

• Document-mention edge: All event mention
nodes are connected to the document node.

• Sentence-mention edge: The mention node is
connected to its corresponding sentence node.

• Mention coreference edge: Mentions referring to
the same event are fully connected.

With the above connections, the positional struc-
ture can be modeled via the adjacent sentence edge.
Besides, the document node could serve as a pivot
to interact with other nodes and thus reduce the
long distance among them in the document. Any
two local nodes (i.e., mention nodes and sentence
nodes) that are not directly connected can pass in-
formation to each other through the document node.
Thus, the above connections can also model the se-
mantic structure.

2.2.2 Uncertain Graph Convolution Layer
After constructing the global graph, we aggregate
the local information based on the graph. For
conventional graph convolution networks (GCNs)
(Kipf and Welling, 2017), the (l+1)-th convolution
layer is defined as:

h
(l+1)
i = ρ(

∑
j∈ne(i)

1√
D̃i,iD̃j,j

h
(l)
j W

(l)), (3)

or in the equivalent matrix form:

H(l+1) = ρ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (4)

where Ã = A+I . A denotes the adjacency matrix
of the global graph, and I is the identify matrix.

D̃i,i =
∑

j Ãi,j . ρ is an activation function (e.g.,
ReLU). ne(i) denotes neighbors of the node i.

Since the local information is parameterized
by a probability distribution, existing graph con-
volutions are no longer applicable. Inspired by
Zhu et al. (2019), we formally utilize an uncer-
tain graph convolution layer (UGCL) to perform
convolution operations between Gaussian distri-
butions. Denote h(l)

i = N (µ
(l)
i ,σ

(l)
i ) as the rep-

resentation of node i in l-th layer, where µ(l)
i is

the mean vector and σ(l)
i is the diagonal variance

matrix2. We use M (l) = [µ
(l)
1 , . . . ,µ

(l)
Nn

] and

Σ(l) = [σ
(l)
1 , . . . ,σ

(l)
Nn

] to denote the matrix of
means and variances for all nodes respectively,
where Nn is the number of nodes in the global
graph (i.e., Nn = Ns +Ne + 1).

According to the additivity of the Gaussian dis-
tribution (LeCam, 1965) and assuming all hidden
representations of nodes are independent, we can
aggregate node neighbors as follows:

h
(l)

ne(i) =
∑

j∈ne(i)

1√
D̃i,iD̃j,j

h
(l)
j

∼ N (
∑

j∈ne(i)

1√
D̃i,iD̃j,j

µ
(l)
j ,

∑
j∈ne(i)

1

D̃i,iD̃j,j

σ
(l)
j ).

(5)

Due to the different importance of the local in-
formation, we propose a variance-based attention
mechanism to assign different weights to neigh-
bors. Intuitively, a smaller variance means that
the node is more important. Specifically, we use a
smooth exponential function to control the effect
of variances on weight:

α
(l)
i = exp(−γσ(l)

i ), (6)

where α(l)
i are the attention weights of node i in

the l-th layer and γ is a hyper-parameter. Consider-
ing the variance-based attention, the Eq.(5) can be
modified as follows:

h
(l)

ne(i) =
∑

j∈ne(i)

1√
D̃i,iD̃j,j

(h
(l)
j �α

(l)
j ) ∼

N (
∑

j∈ne(i)

µ
(l)
j �α

(l)
j√

D̃i,iD̃j,j

,
∑

j∈ne(i)

σ
(l)
j �α

(l)
j �α

(l)
j

D̃i,iD̃j,j

),

(7)

where � denotes the element-wise product oper-
ation. To better integrating the local information,

2In this paper, we focus on diagonal variance matrices, but
according to Hoeffding (1994), it can be extended to more
general cases. In addition, for the ease of presentation, we use
σ to represent variances, instead of σ2.
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the attention weights are exerted for different di-
mensions separately.

Similar to Eq.(3), we need to apply learnable fil-
ters and non-linear activation functions toh(l)

ne(i) for

obtaining h(l+1)
i . However, since h(l)

ne(i) is a Gaus-
sian distribution, it is mathematically intractable
to compute h(l+1)

i . In such a scenario, we directly
impose layer-specific parameters and non-linear
activation functions to the means and variances,
respectively. Therefore, the uncertain graph convo-
lution can be defined as follows:

µ
(l+1)
i = ρ(

∑
j∈ne(i)

1√
D̃i,iD̃j,j

(µ
(l)
j �α

(l)
j )W (l)

µ )

σ
(l+1)
i = ρ(

∑
j∈ne(i)

1

D̃i,iD̃j,j

(σ
(l)
j �α

(l)
j �α

(l)
j )W (l)

σ ),

(8)

or equivalently in the matrix form:

M (l+1) = ρ(D̃−
1
2 ÃD̃−

1
2 (H(l) �A(l))W (l)

µ )

Σ(l+1) = ρ(D̃−1ÃD̃−1(Σ(l) �A(l) �A(l))W (l)
σ ),

(9)

where A(l) = exp(−γΣ(l)). M (0) and Σ(0) are
computed via Eq.(2).

2.3 Reparameterization for Prediction
We use the representation of the document node for
prediction. Considering the representation of the
document node is a Gaussian distribution, we first
adopt a sampling process in the last graph layer:

z ∼ N (u
(L)
d ,σ

(L)
d ), (10)

where N (u
(L)
d ,σ

(L)
d ) denotes the representation

of the document node in the last layer. However,
directly sampling z will cause the problem of pre-
venting gradients from propagating back to the pre-
ceding layers. Thus, we use the reparameterization
trick (Kingma and Welling, 2013) to bypass the
problem. Specifically, we first sample a random
noise ε from the standard Gaussian distribution,
and then generate z as the equivalent sampling
representation:

z = u
(L)
d + ε�

√
σ

(L)
d , ε ∼ N (0, I). (11)

After obtaining z, we feed it into a softmax func-
tion for prediction:

p = softmax(Wsz + bs). (12)

For training, we use the cross entropy loss to opti-
mize the model parameters:

Lcls =
1

N

N∑
i=1

yi · log(p), (13)

where N is the number of training instances. yi is
the label of the i-th instance.

In addition, to ensure that the learned representa-
tions are indeed Gaussian distributions, we devise
an explicit regularization loss to constrain the input
representations of the first layer:

Lreg =
1

N

N∑
i=1

Nn∑
j=1

KL(N (u
(0)
ij ,σ

(0)
ij )||N (0, I)), (14)

whereN (u
(0)
ij ,σ

(0)
ij ) is the initialized Gaussian dis-

tribution of j-th node of i-th instance. KL(·||·) is
the KL-divergence between two distribution. Since
deeper layers are naturally Gaussian distributions
by using the proposed UGCL, we only need to reg-
ularize M (0) and Σ(0). We reach the final loss
function by combining the above terms:

L = Lcls + βLreg, (15)

where β is a hyper-parameter that controls the im-
pact of the Lreg.

3 Experiments

3.1 Datasets and Evaluation Metrics
We evaluate our proposed method on two widely
used datasets, English and Chinese event factuality
datasets (Qian et al., 2019). The number of En-
glish and Chinese documents is 1,730 and 4,650,
respectively. The PS- and Uu documents only
cover 1.39% and 1.20% in the English and Chi-
nese datasets, respectively. Therefore, following
previous work (Qian et al., 2019), we mainly focus
on the performance of CT+, CT- and PS+. For a fair
comparison with previous work (Qian et al., 2019),
we both perform 10-fold cross-validation on En-
glish and Chinese corpora. In addition, we adopt F1
score as the evaluation metric for each category of
factuality value. We also consider macro-averaged
and micro-averaged F1 score for the overall perfor-
mance of all the categories of factuality values.

3.2 Parameter Settings
In our implementations, our method uses the Hug-
gingFace’s Transformers library3 to implement
the BERT base model, which has 12-layers, 768-
hidden, and 12-heads. The learning rate is ini-
tialized as 2e-5 with a linear decay. We use the
AdamW algorithm (Loshchilov and Hutter, 2018)
to optimize model parameters. The batch size is set

3https://github.com/huggingface/
transformers

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Datasets Methods CT+ (%) CT- (%) PS+ (%) Micro-F1 (%) Macro-F1 (%)

English

BERT Model 89.38 71.82 69.09 83.53 76.76

MaxEntVote 75.14 58.17 35.89 68.42 56.40
BiLSTM-Att 79.18 65.25 53.65 73.23 66.03
Att-Adv 89.84 76.87 62.14 83.56 76.28

ULGN (Ours) 92.49 (↑ 2.65) 84.87 (↑ 8.00) 76.68 (↑ 14.54) 88.69 (↑ 5.13) 84.68 (↑ 8.40)

Chinese

BERT Model 84.79 88.71 79.33 85.83 84.28

MaxEntVote 72.22 62.44 58.29 67.72 64.32
BiLSTM-Att 81.89 68.82 49.78 71.12 67.28
Att-Adv 87.52 83.35 74.06 84.03 81.64

ULGN (Ours) 93.53 (↑ 6.01) 94.99 (↑ 11.64) 90.76 (↑ 16.70) 93.77 (↑ 9.74) 93.09 (↑ 11.45)

Table 1: Experimental results on the English and Chinese event factuality datasets, respectively. The performance
of our method is followed by the improvements (↑) over the previous state-of-the-art method Att-Adv.

to 4 and 2 for English and Chinese event factuality
datasets, respectively. The number of uncertain
graph convolution layers is set to 2. The size of
hidden states of the uncertain graph convolution
layer is 768.

3.3 Baselines
We compare the proposed approach ULGN with
the following methods:

(1) MaxEntVote (Qian et al., 2019), which first
uses maximum entropy model to identify sentence-
level event factuality, and then votes, i.e., choosing
the value committed by the most sentences as the
document-level factuality value.

(2) BiLSTM-Att (Qian et al., 2019), which em-
ploys the bidirectional long short-term memory
network (BiLSTM) to extract features, and uses the
intra-sentence attention to capture the most impor-
tant information in the sentence.

(3) Att-Adv (Qian et al., 2019), which leverages
the intra-sentence and inter-sentence attention to
learn the document representation, and utilizes ad-
versarial training to improve the robustness.

(4) BERT Model, which utilizes the BERT-base
(Devlin et al., 2019) to encode the document, and
uses the [CLS] representation for prediction.

3.4 Overall Results
Table 1 shows the results on the English and Chi-
nese datasets, respectively. We note the following
key observations throughout our experiments:

(1) Our method outperforms all the baselines
by a large margin. For example, compared with
the previous state-of-the-art model Att-Adv (Qian
et al., 2019), our method achieves 11.45% improve-
ments of macro-F1 score on the Chinese event fac-

tuality dataset. The significant performance gain
of our method over the baselines demonstrates that
the proposed ULGN is very effective for this task.

(2) Our method improves upon the BERT Model
by 7.92% and 8.81% in term of macro-F1 score on
the English and Chinese event factuality datasets,
respectively. We attribute the improvements to that
our method ULGN takes advantage of local uncer-
tainty and global structure, thus achieving superior
performance than the BERT Model.

(3) The BERT Model achieves comparable per-
formance with complex state-of-the-art methods
such as Att-Adv (Qian et al., 2019) on these two
datasets, which indicates that the BERT is able to
extract useful text features for the task.

3.5 Ablation Study

To demonstrate the effectiveness of the local uncer-
tainty estimation (LUE) and uncertain information
aggregation (UIA), we conduct an ablation study
as follows. 1) w/o VA, which removes the variance-
based attention; 2) w/o LUE, which first uses BERT
to encode the local information as the vector, and
then employs vanilla GCNs to aggregate the lo-
cal information; 3) w/o UIA, which first samples
a representation (i.e., vector) for each local infor-
mation, and then performs max-pooling over these
sampled representations to get the global represen-
tation for prediction; 4) w/o LUE and UIA, which
is the same as the BERT Model introduced in Sec-
tion 3.3. We present the results of ablation study in
Table 2. From the results, we can observe that:

(1) Effectiveness of Local Uncertainty Esti-
mation. When we remove the LUE module from
the ULGN, the macro-F1 score drops by 4.35% on
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Datasets Methods CT+ (%) CT- (%) PS+ (%) Micro-F1 (%) Macro-F1 (%)

English

ULGN 92.49 84.87 76.68 88.69 84.68
w/o VA 91.68 (↓ 0.81) 80.59 (↓ 4.28) 74.30 (↓ 2.38) 87.12 (↓ 1.57) 82.19 (↓ 2.49)
w/o LUE 89.45 (↓ 3.04) 81.44 (↓ 3.43) 70.11 (↓ 6.57) 85.18 (↓ 3.51) 80.33 (↓ 4.35)
w/o UIA 89.31 (↓ 3.18) 79.86 (↓ 5.01) 69.32 (↓ 7.36) 84.74 (↓ 3.95) 79.50 (↓ 5.18)
w/o LUE and UIA 89.38 (↓ 3.11) 71.82 (↓ 13.05) 69.09 (↓ 7.59) 83.53 (↓ 5.16) 76.76 (↓ 7.92)

Chinese

ULGN 93.53 94.99 90.76 93.77 93.09
w/o VA 92.62 (↓ 0.91) 94.30 (↓ 0.69) 87.41 (↓ 3.35) 92.53 (↓ 1.24) 91.44 (↓ 1.65)
w/o LUE 89.34 (↓ 4.19) 92.47 (↓ 2.52) 86.56 (↓ 4.20) 90.45 (↓ 3.32) 89.46 (↓ 3.63)
w/o UIA 88.06 (↓ 5.47) 91.22 (↓ 3.77) 85.12 (↓ 5.64) 88.23 (↓ 5.54) 88.13 (↓ 4.96)
w/o LUE and UIA 84.79 (↓ 8.74) 88.71 (↓ 6.28) 79.33 (↓ 11.43) 85.83 (↓ 7.94) 84.28 (↓ 8.81)

Table 2: Ablation study by removing the main components, where “w/o” indicates without. The performance is
followed by the drop (↓) compared with the method ULGN. “VA”, “LUE” and “UIA” refer to “variance-based
attention”, “local uncertainty estimation” and “uncertain information aggregation”, respectively.

n Methods Micro-F1 (%) Macro-F1 (%)

n=1
Att-Adv 91.36 81.67
ULGN 92.48 (↑ 1.12) 85.21 (↑ 3.54)

n>1
Att-Adv 60.91 60.04
ULGN 75.51 (↑ 14.60) 74.76 (↑ 14.72)

Table 3: Experimental results of Att-Adv and our
method ULGN on the documents with n types of
sentence-level factuality values in the English dataset.

the English dataset. It proves the local uncertainty
estimation is very effective for the task.

(2) Effectiveness of Uncertain Information
Aggregation. Compared with the model removed
UIA module, our method ULGN achieves 5.54%
improvements of micro-F1 score on the Chinese
dataset. Moreover, removing the VA module also
brings performance degradation. It demonstrates
that the uncertain information aggregation is able
to effectively integrate the local information.

(3) Effectiveness of Local Uncertainty Esti-
mation and Uncertain Information Aggrega-
tion. When we remove the LUE and UIA, the
performance drops significantly. The macro-F1
score drops from 93.09% to 84.28% on the Chi-
nese dataset. It indicates simultaneously utilizing
the local uncertainty estimation and uncertain in-
formation aggregation is also very effective.

3.6 Results on the Documents with Different
Sentence-Level Event Factuality Values

The document-level EFI is very challenging, be-
cause a document may have different sentence-
level event factuality values. To further investigate
the effectiveness of our method for document-level
EFI, we compare our method with Att-Adv on the

Methods Micro-F1 (%) Macro-F1 (%)

BERT Model 83.53 76.76
Longformer Model 83.81 77.48
BERT-GCN 85.18 80.33
BERT-GAT 85.22 80.41

ULGN (Ours) 88.69 (↑ 3.47) 84.68 (↑ 4.27)

Table 4: Comparison between the different methods for
document modeling on the English dataset.

documents with n types of sentence-level factuality
values. The results are shown in Table 3. From the
table, we have two important observations:

(1) Compared with improvements over the Att-
Adv (Qian et al., 2019) when n=1, our method
achieves more improvements when n>1. For ex-
ample, our method ULGN achieves 3.54% im-
provements of macro-F1 score when n=1, while
14.72% improvement when n>1 on the English
dataset. It indicates that our method is able to
handle well the problem of sentence-level event
factuality inconsistency.

(2) The micro-F1 and macro-F1 of n>1 are
lower than those of n=1 for both Att-Adv and our
approach ULGN, indicating that the factuality of
documents that have different types of sentence-
level factuality are more difficult to identify due to
the interference from sentence-level values.

3.7 Discussion and Analysis

3.7.1 Different Methods for Document
Modeling

To validate the effectiveness of our method for doc-
ument modeling, we compare our method with
other baselines. The baselines are illustrated as
follows. 1) Longformer Model, which uses the
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Figure 3: Influences of numbers of the graph layer on
the English event factuality dataset.

Longformer4 (Beltagy et al., 2020) to extract the
global feature for prediction; 2) BERT-GCN and
BERT-GAT, which first uses the BERT to the lo-
cal information, and then employs GCN and GAT
(Veličković et al., 2017) for integrating the local
information, respectively.

We present the experimental results in Table 4.
From the results, we can clearly see that our method
ULGN significantly outperforms other baselines.
It indicates that when modeling the document for
the document-level EFI task, we not only need to
consider the uncertainty of local information, but
also need to leverage the document structure for
integrating local information.

3.7.2 Impact of the Number of Graph Layers
We evaluate the influence of graph layer numbers,
which is illustrated in Figure 3. From the figure,
we can observe that:

(1) Our method ULGN yields the best perfor-
mance when the number of graph layers is 2. We
attribute it to the fact that any two local nodes that
are not directly connected can pass information to
each other through the document node (i.e., 2-hop).

(2) When the number of graph layers is too large,
the micro-F1 and macro-F1 scores both stop in-
creasing or even decrease. We guess that increasing
the size of randomly initialized parameters may not
be beneficial for BERT fine-tuning.

4 Related Work

4.1 Event Factuality Identification
Event factuality identification (EFI) is a very
important task in information extraction, which

4Longformer can model longer texts than BERT. The max-
imum length it can handle is 4,096.

can benefit many NLP applications, including
rumor detection (Qazvinian et al., 2011), sen-
timent analysis (Klenner and Clematide, 2016),
event causality identification (Cao et al., 2021;
Tran Phu and Nguyen, 2021) and so on. There-
fore, it has attracted extensive attention among re-
searchers. Most existing EFI studies are limited
to the sentence-level task (Saurí and Pustejovsky,
2012; De Marneffe et al., 2012; Rudinger et al.,
2018; Veyseh et al., 2019). The early work on this
problem has mainly employed rule-based methods
(Nairn et al., 2006; Saurı, 2008; Lotan et al., 2013)
or machine learning methods (with manually de-
signed features) (Diab et al., 2009; Prabhakaran
et al., 2010; De Marneffe et al., 2012; Saurí and
Pustejovsky, 2012; Lee et al., 2015; Qian et al.,
2015). In recent years, neural networks have been
introduced into the EFI task, and achieved state-of-
the-art performance (Rudinger et al., 2018; Qian
et al., 2018; Sheng et al., 2019; Huang et al., 2019;
Veyseh et al., 2019).

Despite these successful efforts, sentence-level
event factuality easily leads to conflict. To this end,
Qian et al. (2019) propose the document-level EFI
task. However, when modeling the document for
the task, their method ignores the uncertainty of
local information and the global structure.

4.2 Uncertainty Modeling

Uncertainty is a crucial but long-ignored issue in
many applications of NLP area. Conventionally,
the high-level representation of an input instance is
modeled as a fixed-length feature vector, which can
be regarded as a “point” in low-dimensional spaces.
However, such a point estimate is not sufficient
to express uncertainty, as point-based methods as-
sume that learned features are always correct (Gal
and Ghahramani, 2016; Kendall and Gal, 2017).
In recent years, Gaussian embedding has been get-
ting more attention in deep learning. For example,
Vilnis and McCallum (2015) utilize Gaussian em-
beddings to represent words, where the covariance
naturally measures the ambiguity of the words. He
et al. (2015) attempt to leverage the Gaussian dis-
tribution to represent the entity and relation, which
aims to model the uncertainty of entities and re-
lations in knowledge graphs. In addition, Xiao
and Wang (2019) quantify uncertainties in some
NLP tasks, such as sentiment analysis, named en-
tity recognition and language modeling.

To the best of our knowledge, we are the first to
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consider the uncertainty of local information for
the document-level EFI task. Namely, we represent
the local information as a probability distribution,
rather than a deterministic feature vector.

5 Conclusion

In this paper, we propose a novel uncertain local-to-
global network (ULGN) for document-level event
factuality identification. To model the uncertainty
of local information, we propose a local uncertainty
estimation module to represent the local informa-
tion with a probability distribution. To leverage the
global structure, we devise an uncertain informa-
tion aggregation module to integrate the local infor-
mation. Experimental results on two widely used
datasets indicate that our approach substantially
outperforms previous state-of-the-art methods.
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