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Abstract

Discourse segmentation and sentence-level
discourse parsing play important roles for vari-
ous NLP tasks to consider textual coherence.
Despite recent achievements in both tasks,
there is still room for improvement due to the
scarcity of labeled data. To solve the problem,
we propose a language model-based genera-
tive classifier (LMGC) for using more infor-
mation from labels by treating the labels as an
input while enhancing label representations by
embedding descriptions for each label. More-
over, since this enables LMGC to make ready
the representations for labels, unseen in the
pre-training step, we can effectively use a pre-
trained language model in LMGC. Experimen-
tal results on the RST-DT dataset show that our
LMGC achieved the state-of-the-art F1 score
of 96.72 in discourse segmentation. It further
achieved the state-of-the-art relation F1 scores
of 84.69 with gold EDU boundaries and 81.18
with automatically segmented boundaries, re-
spectively, in sentence-level discourse parsing.

1 Introduction

Textual coherence is essential for writing a natural
language text that is comprehensible to readers. To
recognize the coherent structure of a natural lan-
guage text, Rhetorical Structure Theory (RST) is
applied to describe an internal discourse structure
for the text as a constituent tree (Mann and Thomp-
son, 1988). A discourse tree in RST consists of
elementary discourse units (EDUs), spans that de-
scribe recursive connections between EDUs, and
nuclearity and relation labels that describe relation-
ships for each connection.

Figure 1 (a) shows an example RST discourse
tree. A span including one or more EDUs is a node
of the tree. Given two adjacent non-overlapping
spans, their nuclearity can be either nucleus or
satellite, denoted by N and S, where the nucleus
represents a more salient or essential piece of infor-
mation than the satellite. Furthermore, a relation
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Figure 1: An example discourse tree structure.

label, such as Attribution and Elaboration, is used
to describe the relation between the given spans
(Mann and Thompson, 1988; Carlson and Marcu,
2001). To build such trees, RST parsing consists
of discourse segmentation, a task to detect EDU
boundaries in a given text, and discourse parsing, a
task to link spans for detected EDUs.

In this paper, we focus on discourse segmenta-
tion and sentence-level discourse parsing, which
are indispensable in RST parsing (Joty et al., 2013;
Feng and Hirst, 2014a; Joty et al., 2015; Wang
et al., 2017; Kobayashi et al., 2020) and are appli-
cable to many downstream tasks, such as machine
translation (Guzmán et al., 2014; Joty et al., 2017)
and sentence compression (Sporleder and Lapata,
2005).

In discourse segmentation, Carlson et al. (2001)
proposed a method for using lexical information
and syntactic parsing results. Many researchers
(Fisher and Roark, 2007; Xuan Bach et al., 2012;
Feng and Hirst, 2014b) utilized these clues as fea-
tures in a classifier although automatic parsing er-
rors degraded segmentation performance. To avoid
this problem, Wang et al. (2018b) used BiLSTM-
CRF (Huang et al., 2015) to handle an input with-
out these clues in an end-to-end manner. Lin
et al. (2019) jointly performed discourse segmenta-
tion and sentence-level discourse parsing in their
pointer-network-based model. They also intro-
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duced multi-task learning for both tasks and re-
ported the state-of-the-art results for discourse seg-
mentation and sentence-level discourse parsing in
terms of F1 scores. Despite these achievements,
there is still room for improvement for both tasks
due to the scarcity of labeled data. It is important to
extract more potential information from the current
dataset for further performance improvement.

Under this motivation, in this research, we pro-
pose a language model-based generative classifier
(LMGC) as a reranker for both discourse segmen-
tation and sentence-level discouse parsing. LMGC
can jointly predict text and label probabilities by
treating a text and labels as a single sequence, like
Figure 1 (b). Therefore, different from conven-
tional methods, LMGC can use more information
from labels by treating the labels as an input. Fur-
thermore, LMGC can enhance label representations
by embedding descriptions of each label defined in
the annotation manual (Carlson and Marcu, 2001),
that allows us to use a pre-trained language model
such as MPNet (Song et al., 2020) effectively, since
we can already have the representations for labels,
that were unseen in the pre-training step.

Experimental results on the RST-DT dataset
(Carlson et al., 2002) show that LMGC can achieve
the state-of-the-art scores in both discourse segmen-
tation and sentence-level discourse parsing. LMGC
utilizing our enhanced label embeddings achieves
the best F1 score of 96.72 in discourse segmen-
tation. Furthermore, in sentence-level discourse
parsing, LMGC utilizing our enhanced relation la-
bel embeddings achieves the best relation F1 scores
of 84.69 with gold EDU boundaries and 81.18 with
automatically segmented boundaries, respectively.

2 Related Work

Discourse segmentation is a fundamental task for
building an RST discourse tree from a text. Carl-
son et al. (2001) proposed a method for using lex-
ical information and syntactic parsing results for
detecting EDU boundaries in a sentence. Fisher
and Roark (2007); Xuan Bach et al. (2012); Feng
and Hirst (2014b) utilized these clues as features
in a classifier, while Wang et al. (2018b) utilized
BiLSTM-CRF (Huang et al., 2015) in an end-
to-end manner to avoid performance degradation
caused by syntactic parsing errors.

Sentence-level discourse parsing is also an im-
portant task for parsing an RST discourse tree,
as used in many RST parsers (Joty et al., 2013;

Feng and Hirst, 2014a; Joty et al., 2015; Wang
et al., 2017; Kobayashi et al., 2020). Recently,
Lin et al. (2019) tried to jointly perform discourse
segmentation and sentence-level discourse parsing
with pointer-networks and achieved the state-of-
the-art F1 scores in both discourse segmentation
and sentence-level discourse parsing.

In spite of the performance improvement of these
models, a restricted number of labeled RST dis-
course trees is still a problem. In the discourse
segmentation and parsing tasks, most prior work
is on the basis of discriminative models, which
learn mapping from input texts to predicted la-
bels. Thus, there still remains room for improving
model performance by considering mapping from
predictable labels to input texts to exploit more la-
bel information. To consider such information in a
model, Mabona et al. (2019) introduced a genera-
tive model-based parser, RNNG (Dyer et al., 2016),
to document-level RST discourse parsing. Differ-
ent from our LMGC, this model unidirectionally
predicts action sequences.

In this research, we model LMGC for the dis-
course segmentation and sentence-level discourse
parsing tasks. LMGC utilizes a BERT-style bidirec-
tional Transformer encoder (Devlin et al., 2019) to
avoid prediction bias caused by using different de-
coding directions. Since LMGC is on the basis of
generative models, it can jointly consider an input
text and its predictable labels, and map the em-
beddings of both input tokens and labels onto the
same space. Due to this characteristic, LMGC can
effectively use the label information through con-
structing label embeddings from the description of
a label definition (Carlson and Marcu, 2001). Fur-
thermore, recent strong pre-trained models such
as MPNet (Song et al., 2020) are available for any
input tokens in LMGC.

3 Base Models

Our LMGC reranks the results from a conventional
discourse segmenter and parser, which can be con-
structed as discriminative models. In this section,
we explain these base models and introduce our
mathematical notations.

3.1 Discourse Segmenter

In discourse segmentation, given an input text
x = {x1, · · · , xn}, where xi is a word, a seg-
menter detects EDUs e = {e1, · · · , em} from x.
Since there is no overlap or gap between EDUs,
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Figure 2: Overview of our Language Model-based Generative Classifier (LMGC).

discourse segmentation can be considered as a kind
of sequential labeling task, which assigns labels
l = {l1, · · · , ln}, where each li ∈ {0, 1} indicates
whether the word is the start of an EDU or not. By
using a discriminative model, such as BiLSTM-
CRF (Wang et al., 2018b) and pointer-networks
(Lin et al., 2019), the probability of predicting
EDUs from x can be P (l|x) or P (e|x). Because
of its simple structure and extensibility, we choose
BiLSTM-CRF as our base model for discourse seg-
mentation. In BiLSTM-CRF, P (l|x) is formulated
as follows:

P (l|x) =
∏n

t=1 ψt(lt, lt−1, h)∑
l′∈Y

∏n
t=1 ψt(lt′, lt−1′, h)

, (1)

where ψt(lt, lt−1, h) = exp(W Tht + b) is the po-
tential function, ht is the hidden state at time step
t, W is a weight matrix, b is a bias term, and Y is
the set of possible label sequences.

We inherit top-k Viterbi results of BiLSTM-CRF,
scored by Eq.(1), to our LMGC, as described in
Section 4.

3.2 Discourse Parser
In discourse parsing, given an input text x and
its EDUs e, we can build a binary tree p =
{p1, · · · , p2n−1}, where each node pi ∈ p has
three kinds of labels: span si, nuclearity ui, and
relation ri. The sequences of span s and nuclearity
u can be predicted simultaneously, as in 2-stage
Parser (Wang et al., 2017), or span s can be pre-
dicted in advance for labeling nuclearity u and
relation r, as in pointer-networks (Lin et al., 2019)
and span-based Parser (Kobayashi et al., 2020).
Because of its better performance, we choose 2-
stage Parser as our base model for sentence-level
discourse parsing. 2-stage Parser extracts several
features and does classification with SVMs in two
stages. In the first stage, it identifies the span and
nuclearity simultaneously to construct a tree based
on the transition-based system with four types of ac-
tions: Shift, Reduce-NN, Reduce-NS, and Reduce-
SN. In the second stage, for a given node pi, ri is

predicted as the relation between the left and right
children nodes of pi by using features extracted
from pi and its children nodes. In spite of its lim-
ited features, it achieves the best results compared
with pointer-networks and span-based Parser. Since
2-stage Parser utilizes SVMs, we normalize the ac-
tion scores and inherit top-k beam search results
of 2-stage Parser for LMGC to perform discourse
parsing.

4 Language Model-based Generative
Classifier (LMGC)

In this section, we introduce our generative classi-
fier, LMGC, that utilizes a masked and permuted
language model to compute sequence probabili-
ties in both discourse segmentation and sentence-
level discourse parsing tasks. More specifically,
as we mention in Section 5, we can utilize our
LMGC in three tasks, (a) discourse segmentation,
(b) sentence-level discourse parsing with gold seg-
mentation, and (c) sentence-level discourse pars-
ing with automatic segmentation. Figure 2 shows
the overview of our LMGC for the whole task (c).
As shown in the figure, the prediction process in
LMGC is the following. We assume that, in task
(c), discourse segmentation and sentence-level dis-
course parsing are performed in a pipeline manner
with models trained for tasks (a) and (b).

1. Predict top-ks EDU segmentations
{e1, · · · , eks} from a given sentence x
with the base discourse segmenter, described
in Section 3.1.

2. Compute joint probability P (x, ei) and select
the best segmentation e from {e1, · · · , eks}
with a language model, as we describe below.

3. Parse and rank top-kp trees {p1, · · · ,pkp}
from x and best segmentation e with the base
discourse parser, described in Section 3.2.

4. Compute joint probability P (x, e,pj) to se-
lect the best tree from {p1, · · · ,pkp} with a
language model, as we describe below.
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In task (a), we apply Step 2 to predict the best
segmentation after Step 1. In task (b), we skip
Steps 1 and 2, and apply just Steps 3 and 4 for gold
segmentation to yield the best parse tree.

4.1 Tree Representations

To calculate joint probabilities for a discourse tree
with a language model, we need to represent a tree
as a linear form, like Figure 1 (b). Since there are
several predictable label sets in discourse segmen-
tation and parsing tasks, as shown in Figure 3, we
prepare linearized forms for each label set.1

In discourse segmentation, we can consider joint
probability P (x, e) for a sequence with inserting a
symbol, [EDU], at an EDU boundary (Figure 3 (a)).
In discourse parsing, a discourse tree is represented
as a sequence with several kinds of label sets: span
labels s, nuclearity labels u including span labels,
and relation labels r including span and nuclear-
ity labels (Figures 3 (b)-(d)). To investigate the
effectiveness of each label set in the reranking step,
we consider P (x, e, s), P (x, e,u), and P (x, e, r)
for each label set to represent P (x, e,p) in this pa-
per. To build a sequence, we combine each label
in a tree with brackets to imply the boundary for
the label. For example, "(N" and ")N" stand for
the start and end of a nucleus EDU. For a node
pi of the tree, ri describes the relation between its
children nodes, leading to ri of leaf nodes being
"Null". When the child nodes of pi are nucleus
and satellite, we assign label "Span" to the nucleus
child node of pi and label ri to the satellite child
node of pi, respectively. When the child nodes of
pi are both nucleus, we assign label ri to both child
nodes of pi.

For simpler illustration, in Figure 1 (b), we show
the linearized discourse tree only with nuclearity
and relation labels, since the nuclearity labels can
also show span and EDU boundary labels. "Null"
labels for leaf nodes are also omitted in the figure.

4.2 Joint Probabilities

To calculate joint probabilities in the last subsec-
tion with a language model, we consider probability
P (z) for a sequence z = (z1, · · · , za), which cor-
responds to the probabilities for the sequential rep-
resentations P (x, e), P (x, e, s), P (x, e,u), and
P (x, e, r).

1Note that using just a raw s-expression-style tree of Figure
1 (b) in our language model cannot work because of its much
more kinds of labels. We include the results with this type of
tree in Appendix A.

According to Song et al. (2020), masked and
permuted language modeling (MPNet) takes the
advantages of both masked language modeling and
permuted language modeling while overcoming
their issues. Compared with Bert (Devlin et al.,
2019) and XLNet (Yang et al., 2019), MPNet con-
sidered more information about tokens and posi-
tions, and achieved better results for several down-
steam tasks (GLUE, SQuAD, etc). Taking into ac-
count its better performance, we choose pre-trained
MPNet (Song et al., 2020) as our language model.
Because considering all possible inter-dependence
between zt is intractable, we follow the decomposi-
tion of pseudo-log-likelihood scores (PLL) (Salazar
et al., 2020) in the model. Thus, we decompose
and calculate logarithmic P (z) as follows:

logP (z; θ) (2)

≈PLL(z; θ)=
a∑

t=1

logP (zt |z<t, z>t,Mt; θ),

where z<t is the first sub-sequence (z1, · · · , zt−1)
in z and z>t is the latter sub-sequence
(zt+1, · · · , za) in z. Mt denotes the mask token
[MASK] at position t. P (zt | z<t, z>t,Mt; θ)
is computed by two-stream self-attention (Yang
et al., 2019). In inference, we select z based on
1
aPLL(z; θ).

This model converts z into continuous vectors
w = {w1, · · · , wa} through the embedding layer.
Multi-head attention layers further transform the
vectors to predict each zt in the softmax layer.

Since pre-trained MPNet does not consider EDU,
span, nuclearity, and relation labels in the pre-
training step, we need to construct vectors w for
these labels from the pre-trained parameters to en-
hance the prediction performance. We describe the
details of this method in the next subsection.

4.3 Label Embeddings
In LMGC, we embed input text tokens and labels
in the same vector space (Wang et al., 2018a) of
the embedding layer. Under the setting, to deal
with unseen labels in the pre-trained model, we
compute the label embeddings by utilizing token
embeddings in the pre-trained model.

We try to combine the input text with four kinds
of labels, EDU, span, nuclearity, and relation labels,
which were defined and clearly described in the an-
notation document (Carlson and Marcu, 2001) (See
Appendix B for the descriptions). In taking into
account the descriptions for the labels as additional
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(a) Sentence with EDU boundary labels

e1 _ [EDU] _ e2 _ [EDU] _ e3 _ [EDU]

(b) Sentence with span labels

(Span _ (Span _ e1 _ )Span _ (Span _ e2 _ )Span _ )Span
_ (Span _ e3 _ )Span

(c) Sentence with nuclearity labels

(N _ (N _ e1 _ )N _ (S _ e2 _ )S _ )N _ (S _ e3 _ )S

(d) Sentence with relation labels

(Span _ (Span _ e1 _ )Span _ (Elaboration _ e2 _
)Elaboration _ )Span _ (Attribution _ e3 _ )Attribution

Figure 3: Example joint representations of an input text
and labels for sentence We’ve got a lot to do, he ac-
knowledged. ei represents the corresponding EDU, and
"_" is whitespace.

information, we adopt two different methods, Av-
erage and Concatenate, for representing the label
embeddings.
Average: We average the embeddings of tokens
that appear in the definition of a label and assign
the averaged embedding to the label.
Concatenate: We concatenate a label name with
its definition and insert the concatenated text to
the end of sequence z,2 so that the label embed-
ding can be captured by self-attention mechanisms
(Vaswani et al., 2017). Note that we do not try it in
the parsing task, because the length of a sequence
increases in proportion to the increase of the num-
ber of labels, that causes a shortage of memory
space.

4.4 Objective Function

Because the search space for sequences of a text
and its labels is exponentially large, instead of con-
sidering all possible sequences Z(x) for x, we
assume Z ′(x) as a subset of sequences based on
top-k results from the base model. We denote
zg ∈ Z(x) as the correct label sequence of x. To
keep pre-trained information in MPNet, we con-
tinue masking and permutation for training model
parameter θ. Assuming that Oa lists all permuta-
tions of set {1, 2, · · · , a}, the number of elements
in Oa satisfies | Oa |= a!. For z ∈ Z ′(x) ∪ {zg},
we train the model parameter θ in LMGC by maxi-
mizing the following expectation over all permuta-

2Note that the concatenated text of the label name and its
definition is not masked during training.

tions:

Eo∈Oa

a∑
t=c+1

[Iz logP (zot | zo<t ,Mo>c ; θ)

+(1− Iz) log(1− P (zot | zo<t ,Mo>c ; θ))], (3)

where Iz is the indicator function, defined as fol-
lows:

Iz :=

{
1 if z = zg

0 if z 6= zg

. (4)

c, denoting the number of non-predicted tokens
zo<=c , is set manually. o<t denotes the first t −
1 elements in o. Mo>c denotes the mask tokens
[MASK] at position o>c. P (zot | zo<t ,Mo>c ; θ) is
computed by two-stream self-attention (Yang et al.,
2019).

5 Experiments

In this section, we present our experiments in three
tasks, (a) discourse segmentation, (b) sentence-
level discourse parsing with gold segmentation, and
(c) sentence-level discourse parsing with automatic
segmentation.

5.1 Experimental Settings
5.1.1 Datasets
Following previous studies (Wang et al., 2017,
2018b; Lin et al., 2019), we used the RST Dis-
course Treebank (RST-DT) corpus (Carlson et al.,
2002) as our dataset. This corpus contains 347 and
38 documents for training and test datasets, respec-
tively. We divided the training dataset into two
parts, following the module RSTFinder3 (Heilman
and Sagae, 2015), where 307 documents were used
to train models and the remaining 40 documents
were used as the validation dataset.

We split the documents into sentences while ig-
noring footnote sentences, as in Joty et al. (2012).
There happens two possible problematic cases for
the splitted sentences: (1) The sentence consists of
exactly an EDU, and so it has no tree structure. (2)
The tree structure of the sentence goes across to
other sentences. Following the setting of Lin et al.
(2019), we did not filter any sentences in task (a).
In task (b), we filtered sentences of both cases. In
task (c), we filtered sentences of case (2). Table 1
shows the number of available sentences for the
three different tasks.

3https://github.com/
EducationalTestingService/rstfinder

https://github.com/EducationalTestingService/rstfinder
https://github.com/EducationalTestingService/rstfinder
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Task Train Valid Test

(a) Segmentation 6,768 905 991
(b) Parsing w/ gold segmentation 4,524 636 602
(c) Parsing w/ auto segmentation - 861 951

Table 1: The number of sentences for each task.

5.1.2 Evaluation Metrics
In task (a), we evaluated the segmentation in micro-
averaged precision, recall, and F1 score with re-
spect to the start position of each EDU. The posi-
tion at the beginning of a sentence was ignored.
In task (b), we evaluated the parsing in micro-
averaged F1 score with respect to span, nuclearity,
and relation. In task (c) for parsing with automatic
segmentation, we evaluated both the segmentation
and parsing in micro-averaged F1 score.

We used the paired bootstrap resampling (Koehn,
2004) for the significance test in all tasks when
comparing two systems.

5.1.3 Compared Methods
As our proposed methods, we used LMGCe,
LMGCs, LMGCu, and LMGCr, which respec-
tively model probability P (x, e), P (x, e, s),
P (x, e,u), and P (x, e, r) with initialized label
embeddings. We represent LMGC with Average
and Concatenate label embeddings as Enhance and
Extend, respectively.

We used the base discourse segmenter and parser
described in Section 3 as our baseline. We re-
produced the base discourse segmenter BiLSTM-
CRF4 (Wang et al., 2018b). Because BiLSTM-CRF
adopted the hidden states of ELMo (Peters et al.,
2018) as word embeddings, we also tried the last
hidden state of MPNet as the word embeddings
for BiLSTM-CRF for fairness. We retrained the
segmenter in five runs, and the experimental results
are showed in Appendix C. The publicly shared
BiLSTM-CRF by Wang et al. (2018b) is our base
segmenter in the following experiments.

As for the base parser, we retrained two models,
2-stage Parser5 (Wang et al., 2017) and span-based
Parser6 (Kobayashi et al., 2020). Different from
the setting of Lin et al. (2019), we retrained 2-
stage Parser in the sentence-level rather than in
the document-level. Since the experimental re-

4https://github.com/PKU-TANGENT/
NeuralEDUSeg

5https://github.com/yizhongw/StageDP
6https://github.com/nttcslab-nlp/

Top-Down-RST-Parser

sults show our retrained 2-stage Parser achieved
the highest F1 scores among several parsers (See
Appendix C), we selected it as our base parser in
the following experiments.

Furthermore, for comparing LMGC with an uni-
directional generative model (Mabona et al., 2019),
we constructed another baseline method which uti-
lizes a GPT-2 (Radford et al., 2019) based reranker.
This method follows an unidirectional language
model-based generative parser (Choe and Char-
niak, 2016), and considers top-k results from the
base model by an add-1 version of infinilog loss
(Ding et al., 2020) during training. We denote this
baseline as GPT2LM hereafter. GPT2LM models
P (x, e) for task (a) and P (x, e, r) for tasks (b)
and (c), respectively. Both LMGC and GPT2LM
are the ensemble of 5 models with different ran-
dom seeds. See Appendix D for a complete list of
hyperparameter settings.

5.1.4 Number of Candidates
As described in Section 4, LMGC requires parame-
ters ks and kp for the number of candidates in the
steps for different tasks. We tuned ks and kp based
on the performance on the validation dataset.7

In task (a), ks was set to 20 and 5 for training
and prediction, respectively. In task (b), kp was set
to 20 and 5 for training and prediction, respectively.
In task(c), ks and kp were both set to 5 for predic-
tion. The set of parameters was similarly tuned for
GPT2LM on the validation dataset. We list all of
them in Appendix E.

5.2 Results

5.2.1 Discourse Segmentation
Table 2 shows the experimental results for the dis-
course segmentation task. Oracle indicates the up-
per bound score that can be achieved with candi-
dates generated by the base model. To compute the
Oracle score, if the candidades by the base model
include the correct answer, we assume the predic-
tion is correct.

LMGCe significantly outperformed GPT2LMe.8

We think the reason is similar to what Zhu et al.
(2020) reported: BERT-based bidirectional Trans-
former encoders encode more rhetorical features
than GPT2-based unidirectional Transformer en-

7Note that we should separately tune the number of candi-
dates for training and prediction stages because LMGC utilizes
Eq.(2) for prediction and Eq.(3) for training, respectively.

8We chose GPT2LMe for the significance test because we
had only reported scores for the pointer-networks.

https://github.com/PKU-TANGENT/NeuralEDUSeg
https://github.com/PKU-TANGENT/NeuralEDUSeg
https://github.com/yizhongw/StageDP
https://github.com/nttcslab-nlp/Top-Down-RST-Parser
https://github.com/nttcslab-nlp/Top-Down-RST-Parser
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Model Precision Recall F1

Oracle 97.73 98.67 98.20

Pointer-networks* 93.34 97.88 95.55
Base segmenter 92.22 95.35 93.76
GPT2LMe 94.05 95.72 94.88

LMGCe 95.31 97.56 96.43†
Enhancee 95.54 97.93 96.72†
Extende 95.05 97.86 96.44†

Table 2: Results for the discourse segmentation task. *
indicates the reported score by Lin et al. (2019). The
best score in each metric among the models is indicated
in bold. † indicates that the score is significantly supe-
rior to GPT2LM with a p-value < 0.01.

Model Span Nuclearity Relation

Oracle 98.67 95.88 90.07

Pointer-networks* 97.44 91.34 81.70
Base parser 97.92 92.07 82.06
GPT2LMr 96.35 88.11 77.86

LMGCs 98.23‡ 92.31 82.22
Enhances 98.27‡ 92.39 82.42
LMGCu 98.31‡ 94.00† 83.63†
Enhanceu 98.31† 93.88† 83.56†
LMGCr 98.00 93.09† 83.99†
Enhancer 98.12 93.13† 84.69†

Table 3: Results for the sentence-level discourse pars-
ing task with gold segmentation. * indicates the re-
ported score by Lin et al. (2019). The best score in
each metric among the models is indicated in bold. †
and ‡ indicate that the score is significantly superior to
the base parser with a p-value < 0.01 and < 0.05, re-
spectively.

coders. Using Average label embeddings is more
helpful than using Concatenate label embeddings
for LMGCe. Enhancee achieved the state-of-the-
art F1 score of 96.72, which outperformed both the
base segmenter and the pointer-networks.

5.2.2 Sentence-level Discourse Parsing
Gold Segmentation: Table 3, Figures 4 and 5
show the experimental results for the sentence-level
discourse parsing task with gold segmentation. In
Table 3, LMGCu achieved the highest span and nu-
clearity F1 scores of 98.31 and 94.00, respectively.
Enhancer achieved the state-of-the-art relation F1

score of 84.69, which is significantly superior to the
base parser. Although using Average label embed-
dings improved LMGCr, it can provide no or only
limited improvement for LMGCu and LMGCs. We
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Figure 5: Confusion matrix for Enhancer in the
sentence-level discourse parsing task with gold seg-
mentation. We show the ratio of the number of in-
stances with predicted labels (for a column) to the num-
ber of instances with gold labels (for a row) in the cor-
responding cell.

guess that this difference is caused by the number
of different kinds of labels in span, nuclearity, and
relation. The performance of GPT2LMr is even
worse than the base parser. We think this is because
we added the relation labels to the vocabulary of
GPT-2 and resized the pre-trained word embed-
dings.

Figure 4 shows the comparison between the base
parser and Enhancer with respect to each ralation
label. In most relation labels, Enhancer outper-
formed 2-stage Parser except for the labels Expla-
nation, Evaluation, and Topic-Comment. 2-stage
Parser achieved the F1 score of 17.14 for label Tem-
poral while Enhancer achieved the F1 score of
44.44 by reranking the parsing results from 2-stage
Parser. Such great improvement with Enhancer
can also be found for labels such as Contrast, Back-
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Figure 6: t-SNE plot of relation label embeddings
trained in LMGCr and Enhancer.

ground, and Cause. Obviously, Enhancer tends to
improve the performance for labels whose training
data is limited.

Figure 5 shows a confusion matrix of Enhancer
for each relation label. It shows that the relation
labels Comparison, Cause, and Temporal were of-
ten predicted wrongly as Contrast, Joint, and Joint
or Background, respectively, by Enhancer, even
though these labels have at least 100 training data.
We guess this might be due to some similarities
between those labels.

By using the t-SNE plot (Van der Maaten and
Hinton, 2008), we visualize the trained relation
label embeddings of LMGCr and Enhancer. Fig-
ures 6a and 6b show the results. Figure 6a shows a
clearer diagonal that divides labels with parenthesis

Model Seg Parse
Span Nuclearity Relation

Pointer-networks* - 91.75 86.38 77.52

Oracleseg 98.24 - - -
Base segmenter 93.92 - - -
GPT2LMe 95.03 - - -
LMGCe 96.51 - - -
Enhancee 96.79 - - -
Extende 96.48 - - -

Oracle - 93.95 91.25 85.93
Base parser - 93.53 88.08 78.75
GPT2LMr - 92.02 84.20 74.49
LMGCs - 93.96‡ 88.46 79.25
Enhances - 94.00† 88.50 79.33
LMGCu - 93.96† 89.90† 80.33†
Enhanceu - 93.92‡ 89.74† 80.22†
LMGCr - 93.65 89.08† 80.57†
Enhancer - 93.73 89.16† 81.18†

Table 4: Results for the sentence-level discourse pars-
ing task with automatic segmentation. * indicates the
reported score by Lin et al. (2019). The best score in
each metric among the models for each block is indi-
cated in bold. We used the discourse segmentation re-
sults of Enhancee as the input of the discourse parsing
stage for all models, for fair comparison of sentence-
level discourse parsing. † and ‡ indicate that the score is
significantly superior to the base parser with a p-value
< 0.01 and < 0.05, respectively.

"(" from the ones with ")", while Figure 6b shows
more distinct divisions between labels.
Automatic Segmentation: Table 4 shows the ex-
perimental results for the sentence-level discourse
parsing task with automatic segmentation. The sec-
ond and third blocks in the table show the results for
the first and second stages, discourse segmentation
and sentence-level discourse parsing, respectively.9

Enhancer achieved the highest relation F1 score
of 81.18, which is a significant improvement of
2.43 points compared to the base parser. Enhances
and LMGCu achieved the highest span and nucle-
arity F1 scores of 94.00 and 89.90, respectively.
Since LMGC∗ and Enhance∗ were the models
trained in task (b), and Enhancee achieved the F1

score of 96.79 in discourse segmentation, it is not
surprising to find that the tendency of those results
is similar to that in sentence-level discourse parsing
with gold segmentation.

6 Conclusion

In this research, we proposed a language model-
based generative classifier, LMGC. Given the top-

9Note that F1 scores for discourse segmentation in the
second block are not the same as in Table 2 due to the different
test dataset.
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k discourse segmentations or parsings from the
base model, as a reranker, LMGC achieved the
state-of-the-art performances in both discourse seg-
mentation and sentence-level discourse parsing.
The experimental results also showed the poten-
tial of constructing label embeddings from token
embeddings by using label descriptions in the man-
ual. In the future, we plan to apply LMGC to other
diverse classification tasks.
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A Experimental Results of LMGC with
Tree

Since the raw s-expression-style tree is longer than
our joint representations with span, nuclearity and
relation, we transformed the raw tree into a se-
quence as Figure 7 shows, where the nuclearity and
relation labels are connected together by the colons.
To construct the label embedding for P (x, e,p),
we combined the descriptions of the nuclearity and
relation (see descriptions in Appendix B), and as-
signed the combination to the corresponding node.
For example, the description of "(Attribution:S" is
the start of a supporting or background piece of
information attribution, attribution represents both
direct and indirect instances of reported speech.

(Span:N _ (Span:N _ e1 _ )Span:N _ (Elaboration:S _ e2 _
)Elaboration:S _ )Span:N _ (Attribution:S _ e3 _ )Attribution:S

Figure 7: Example joint representation of an input text
with all tree labels for sentence We’ve got a lot to do, he
acknowledged. ei represents the corresponding EDU,
and "_" is whitespace.

LMGCp models the joint probability P (x, e,p)
with initialized label embedding. The experimental
results of LMGCp and Enhancep for the sentence-
level discourse parsing task with gold segmentation
are showed in Table 5. LMGCp and Enhancep are
the ensemble of 5 models with different random
seed, although the training loss of Enhancep in 2
of 5 models did not decrease.

Model Span Nuclearity Relation

LMGCp 97.84 92.90 84.11
Enhancep 98.04 92.74 84.18

Table 5: Performances of LMGCp and Enhancep in
the sentence-level discourse parsing task with gold seg-
mentation.

B Label Descriptions

We list our extracted label descriptions from Carl-
son and Marcu (2001) in Table 6. For parsing
symbols with brackets "(" and ")" like "(N" and
")N", we inserted the position phrase, the start of
and the end of, to the beginning of their label defi-
nitions. So the description of ")N" is the end of a
more salient or essential piece of information.

C Experiment Results of Reproduced
Base Model

Table 7 shows the experimental results of BiLSTM-
CRF in discourse segmentation, where the results
of our reproduced BiLSTM-CRF are averaged in
five runs. Table 8 shows the experimental results
of different parsers in the sentence-level discourse
parsing task with gold segmentation.

D Hyperparmeters

For LMGC, we used the source code shared in the
public github10 of Song et al. (2020). We used the
uploaded pre-trained MPNet and same setup as il-
lustrated in Table 9. 15% tokens as the predicted
tokens were masked by replacement strategy 8:1:1.
Relative positional embedding mechanism (Shaw
et al., 2018) was utilized. Since the vocab we used
is same as the one of BERT (Devlin et al., 2019),
we used the symbol [SEP] to represent [EDU] and
symbol [unused#] starting from 0 to represent pars-
ing labels such as "(N" and "(Attribution".

For GPT2LM, we used the source code shared
in the public github11 (Ott et al., 2019). Following
the steps in Choe and Charniak (2016), we utilized
Eq (5) (Jurafsky, 2000) to compute the joint distri-
bution,

P (x,y) = P (z) = P (z1, . . . , za) (5)

=

a∏
t=1

P (zt|z1, . . . , zt−1),

where P (zt|z1, . . . , zt−1) was computed by GPT-
2 (Radford et al., 2019). And in inference, we
selected z based on 1

a logP (z). An add-1 version
of infinilog loss (Ding et al., 2020) was utilized for
training GPT2LM as follows:

− log f(z) + log[1 +
∑

z′∈Z′(x),z′ 6=z

f(z′)], (6)

10https://github.com/microsoft/MPNet
11https://github.com/pytorch/fairseq/

tree/master/fairseq/models/huggingface

https://github.com/microsoft/MPNet
https://github.com/pytorch/fairseq/tree/master/fairseq/models/huggingface
https://github.com/pytorch/fairseq/tree/master/fairseq/models/huggingface


2443

Label Definition
[EOS] elementary discourse units are the minimal building blocks of a discourse tree
Span span
Nucleus a more salient or essential piece of information
Satellite a supporting or background piece of information
Attribution attribution, attribution represents both direct and indirect instances of reported

speech
Background background or circumstance
Cause cause or result
Comparison comparison, preference, analogy or proportion
Condition condition, hypothetical, contingency or otherwise
Contrast contrast relation, spans contrast with each other along some dimension. Typi-

cally, it includes a contrastive discourse cue, such as but, however, while.
Elaboration elaboration, elaboration provides specific information or details to help define a

very general concept
Enablement enablement, enablement presentes action to increase the chances of the unreal-

ized situation being realized.
Evaluation evaluation, interpretation, conclusion or comment
Explanation evidence, explanation or reason
Joint list, list contains some sort of parallel structure or similar fashion between the

units
Manner-Means explaining or specifying a method , mechanism , instrument , channel or conduit

for accomplishing some goal
Topic-Comment problem solution, question answer, statement response, topic comment or

rhetorical question
Summary summary or restatement
Temporal situations with temporal order, before, after or at the same time
Topic change topic change
Textual-organization links that are marked by schemata labels
Same-unit links between two non-adjacent parts when separated by an intervening relative

clause or parenthetical

Table 6: Extracted label definitions.
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Model Precision Recall F1

Reported* 92.04 94.41 93.21
Shared 92.22 95.35 93.76
Reproduced (ELMo) 93.16 96.26 94.68
Reproduced (MPNet) 92.84 95.63 94.21

Table 7: Performances of BiLSTM-CRF (Wang et al.,
2018b) in the discourse segmentation task. The best
score in each metric among the models is indicated in
bold. * indicates the reported score by Lin et al. (2019).
Shared is the publicly shared model by Wang et al.
(2018b). Reproduced (ELMo) and Reproduced (MP-
Net) are our reproduced models with different word em-
beddings.

Model Span Nuclearity Relation

2-Stage Parser* 95.60 87.80 77.60
Pointer-networks* 97.44 91.34 81.70

Span-based Parser 96.67 90.23 74.76
2-Stage Parser 97.92 92.07 82.06

Table 8: Performance of retrained parsers in the
sentence-level discourse parsing task with gold seg-
mentation. The best score in each metric among the
models is indicated in bold. * indicates the reported
score by Lin et al. (2019).

where

f(z) =
exp( 1a logP (z))∑

z′∈Z′(x) exp(
1
a′ logP (z

′))
. (7)

We used the uploaded pretrained "gpt2" model
(Wolf et al., 2020) and same setup as illustrated
in Table 10. We used symbol "=====" in vocab
to represent the symbol [EDU]. Because the vocab
of GPT-2 has no available symbol for representing
an unseen symbol, we added <pad> and our rela-
tion symbols to the vocab of GPT-2 and resized the
pre-trained word embeddings.

E Setting of Candidates

Table 11 shows the setting of candidates for differ-
ent tasks. As described in Section 4.4, we do data
augmentation by using additional top-k results gen-
erated by a base method, a larger k during training
is expected to bring more promotion for LMGC.
However, a larger k during prediction step intro-
duces more candidates and may make the predic-
tion more difficult. Taking this into consideration,
we tuned ks and kp for training and prediction sep-
arately based on the performance on the validation
dataset.

Hyperparameter Value

Optimizer adam
Adam β1 0.9
Adam β2 0.98
Adam ε 1e - 6
weight decay 0.01
Learning rate 0.00009
Batch size 8192 tokens
Warm up steps 2.4 epoch
Epoch 30
Attention layer 12
Attention head 12
dropout 0.1
attention dropout 0.1
Hidden size 768
Vocab size 30527
Tokenizer Byte pair encoder
Max sentence length 512

Table 9: List of used hyperparameters for LMGC.

Hyperparameter Value

Optimizer adam
Adam β1 0.9
Adam β2 0.98
Adam ε 1e - 6
weight decay 0.01
Learning rate 0.0001
Batch size 512 gold tokens + candidate tokens
Warm up steps 2.4 epoch
Epoch 30
Attention layer 12
Attention head 12
dropout 0.1
attention dropout 0.1
Hidden size 768
Vocab size 50257+ added tokens
Tokenizer Byte pair encoder
Max sentence length 512

Table 10: List of used hyperparameters for GPT2LM.

In task (a), we used the Viterbi-topk algorithm
for the base segmenter to select top-ks segmenta-
tions. We tuned ks ∈ {0, 10, 20} for training while
ks for prediction was fixed as 5. Note that we used
only gold segmentations for training when ks was
set to 0. Table 12 shows the experimental results,
where both LMGCe and GP2TLMe are the ensem-
ble of 5 models. Then we tuned ks ∈ {5, 10, 20}
for prediction by using the LMGCe and GP2TLMe

trained with top-20 candidates, Table 13 shows the
results.

In task (b), we utilized beam search in each stage
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Task Data Segmentation Parsing # of data
ks 1st stage 2rd stage kp

(a)
Training 20 - - - 140924
Prediction 5 - - - -

(b)
Trainingw/ span or nuclearity - 20 1 20 60742
Trainingw/ relation or all - 3 7 20 95004
Prediction - 5 5 5 -

(c) Prediction 5 5 5 5 -

Table 11: Setting of top candidates for different tasks. The Prediction data denotes the validation and test dataset.

of the base parser and after two stages we computed
the perplexity to keep top-kp parsings. We tuned
kp ∈ {0, 10, 20} for training while kp for predic-
tion was fixed as 5. Note that we used only gold
parsings for training when kp was set to 0. Ta-
ble 14 shows the experimental results, where both
LMGCr and GPT2LMr are the ensemble of 5 mod-
els. Then we tuned kp ∈ {5, 10, 20} for prediction
by using the LMGCr and GPT2LMr trained with
top-20 candidates, Table 15 shows the results.

In task (c), same as in task (a), we tuned ks ∈
{5, 10, 20} for predicting discourse segmentation
by using the LMGCe and GP2TLMe trained with
top-20 candidates for task (a), Table 16 shows
the result. We utilized LMGCe to select the best
segmentation from top-5 segmentations for fol-
lowing discourse parsing. Then same as in task
(b), we tuned kp ∈ {5, 10, 20} for predicting dis-
course parsing by using the LMGCr and GPT2LMr

trained with top-20 candidates for task (b), Table 17
shows the result.

In tasks (b) and (c), LMGCs and Enhances
cannot distinguish the candidates with the same
span labels but different nulearity or relation labels,
LMGCu and Enhanceu cannot distinguish the can-
didates with the same nulearity labels but different
relation labels. Under this condition, the indistin-
guishable parsings would be ranked by the base
parser. And in task (b), for training data with span
or nuclearity labels, we used the beam sizes 20 and
1 in the first and second stages of the base parser,
respectively.

Model ks for training Precision Recall F1

LMGCe 0 87.76 95.72 91.57
10 97.67 97.73 97.70
20 97.99 97.86 97.92

GPT2LMe 0 81.72 96.18 88.36
10 96.67 96.05 96.36
20 96.93 96.05 96.48

Table 12: Results of tuning ks for training in task (a).
The best score in each metric among different ks for
training is indicated in bold.

Model ks for prediction Precision Recall F1

Oracle 5 99.94 99.68 99.81
10 99.94 99.68 99.81
20 99.94 99.68 99.81

LMGCe 5 97.99 97.86 97.92
10 97.47 97.54 97.51
20 97.41 97.60 97.51

GPT2LMe 5 96.93 96.05 96.48
10 96.47 95.59 96.03
20 95.76 95.14 95.45

Table 13: Results of tuning ks for prediction in task (a).
The best score in each metric among different ks for
prediction is indicated in bold.

Model kp for training Span Nuclearity Relation

LMGCr 0 97.25 92.21 83.37
10 97.46 92.71 83.23
20 97.50 93.02 83.44

GPT2LMr 0 97.36 92.07 79.11
10 96.93 90.80 80.76
20 96.79 90.66 80.94

Table 14: Results of tuning kp for training in task (b).
The best score in each metric among different kp for
training is indicated in bold.
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Model kp for prediction Span Nuclearity Relation

Oracle 5 98.66 96.41 92.11
10 99.30 98.03 94.43
20 99.47 98.48 95.42

LMGCr 5 97.50 93.02 83.44
10 97.50 92.46 83.30
20 97.29 92.25 83.30

GPT2LMr 5 96.79 90.66 80.94
10 94.26 81.08 70.82
20 93.27 77.20 66.67

Table 15: Results of tuning kp for prediction in task (b).
The best score in each metric among different kp for
prediction is indicated in bold.

Model ks for prediction Precision Recall F1

Oracle 5 99.93 99.65 99.79
10 99.93 99.65 99.79
20 99.93 99.65 99.79

LMGCe 5 97.96 97.74 97.85
10 97.32 97.39 97.36
20 97.33 97.53 97.43

GPT2LMe 5 96.94 95.91 96.42
10 96.45 95.63 96.04
20 95.75 95.35 95.55

Table 16: Results of tuning ks for prediction in task (c).
The best score in each metric among different ks for
prediciton is indicated in bold.

Model kp for prediction Span Nuclearity Relation

Oracle 5 95.05 92.95 89.02
10 95.93 94.73 91.25
20 96.21 95.36 92.45

LMGCr 5 94.39 90.12 80.88
10 94.39 89.45 80.74
20 94.18 89.24 80.63

GPT2LMr 5 93.65 87.80 78.59
10 91.18 78.55 68.99
20 90.30 74.96 65.19

Table 17: Results of tuning kp for prediction in task (c).
The best score in each metric among different kp for
prediciton is indicated in bold.


