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Abstract

Generating informative and appropriate re-
sponses is challenging but important for
building human-like dialogue systems. Al-
though various knowledge-grounded conversa-
tion models have been proposed, these mod-
els have limitations in utilizing knowledge that
infrequently occurs in the training data, not
to mention integrating unseen knowledge into
conversation generation. In this paper, we pro-
pose an Entity-Agnostic Representation Learn-
ing (EARL) method to introduce knowledge
graphs to informative conversation generation.
Unlike traditional approaches that parameter-
ize the specific representation for each en-
tity, EARL utilizes the context of conversa-
tions and the relational structure of knowledge
graphs to learn the category representation for
entities, which is generalized to incorporating
unseen entities in knowledge graphs into con-
versation generation. Automatic and manual
evaluations demonstrate that our model can
generate more informative, coherent, and natu-
ral responses than baseline models.

1 Introduction

Generating informative and appropriate responses
is vital for the success of human-like dialogue sys-
tems. To this end, there has been a rising ten-
dency in enhancing conversation models with ex-
ternal knowledge recently, which is well-known
as the knowledge-grounded conversation model
(Ghazvininejad et al., 2018; Zhou et al., 2018; Di-
nan et al., 2019). Several studies incorporate un-
structured texts, such as web pages (Ghazvininejad
et al., 2018) and Wikipedia articles (Dinan et al.,
2019), as the external knowledge to generate infor-
mative responses. Some work introduces structured
knowledge, e.g. the knowledge graph (Zhou et al.,
2018) to generate knowledge enhanced conversa-
tions.

∗ Corresponding author: Minlie Huang.

KG # Entities # Triples # Relations

Freebase 40M 637M 35,000
Wikidata 18M 66M 1,632
ConceptNet 8M 21M 36

Table 1: Statistics of some widely used knowledge
graphs (KG, Knowledge Graph; M, million).

Prior studies adopt either pre-trained knowledge
graph embeddings (Zhou et al., 2018), e.g. TransE
(Bordes et al., 2013), word embeddings (Wu et al.,
2019), or adjacency matrix (Tuan et al., 2019) to
model entities and relations in knowledge graphs
and incorporate them to conversation generation.
These models face two major challenges when ap-
plied to introduce large-scale knowledge graphs.
First, there is a significant gap in representations
between knowledge and text (Buitelaar and Cimi-
ano, 2008; Zhou et al., 2018), which requires model
training to apply knowledge in conversation gen-
eration based on different knowledge representa-
tions. However, the training corpus of knowledge-
grounded conversations only contains a small sub-
set of entities for applying knowledge, while the
large-scale untrained entities are difficult to be uti-
lized due to the gap between their representations.
Second, it is extremely challenging to represent
millions of entities and triples of large-scale knowl-
edge graphs (see Table 1) by these methods in prac-
tice, for instance, the adjacency matrix requires
|V| × |L| × |V| computational resources (V , L de-
note the set of entities and relations, respectively).

To address these issues, we propose EARL, an
Entity-Agnostic Representation Learning method
to incorporate knowledge graphs into informative
conversation generation, which can be easily inte-
grated into existing conversation frameworks, such
as Seq2Seq (Sutskever et al., 2014), HRED (Ser-
ban et al., 2015), and Transformer (Vaswani et al.,
2017). The intuition lies in that knowledge graphs
have sparse entities but dense relations, e.g. Con-
ceptNet (Speer et al., 2017) contains over 8 million
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entities while only 36 relations, as shown in Table
1. EARL learns entity-agnostic representations for
nodes in the knowledge graph (see Section 3.2 for
more details) based on the context information of
the conversation and the structure information of
the knowledge graph, which does not parameterize
the specific representation for each entity like prior
methods. Thus it alleviates the problems mentioned
above and is more suitable for applying large-scale
knowledge graphs.

Specifically, EARL addresses the issues men-
tioned above in three ways: (1) A delexicalization
step replaces the entities in the conversation history
with mask tokens, which makes it entity-agnostic
to the conversation context thus generalized for
unseen entities. (2) A knowledge interpreter is pro-
posed to model the generalized representation of
an entity by the structure information of knowl-
edge graphs and the context information of the
conversation, which allows our method to gener-
ate informative responses with the unseen knowl-
edge graph during inference. (3) EARL learns the
relation embeddings for conversation generation
while it does not need to store representations for
millions of entities, making it scalable to apply
large-scale knowledge graphs. Figure 1 shows con-
versation samples generated by EARL and the prior
knowledge-grounded baseline, where EARL (the
last line) can inject the unseen entities (the white
nodes) coherently. In contrast, the prior baseline
model wrongly utilizes the seen knowledge graph
(the grey nodes) in conversation generation given
the unseen entities as input.

To summarize, our contributions are as follows:

• This work is the first attempt to utilize knowl-
edge graphs without parameterizing specific
entity representations in conversation genera-
tion, which can be easily integrated to existing
conversation frameworks.

• Automatic and manual evaluations show that
EARL can generate informative responses
with both seen knowledge graphs and unseen
knowledge graphs in two benchmark datasets.
Ablation studies demonstrate the influence of
different mechanisms and conversation frame-
works.
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Context Do you know any good books by Chuck Palahniuk ?
Baseline Yes , he wrote Pygmy .
EARL Chuck Palahniuk wrote Tell-All .
Context Do you know any good books by Richard Dawkins ?
Baseline Yes , he wrote the book Pygmy. Have you read that ?
EARL Richard Dawkins wrote The Selfish Gene.

Figure 1: Conversation samples generated with well-
trained knowledge graphs (left) and unseen knowledge
graphs (right). Grey nodes are well-trained entities, and
white nodes are unseen nodes in the training data. Enti-
ties in the blue rectangle share the same entity-agnostic
representation (see Section 3.2 for more details).

2 Related Work

2.1 Open-domain Conversation Models
Recently, Sequence-to-Sequence (Seq2Seq) mod-
els (Sutskever et al., 2014; Bahdanau et al., 2014)
have been applied to large-scale open-domain con-
versation generation, including neural responding
machine (Shang et al., 2015), hierarchical recur-
rent models (Serban et al., 2015), and many others
(Sordoni et al., 2015; Li et al., 2016; Shao et al.,
2017). Some models are proposed to improve the
content quality of generated responses by copy
mechanisms, diversified beam search algorithms,
and various techniques (Shao et al., 2017; Li et al.,
2016; Mou et al., 2016; Gu et al., 2016). How-
ever, the lack of background information or related
knowledge results in significantly degenerated con-
versations, where the text is bland and strangely
repetitive (Holtzman et al., 2020). Other studies,
aiming to generate informative responses, incor-
porate external knowledge into conversation gen-
eration, including unstructured texts (Ghazvinine-
jad et al., 2018; Long et al., 2017), and structured
knowledge graphs (Han et al., 2015; Xu et al., 2017;
Zhou et al., 2018).

2.2 Knowledge Graph Enhanced
Conversation Models

Some prior works introduce high-quality structured
knowledge graph for conversation generation. Zhu
et al. (2017) presented an end-to-end knowledge
grounded conversation model using a copy net-
work (Gu et al., 2016). A large-scale commonsense
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knowledge graph is introduced to open-domain
conversation generation by graph attention mecha-
nisms in (Zhou et al., 2018). Moon et al. (2019) pro-
posed a knowledge graph walker to select relevant
entities of the knowledge graph to improve the per-
formance of retrieval-based conversation models.
The adjacency matrix (Tuan et al., 2019) is intro-
duced to modeling the dynamic knowledge graph
in conversation generation. However, these stud-
ies adopt pre-trained knowledge graph embeddings
(Zhou et al., 2018), word embeddings (Wu et al.,
2019), or the adjacency matrix (Tuan et al., 2019)
to represent knowledge triples, making them not
applicable for large-scale and unseen knowledge
graphs. By contrast, our model addresses this issue
by representing knowledge entities based on the
context and the structure information of the knowl-
edge graph, making our model entity-agnostic and
able to incorporate large-scale and unseen knowl-
edge graphs into conversation generation.

3 Model

3.1 Task Definition
Our problem is formulated as follows: Given
a context X = (x1, x2, · · · , xn), which is the
word sequence of a conversation history H =
(U1, U2, · · · , Uc), and knowledge graphs G =
{g1, g2, · · · , g|G|}, the goal is to generate the re-
sponse Y = (y1, y2, · · · , ym) by estimating the
probability: P (Y |X,G) =

∏m
t=1 P (yt|y<t, X,G).

The graphs are retrieved from a knowledge base
using the words in the context as queries. As
Zhou et al. (2018), each graph contains one-hop
triples as gi = {τ i1, τ i2, · · · , τ i|gi|}, and each triple
(subject, relation, object) is represented as τ ij =

(subji, relij , obj
i
j).

3.2 Entity-Agnostic Representation Learning
EARL consists of three modules: an encoder to
convert the context to the hidden representations,
a knowledge interpreter to represent each subject
and object entity based on the context and structure
information, and a decoder to generate a token or
select an entity from the knowledge graph deter-
mined by a knowledge selector. The overview of
EARL is presented in Figure 3.

Instead of parameterizing specific representa-
tions for entities of knowledge graphs as used in
prior studies (Zhou et al., 2018; Wu et al., 2019;
Tuan et al., 2019), EARL learns entity-agnostic rep-
resentations conditioning on the context informa-

Figure 2: t-SNE projection of TransE, EARL, and
EARL without delexicalization embeddings, where
blue circles and purple squares represent entities from
two knowledge graphs in Figure 1.

tion of the conversation and the structure informa-
tion of the knowledge graph. Entity-agnostic repre-
sentations are defined as category representations
for entities sharing the same context and structure
information, including two major circumstances.
One is caused by the one-to-many mapping prop-
erty of knowledge graphs (Fan et al., 2014; Xiao
et al., 2016), where a subject has multiple objects
with the same relation. As shown in the left knowl-
edge graph in Figure 1, (Chuck Palahniuk, Write,
Pygmy) and (Chuck Palahniuk, Write, Tell-All) have
the one-to-many mapping property, and EARL
learns the same category representation for Pygmy
and Tell-All, which is suitable for the dialogue con-
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Figure 3: Overview of EARL. The blue and red content denote two subject entities in the context, and the grey
content represent the object entities in the knowledge graph. Entities are represented by the knowledge interpreter
and stored in the memory module of the decoder, where subji and objij denote the ith subject entity and the jth
object entity corresponding to the ith subject entity, respectively.

text inquiring about books by Chuck Palahniuk.
The other is the circumstance that the same dia-
logue context (after delexicalization) grounding on
different knowledge graphs, where the object is
connected to the subject with the same relation.
For instance, the conversations in Figure 1 share
the same context but different knowledge graphs,
where The Selfish Gene in the right graph, Pygmy
and Tell-All in the left graph possess the same re-
lational structure (subj, Write, obj) in knowledge
graphs, leading to the same category representa-
tions for these entities.

The visualizations of entity embeddings of two
knowledge graphs in Figure 1 by EARL and TransE
are provided in Figure 2. EARL learns different
representations for entities in different conversa-
tion context or with different structure of knowl-
edge graphs but the same representation for entities
sharing the same context and relational structure in-
formation (Pygmy, Tell-All, and The Selfish Gene).
However, there is a gap between TransE embed-
dings of these entities, making it difficult to utilize
unseen entities.

3.3 Encoder

In the encoder, we propose a delexicalization step
before encoding the context, which replaces enti-
ties in the context with a token [MASKi]. i denotes
the reverse order of entities in the context, designed
to allow our model to concentrate on the newest
entities mentioned in the context. The delexical-

ization process makes EARL entity-agnostic for
conversation context, which enables our model to
extend to unseen entities in knowledge graphs.

After the delexicalization step, the context X is
fed to a bi-directional encoder fθ to get the hid-
den representation H = (h1,h2, · · · ,hn) and hX ,
which are defined as follows:

H = fθ(X), (1)

hX = pooling(H), (2)

where fθ can be implemented by Transformer
(Vaswani et al., 2017) or the gated recurrent unit
(GRU, Cho et al. 2014).

3.4 Knowledge Interpreter

After obtaining the hidden representations of the
context, knowledge interpreter is designed to rep-
resent each entity in the knowledge graph based
on the context and the structure information. For
each subject entity subji mentioned in the context,
we retrieved the corresponding knowledge graph
gi, where each object entity objij can be connected
to the central entity (subject) with relation relij . In
order to ensure our model to be agnostic to enti-
ties, we don’t learn embeddings for each entity. By
contrast, we represent the mentioned entity subji

with the hidden representations of the context, and
model the related object entity objij by reasoning
through the structure information of the knowledge
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graph gi 1. This process is defined as follows:

e(subji) = MLP(hsubji), (3)

e(objij) = MLP(rij), (4)

ri0 = GRU(hX , e(subj
i)), (5)

rij = GRU(ri0, e(rel
i
j)), (6)

where MLP represents the multi-layer perceptron
layer, e(subji), e(relij), e(obj

i
j) denote the em-

bedding of the subject entity, the relation, and the
object entity, respectively.

Although aforementioned methods is able to rep-
resent the relevant entities related to the context, it
cannot represent entities, which are not mentioned
in the context or not connected to the subject en-
tity in the context with any path in the knowledge
graph. In this case, we resort to represent the entity
i with Nri relations connected to it by graph atten-
tion based on the hidden state hX of the context,
which is formulated as follows:

e(subji) =

Nri∑
n=1

αn[hX ; e(rel
i
n)], (7)

e(obji) = MLP(e(subji)), (8)

αn =
exp(βn)∑Nri
j=1 exp(βj)

, (9)

βn = e(relin)
>tanh(WhhX), (10)

where e(relin) denotes the embedding of the re-
lation n connected to the entity i, e(subji) and
e(obji) are two representations of a same entity i,
serving as the subject and object entity embeddings
used in the decoding process.

3.5 Decoder
The decoder gθ is a unidirectional neural network
with the attention mechanism (Bahdanau et al.,
2014; Vaswani et al., 2017) conditioning on the
hidden representation of the context H, which up-
dates its state as follows:

st = gθ(e(yt−1), s<t,H). (11)

In order to generate related entities from knowl-
edge graphs during decoding, a knowledge selector

1This method can be straightforward extended to represent
the object entity, which is connected to the subject entity in
L hops as pathj = (subji, relj1, rel

j
2, · · · , rel

j
L, obj

j). Due
to the length limit, we leave it as future work.

is designed to allow the decoder to select object
entities from knowledge graphs or words from the
vocabulary. Inspired by Tu et al., 2016, we also
introduce a coverage mechanism to facilitate the
decoder to avoid generating repetitive entities. The
decoding process is formulated as follows:

gt = sigmoid(v>s st), (12)

Pg(yt = wg) = softmax(Wgst), (13)

Pe(yt = objij) =
exp(γi,jt ) covi,jt∑|subj|

x=1

∑|obj|
y=1 exp(γ

x,y
t ) covx,yt

,

(14)

γi,jt = [e(subji); e(objij)]
>West, (15)

covi,jt =

{
0, if objij ∈ {y<t}
1, otherwise

, (16)

P (yt) =

[
(1− gt)Pg(yt = wg)

gtPe(yt = objij)

]
, (17)

e(yt) =

{
e(wg), if yt = wg

e(objij), if yt = objij
, (18)

where gt ∈ [0, 1] is a scalar to balance the choice
between an entity obji and a generic word wg,
Pg/Pe is the distribution over generic words / en-
tities respectively, and P (yt) is the final word de-
coding distribution.

3.6 Loss Function
The loss function is the cross entropy between the
predicted token distribution P (yt) and the ground-
truth distribution pt in the training corpus. Addi-
tionally, we apply supervised signals on the knowl-
edge selector to teacher-force the selection of en-
tities or generic words. The loss on one sample <
X = (x1, x2, · · · , xn), Y = (y1, y2, · · · , ym) >is
defined as:

L(θ) =− 1

m

m∑
t=1

ptlog(P (yt))

− λ
m∑
t=1

(
qt
α
log(gt) +

1− qt
β

log(1− gt)),

(19)

where pt is the one-hot vector of the ground-truth
yt, gt is the probability of selecting an entity word
or a generic word, qt ∈ {0, 1} is the true choice
of an entity word or a generic word in Y , α and
β are the number of entity words and the number
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of generic words in a batch, respectively. The sec-
ond term is used to supervise the probability of
selecting an entity word or a generic word.

4 Experiments

4.1 Datasets

We adopt two knowledge graph enhanced conver-
sation generation datasets in our experiments:

The DuConv dataset2: a knowledge graph en-
hanced conversation dataset in Chinese proposed
by Wu et al. (2019). It has 29,858 dialogues
and 270,399 utterances in the domain of Movies.
DuConv constructs the knowledge graph with the
information crawled from a movie website as the
external knowledge, which contains 3,598,246 fact
triples over 143,627 entities and 45 relations. How-
ever, only the training data is released with the
knowledge information, which contains 19,858 dia-
logues. After filtering the noisy data, we randomly
split the corpus into the train (80%), validation
(10%), and test sets (10%). The test set consists of
the seen test set (5%) and the unseen test set (5%),
where the former contains the knowledge graphs
that appeared during the training process, and the
latter contains the knowledge graphs, of which the
subject entities and most of the object entities are
unseen in the training process. The statistics is
shown in Table 2.

The OpenDialKG dataset3: a knowledge
graph enhanced conversation dataset in English
proposed by Moon et al. (2019). It has 15,673 dia-
logues and 91,209 utterances in four domains, in-
cluding Movies, Books, Sports, and Music. Open-
DialKG uses the Freebase (Bast et al., 2014) knowl-
edge graph as the external knowledge, which con-
tains 1,190,658 fact triples over top 100,813 enti-
ties and 1,358 relations. However, the released data
only consists of 13,776 dialogues, which contains
some noisy data, e.g. empty utterances in the dia-
logue. After filtering the noisy data, we randomly
split the corpus in the same way as DuConv. The
statistics is presented in Table 2.

4.2 Baselines

We chose several suitable baselines:

• Seq2Seq: a sequence to sequence (Seq2Seq)
model (Sutskever et al., 2014) imple-
mented by Recurrent Neural Network (RNN)

2https://ai.baidu.com/broad/subordinate?dataset=duconv
3https://github.com/facebookresearch/opendialkg

Dataset Conversations Knowledge Graphs

DuConv

Training 14,845 Entity 12,909
Validation 1,800 Relation 39

Test
Seen 900

Triple 113,959
Unseen 900

OpenDialKG

Training 10,583 Entity 100,717
Validation 1,200 Relation 1,380

Test
Seen 600

Triple 1,172,552
Unseen 600

Table 2: Statistics of datasets and knowledge graphs.

(Mikolov et al., 2010), which is widely used
in open-domain conversation systems.

• DIALOGPT: a pre-trained dialogue model
(Zhang et al., 2020; Wang et al., 2020) based
on transformers, which is widely adopted in
dialogue generation.

• MemNet: a knowledge-grounded model
adapted from (Ghazvininejad et al., 2018),
of which the memory units store word embed-
dings of knowledge triples.

• PostKS: a knowledge-grounded model select-
ing knowledge by prior and posterior distribu-
tions proposed by Wu et al. (2019), where we
adopt word embeddings, instead of the RNN
knowledge encoder, to represent knowledge
triples.

• CopyNet: a copy network model (Zhu et al.,
2017), which represents knowledge triples by
word embeddings, and can copy words from
knowledge triples or generate words from the
vocabulary.

• CCM: a knowledge graph enhanced conversa-
tion model proposed by Zhou et al. (2018),
which represents knowledge graphs using
graph attention mechanisms based on the pre-
trained TransE (Bordes et al., 2013) embed-
dings.

4.3 Implementation Details
We used Tensorflow(Abadi et al., 2016) and Py-
torch(Paszke et al., 2017) to implement our model
and baselines. We chose RNN, implemented by
GRU, as the framework for EARL to make a fair
comparison with baseline models, as most of them
(Zhou et al., 2018; Wu et al., 2019) are imple-
mented by GRU. The encoder/decoder, fθ/gθ, has
2-layer BiGRU/GRU structures with 512 hidden
cells for each layer and uses different parameters.
DIALOGPT is initialized by pre-trained parame-
ters (Zhang et al., 2020; Wang et al., 2020) and
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finetuned in downstream datasets. Following prior
studies (Zhou et al., 2018; Wu et al., 2019), we
adopted greedy search as the decoding objective.
The λ in the loss function is set to 0.1 by manual
tuning. The word embedding size is set to 300.
The vocabulary size is limited to 19,000/30,000 for
EARL and 24,000/56,000 for baselines in OpenDi-
alKG/DuConv datasets respectively. The TransE
embedding size of entities and relations is set to
100.

We used the stochastic gradient descent (SGD)
algorithm with mini-batch. The batch size and
learning rate are set to 100 and 0.5, respectively.
The model was run at most 20 epochs, and the
training stage of each model took about one day on
a GPU machine. We selected the model performing
best in the validation set to evaluate in test sets. Our
code is available at: https://github.com/
thu-coai/earl.

4.4 Automatic Evaluation

Metrics4: We chose Entity (Zhou et al., 2018)
to evaluate the ability of generating informative
responses by calculating the number of entities per
response. Distinct-n and Perplexity (PPL) (Serban
et al., 2015) are adopted to evaluate the ability of
generating diverse responses and the probability of
generating ground-truth responses. We computed
Precision, Recall, and F1 scores between gener-
ated entities and ground-truth entities per response
to evaluate the relevance of generated entities.

Results: As shown in Table 3, EARL obtains
the best performances in most metrics on all the
test sets, demonstrating that EARL can generate
more informative, relevant, and diverse responses
than baseline models based on both trained and
untrained knowledge graphs. Specifically, EARL
achieves the highest number of entities per gener-
ated response, which is nearly two times higher
than the second-highest score obtained by CCM,
indicating that EARL is able to generate more in-
formative responses. Besides, EARL outperforms
all the baselines in the Precision, Recall, and F1
metrics, showing that entities selected by EARL
are more relevant to the ground-truth entities. Fur-
thermore, the Distinct-3/4 scores of EARL are also
higher than the baselines’ scores, demonstrating
that EARL can generate more diverse responses.

4BLEU (Papineni et al., 2002) is not adopted due to its low
correlation with human judgment, as proposed by Liu et al.
(2016).

DIALOGPT achieves the best performance in Per-
plexity, due to the pre-trained process and the large-
scale parameters. However, it performs worse than
knowledge-grounded models in metrics except for
Perplexity, without the ability of utilizing the rel-
evant knowledge. For perplexity, EARL outper-
forms most knowledge-grounded baselines except
for CopyNet, as CopyNet learns the embeddings
for each entity during training, while EARL does
not parameterize any entities.

Compared to the seen test set, most of the base-
lines perform worse in Precision, Recall, and F1
scores on the unseen test set, leading to irrelevant
entities generated, as it contains knowledge graphs
and entities that do not appear during training. The
decrease of Precision, Recall, and F1 becomes
larger from DuConv to OpenDialKG, as the size
of knowledge graphs increases (see Table 2). How-
ever, EARL achieves comparable performances on
the unseen test set, even most scores are slightly
higher than those on the seen test set, indicating
that EARL can utilize the unseen entities in knowl-
edge graphs during the inference process. As we
provide the pre-trained TransE embeddings of the
knowledge graphs in the unseen test set to CCM
to build a strong baseline, its performance on the
unseen test set does not decrease as other baselines,
albeit still worse than the performance of EARL.

4.5 Manual Evaluation

In order to better understand the quality of gener-
ated responses from the content and knowledge per-
spectives, we resorted to manual evaluation through
crowdsourcing. 400 contexts were randomly sam-
pled from four test sets (100 samples for each test
set) for manual annotation. We conducted the pair-
wise comparison between the response generated
by EARL and the one by a baseline for the same
context. In total, there are 1,200 pairs since we
chose three baselines, which achieve top perfor-
mances in automatic evaluation. For each response
pair, three judges were hired to give a preference
between the two responses in terms of the follow-
ing two metrics. The tie was allowed. Notice that
system identifiers were masked during annotation.

Metrics: We adopted two widely used metrics,
Appropriateness and Informativeness as pro-
posed in (Zhou et al., 2018). Appropriateness mea-
sures the quality of the generated response at the
content level (whether the response is appropri-
ate in relevance, coherence, and adequacy). In-

https://github.com/thu-coai/earl
https://github.com/thu-coai/earl


2390

Dataset Model Entity Precision Recall F1 Distinct-3 Distinct-4 PPL

DuConv
Seen Test Set

Seq2Seq 0.068 0.020 0.013 0.015 0.128 0.201 20.54
DIALOGPT 0.141 0.054 0.036 0.041 0.078 0.125 9.94
MemNet 0.195 0.084 0.062 0.068 0.179 0.278 19.88
PostKS 0.131 0.051 0.036 0.040 0.135 0.232 25.30
CopyNet 0.650 0.399 0.396 0.379 0.255 0.378 15.63
CCM 0.655 0.376 0.392 0.365 0.239 0.350 20.71
EARL 1.269 0.435 0.478 0.422 0.379 0.519 17.00

DuConv
Unseen Test Set

Seq2Seq 0.062 0.020 0.014 0.016 0.128 0.200 19.45
DIALOGPT 0.133 0.047 0.042 0.049 0.079 0.127 10.50
MemNet 0.195 0.074 0.048 0.055 0.175 0.269 19.37
PostKS 0.110 0.054 0.034 0.040 0.126 0.212 24.13
CopyNet 0.684 0.339 0.342 0.324 0.249 0.365 13.13
CCM 0.686 0.421 0.445 0.410 0.247 0.364 17.41
EARL 1.310 0.457 0.525 0.455 0.383 0.520 14.02

OpenDialKG
Seen Test Set

Seq2Seq 0.160 0.043 0.026 0.031 0.114 0.166 23.14
DIALOGPT 0.231 0.094 0.065 0.071 0.275 0.391 8.43
MemNet 0.226 0.060 0.041 0.046 0.157 0.229 22.13
PostKS 0.190 0.048 0.030 0.035 0.172 0.259 25.39
CopyNet 0.335 0.176 0.116 0.132 0.214 0.302 19.81
CCM 0.759 0.212 0.182 0.183 0.251 0.328 24.98
EARL 1.712 0.268 0.357 0.287 0.336 0.421 21.17

OpenDialKG
Unseen Test Set

Seq2Seq 0.138 0.030 0.020 0.022 0.102 0.147 20.69
DIALOGPT 0.157 0.073 0.049 0.055 0.249 0.354 10.39
MemNet 0.148 0.039 0.026 0.029 0.137 0.205 20.07
PostKS 0.206 0.042 0.025 0.029 0.143 0.223 24.84
CopyNet 0.285 0.157 0.104 0.117 0.179 0.258 17.75
CCM 0.760 0.257 0.223 0.221 0.259 0.334 21.94
EARL 1.630 0.322 0.410 0.336 0.349 0.426 18.49

Table 3: Automatic evaluation in four test sets, where “Unseen” denotes the test set contains unseen entities in
knowledge graphs.

Dataset Model App. Inf.

DuConv
Seen Test Set

EARL vs. MemNet 0.649 0.933
EARL vs. CopyNet 0.714 0.625
EARL vs. CCM 0.645 0.531

DuConv
Unseen Test Set

EARL vs. MemNet 0.629 0.953
EARL vs. CopyNet 0.650 0.702
EARL vs. CCM 0.553 0.569

OpenDialKG
Seen Test Set

EARL vs. MemNet 0.556 0.924
EARL vs. CopyNet 0.679 0.871
EARL vs. CCM 0.566 0.746

OpenDialKG
Unseen Test Set

EARL vs. MemNet 0.615 0.931
EARL vs. CopyNet 0.722 0.913
EARL vs. CCM 0.615 0.755

Table 4: Manual evaluation in Appropriateness (App.),
and Informativeness (Inf.). The score is the percent-
age that EARL wins its competitor after removing “Tie”
pairs, where bold represents EARL is significantly bet-
ter (sign test, p-value < 0.05 ) than the baseline.

formativeness measures the quality of the gener-
ated response at the knowledge level (whether the
response provides new information and relevant
knowledge in response to the context).

Annotation Statistics: We calculated the Fleiss’
kappa (Fleiss, 1971) to measure inter-rater consis-
tency. Fleiss’ kappa for Appropriateness and Infor-
mativeness is 0.57 and 0.49, respectively, denoting
the “Moderate agreement” of the annotations. We
also calculated the agreements of human annotators.
For Appropriateness, the percentage of the pairs
that at least two judges gave the same label (2/3
agreement5) amounts to 97.5%, and the percentage
for 3/3 agreement is 58.3%. For Informativeness,
the percentage for at least 2/3 agreement is 95.7%,
and that for 3/3 agreement is 51.0%.

52/3 means 2 out of 3 annotators assign the same label to
an annotation item.
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Results: The results are shown in Table 4. The
score is the percentage that EARL wins a baseline
after removing “Tie” pairs. EARL outperforms
all the baselines in terms of both metrics on all
the test sets, where EARL achieves significantly
better performances (sign test, p-value < 0.05) in
most cases. EARL has over 90% chances to win
MemNet in Informativeness on all the test sets,
as MemNet cannot utilize the knowledge triples
stored in the memory efficiently, leading to generic
or irrelevant responses. For Appropriateness, the
probabilities that EARL wins MemNet are a little
lower than that of Informativeness, as the generic
or high-frequency responses generated by Mem-
Net are usually fluent in grammar. Compared to
MemNet, CopyNet performs slightly better in Infor-
mativeness while worse in Appropriateness since
generating more informative entities brings about
difficulties in fluent and coherent conversation gen-
eration. CCM performs best among all the base-
lines because it can introduce the knowledge graph
information taking the pre-trained TransE embed-
dings as input. However, its performances are still
worse than EARL, especially in the unseen test sets,
as the usage of knowledge graphs and entities is
not finetuned during the training process, which
leads to the gap of performance between the seen
and unseen test sets.

Noticeably, the probabilities that EARL wins
baselines achieve higher in the unseen test set,
as utilizing untrained knowledge graphs are rel-
atively difficult for baselines. However, this prob-
lem is alleviated by the entity-agnostic knowledge
interpreter of EARL, which learns the representa-
tions of entities based on the context information
and the knowledge graph structure information.
EARL’s better performances on the unseen test
sets demonstrate EARL can utilize unseen entities
in knowledge graphs and suitable for informative
knowledge-grounded conversation generation.

5 Conclusion and Future Work

In this paper, we present an entity-agnostic repre-
sentation learning method to incorporate knowl-
edge graphs into informative conversation gen-
eration. It learns to represent entities using the
relational structure of the knowledge graph in-
stead of parameterizing billions of entities directly,
thereby more suitable for applying large-scale un-
seen graphs. Automatic and manual evaluations
show that EARL can generate appropriate and in-

formative responses with both seen and unseen
knowledge graphs as input.

In future work, we will explore the pre-trained
knowledge-grounded conversation model based
on EARL, which can incorporate the large-scale
knowledge graphs with entities in multiple hops
into conversation generation.
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A Appendices

A.1 Ablation Study
In order to investigate the influence of coverage
and delexicalization mechanisms, we conducted
ablation tests where one of these mechanisms was
removed from EARL each time, as shown in Table
5. As we can see, EARL performs best in Preci-
sion and Perplexity metrics, indicating that EARL,
equipped with coverage and delexicalization mech-
anisms, is able to generate more relevant entities
and responses compared to other alternatives.

Impact of Coverage Mechanism EARL with-
out coverage mechanism achieves the best perfor-
mance in Distinct-n scores. However, the improve-
ment in diversity is caused by the repetitive entities
generated in responses, as the number of repetitive
entities per response is improved from 0.5%/4.2%
to 23.9%/44.9% on the DuConv/OpenDialKG
dataset after removing the coverage mechanism.
Thus, adopting the coverage mechanism in the de-
coding process is helpful to alleviate entity repeti-
tion and generate informative responses.

Impact of Delexicalization Mechanism After
removing the delexicalization mechanism, the per-
formances in Precision and Perplexity decrease in
four test sets, though the Entity score increases in
the OpenDialKG dataset. The reason is that EARL
without delexicalization introduces noises in the en-
coding process, as the word embeddings of unseen
entities are not finetuned during training. Besides,
it causes the gap between the entity-agnostic rep-
resentations of trained entities and unseen entities,
as shown in Figure 2, leading to the decrease in
Precision.

Comparison of Conversation Framework To
evaluate the generalization ability of EARL, we
also integrated EARL into the Transformer frame-
work. Similar to RNN-based EARL, Transformer-
based EARL can generate informative responses
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Dataset Model Entity Precision Recall F1 Distinct-3 Distinct-4 PPL

DuConv
Seen Test Set

Transformer 0.063 0.019 0.012 0.014 0.070 0.101 21.38
EARL 1.269 0.435 0.478 0.422 0.379 0.519 17.00
w/o coverage 1.159 0.409 0.462 0.407 0.402 0.546 17.09
w/o delexical 1.245 0.413 0.482 0.417 0.394 0.533 17.04
w/ transformer 1.006 0.370 0.385 0.354 0.252 0.343 17.55

DuConv
Unseen Test Set

Transformer 0.057 0.027 0.016 0.019 0.070 0.100 19.99
EARL 1.310 0.457 0.525 0.455 0.383 0.520 14.02
w/o coverage 1.204 0.440 0.508 0.442 0.417 0.563 14.23
w/o delexical 1.249 0.441 0.524 0.449 0.401 0.537 14.19
w/ transformer 1.075 0.447 0.468 0.428 0.269 0.361 14.68

OpenDialKG
Seen Test Set

Transformer 0.108 0.027 0.018 0.021 0.076 0.111 22.76
EARL 1.712 0.268 0.357 0.287 0.336 0.421 21.17
w/o coverage 1.977 0.258 0.374 0.284 0.492 0.609 22.89
w/o delexical 1.886 0.266 0.384 0.293 0.362 0.443 21.88
w/ transformer 1.913 0.255 0.369 0.279 0.333 0.422 22.02

OpenDialKG
Unseen Test Set

Transformer 0.080 0.018 0.012 0.014 0.067 0.094 21.22
EARL 1.630 0.322 0.410 0.336 0.349 0.426 18.49
w/o coverage 2.038 0.294 0.445 0.329 0.514 0.628 20.25
w/o delexical 1.853 0.318 0.444 0.345 0.380 0.466 19.30
w/ transformer 1.943 0.304 0.413 0.324 0.360 0.459 19.88

Table 5: Ablation study in four test sets, where “Unseen” denotes the test set contains unseen entities in knowledge
graphs.

and outperform baselines, including the large-scale
pre-trained model, DIALOGPT (see Table 3). How-
ever, it performs worse in Precision, F1, and Per-
plexity metrics than RNN-based EARL, which may
be caused by the small datasets and model sizes
(Zeyer et al., 2019; Chen et al., 2018). To make
a fair comparison with baseline models, we im-
plemented the Transformer-based EARL with 3
Transformer blocks, which is approximately equal
to baseline models in model sizes. In future work,
we believe the larger corpus and deeper networks
may further improve the performance of EARL
implemented by Transformer.

A.2 Case Study

Sample conversations are shown in Figure 4. The
text in red/blue denotes the entity of the pro-
vided knowledge, which appeared in the con-
text/response. For the first conversation, a movie
in the provided knowledge called, Our Meal For
Tomorrow, is recommended in the human response.
However, Seq2Seq, DIALOGPT, and Transformer
generated irrelevant movies, Demonic Toys, Jour-
neys to the Bottom of the Sea, and Where’s the
Dragon?, without access to the provided knowl-
edge. Although MemNet, PostKS, and CopyNet

can take the knowledge as input, they also gener-
ated undesired entities, as they cannot learn a mean-
ingful representation of the entity, Our Meal For
Tomorrow, which has not appeared during training.
CCM and our model EARL generated Our Meal
For Tomorrow as human since they can represent
the entity with the relational structure. It is note-
worthy, after removing the coverage mechanism,
EARL w/o coverage generated Our Meal For To-
morrow twice. The repetitive text undermines the
quality of responses.

For the second conversation, baselines generated
irrelevant content as before. Although CCM can
represent entities with the relational structure, it
still generated undesired content as “Seth Gordon
is a great movie”, because of the noise introduced
by the word embeddings and knowledge represen-
tations of unseen entities. EARL utilized unseen
knowledge more efficiently and generated “Seth
Gordon directed Freakonomics” according to the
knowledge “(Seth Gordon, Direct, Freakonomics)”,
as it learns entity-agnostic representations, which
are more generalized for unseen entities. After
removing the delexicalization mechanism, EARL
w/o delexical generated irrelevant content, due to
the noise introduced by the word embeddings of
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Figure 4: Sample responses generated by all the models on the unseen test set of DuConv (upper) and OpenDialKG
(lower). The text in italic denotes the entity, and the text in red/blue denotes the entity of the provided knowledge,
which appeared in the context/response. The original text in Chinese of DuConv is presented in parentheses.

the entity, Seth Gordon, which causes the gap in
entity-agnostic representations between seen and
unseen entities.


