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Abstract

Conversational semantic role labeling (CSRL)
is believed to be a crucial step towards dia-
logue understanding. However, it remains a
major challenge for existing CSRL parser to
handle conversational structural information.
In this paper, we present a simple and effec-
tive architecture for CSRL which aims to ad-
dress this problem. Our model is based on a
conversational structure-aware graph network
which explicitly encodes the speaker depen-
dent information. We also propose a multi-task
learning method to further improve the model.
Experimental results on benchmark datasets
show that our model with our proposed train-
ing objectives significantly outperforms previ-
ous baselines.

1 Introduction

Recent research has achieved impressive improve-
ments on conversation-based tasks, such as dia-
logue response generation (Li et al., 2017; Dinan
et al., 2019; Wu et al., 2019), task-oriented dia-
logue modeling (Mrkšić et al., 2017; Budzianowski
et al., 2018) and conversational question answering
(Choi et al., 2018; Reddy et al., 2019). However,
the frequent occurrences of ellipsis and anaphora
in human conversations still create huge challenges
for dialogue understanding. To address this, Xu
et al. (2021) proposed the Conversational Seman-
tic Role Labeling (CSRL) task whose goal is to
extract predicate-argument structures across the en-
tire conversation. Figure 1 illustrates an example,
where a CSRL parser needs to identify “《泰坦尼克
号》(Titanic)” as the ARG1 argument of the predi-
cate “看过 (watched)" and the ARG0 argument of
the predicate “是 (is)". One can see that in the origi-
nal conversation, “《泰坦尼克号》(Titanic)” is omit-
ted in the second turn and referred as “这 (this)"
in the last turn. Xu et al. (2021) has demonstrated
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Figure 1: A conversational SRL example.

the usefulness of CSRL on many downstream tasks
such as dialogue generation and dialogue rewriting.

Despite the successes that CSRL has achieved,
existing CSRL model (Xu et al., 2021) is a simple
extension of BERT. Specifically, they first encode
each utterance into local contextual representations
with pre-trained language models, and then utilize
a stack of self-attention layers to obtain global con-
textual representations. We argue that their model
may suffer two main problems. First, in the local
feature extraction phase, they ignore the fact that
jointly considering the predicate and context utter-
ances could help the model better identify some
relevant ommited arguments. Second, in the global
feature extraction phase, some vital conversational
structural information, such as the speaker infor-
mation, is not properly encoded in their model.
Indeed, speaker-dependent information is neces-
sary for modelling inter-speaker and intra-speaker
dependency, both of which could help the model
to better handle coreference resolution and zero
pronoun resolution.

Motivated by the above observations, we pro-
pose a new CSRL model, which consists of three
main components. First, we use a pre-trained lan-
guage model to generate local contextual represen-
tations for tokens (Sec. 2.1), which is similar to
Xu et al. (2021). Then, we propose a new atten-
tion strategy to learn predicate-aware contextual
representations for tokens (Sec. 2.2). Finally, we
propose a Conversational Structure Aware Graph
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Figure 2: The overview of our proposed CSAGN.

Network (CSAGN) for learning high-level struc-
tural features to represent utterances (Sec. 2.3). The
resulted utterance representations are incorporated
with token representations obtained in the previous
two components. With the enhanced token repre-
sentations, our model predicts the arguments for
the given predicate.

In addition, we introduce a multi-task learning
method with two new objectives. Experimental re-
sults on benchmark datasets show that our model
substantially outperforms existing baselines. Our
proposed training objectives could also help the
model to better learn predicate-aware token repre-
sentations and structure-aware utterance represen-
tations. Our code is publicly available at https:
//github.com/syxu828/CSRL_dataset.

2 Model

The overall architecture of CSAGN is illustrated in
Figure 2 which consists of three main components,
and we introduce them as follows:

2.1 Input Representation

Given a dialogue C = (u1, u2, ..., uK) of K ut-
terances, where uk = (wk,1, wk,2, ..., wk,|uk|) con-
sists of a sequence of words, we first use a pre-
trained language model such as BERT to obtain the

initial context representation e.

2.2 Predicate-Aware Utterance
Representation

We propose a new attention strategy to better learn
predicate-aware context representations for tokens.
Specifically, tokens are only allowed to attend to
tokens in the same utterance or the utterance that
includes the predicate:

Mask[i, j] =
{

1 , if Ui = Uj or Uj = Upred

0 , otherwise

where i, j are the token indexes in the dialogue, Ui

and Uj are the utterances that the i-th and j-th to-
ken belongs to, Upred is the utterance that includes
the given predicate. For example, in Figure 2(b),
assuming U4 includes the predicate, previous ut-
terances U1, U2 and U3 could attend to themselves
and U4, while U4 only attends to itself.

In practice, we use additional four self-attention
blocks (Vaswani et al., 2017) with our proposed
attention strategy to learn predicate-aware context
representations from e, which results in token rep-
resentations p. Then, we obtain utterance represen-
tations u by max-pooling over words in the same
utterance.

https://github.com/syxu828/CSRL_dataset
https://github.com/syxu828/CSRL_dataset
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2.3 Conversational Structure Aware Graph
Network

We present the Conversational Structure Aware
Graph Network (CSAGN) to capture speaker de-
pendent contextual information in a conversation.
In particular, we design a directed graph from the
encoded utterances to capture the interaction be-
tween the speakers.

Formally, a conversation having T utterances is
represented as a directed graph G = (V, E ,R,W),
with vertices vi ∈ V; labeled edges (relations)
eij ∈ E with label rij ∈ R are the relations be-
tween vertices vi and vj ; αij ∈ W is the weight of
the relational edge rij with 0 ≤ αij ≤ 1. Further-
more, the graph is constructed from the utterances
in the following way:

Vertices: Each utterance in the conversation is
represented as a vertex vi ∈ V in G. Each vertex vi
is initialized with its corresponding representation
in u, say gi.

Edges: Each utterance (vertex) is contextually
dependent on its past utterances in a conversation,
thus each vertex vi has an edge with the vertices
that represent the past utterances: {v0, v1,...,vi−1}.

Edge weights: We calculate edge weights as fol-
lows: for vertex vj , the weight of incoming edge
rij is:

αij = softmax(gTj We[g0, ..., gi−1])

where We is the attention matrix learnt from the
training. This ensures that, vertex vi which has
incoming edges with vertices vertex v0,...,vi−1 re-
ceives a total weight contribution of 1.

Relations: The relation r of an edge rij depends
upon two aspects:

Speaker dependency – The relation depends
on both the speakers of the constituting vertices:
ps(vi) (speaker of ui) and ps(vj) (speaker of uj).

Predicate dependency – The relation also de-
pends upon whether the utterance ui or uj includes
the predicate.

If there are M distinct speakers involving in a
conversation, then the number of relational edge
types is M (from_speaker) * M (to_speaker) * 2
(containing predicate or not) = 2M2.

Graph feature transformation We now discuss
how to propagate global information among the
nodes. Following previous work (Schlichtkrull

et al., 2018; Ghosal et al., 2019), we use a two-
step graph convolution process which essentially
can be understood as a special case of messenge
passing method (Gilmer et al., 2017) to encode the
nodes. We formulate the process as following:

h
(1)
i = σ(

∑
r∈R

∑
j∈N r

i

αij

ci,r
W (1)

r gj + αiiW
(1)
0 gi),

h
(2)
i = σ(

∑
j∈Nr

i

W (2)h
(1)
j +W

(2)
0 h

(1)
i ),

for i = 1, 2, ..,K.

where h(l)i is the i-th encoded node feature from
l-th layer. N r

i denotes the neighboring nodes of
i-th node under relation r ∈ R. σ is ReLU (Nair
and Hinton, 2010) fucntion. W (1)

r ,W (2),W
(l)
0 , ci,r

are learnable parameters.
After the message propagation, the node repre-

sentations are updated with the initial node embed-
dings and the message representations. The final
utterance representations are denoted as h.

3 Multi-Task Learning

In this section, we describe how to train the model,
based on the representations e, p, g and h.

SRL Objective. Formally, given an input conver-
sation x, this objective is to minimize the negative
log likelihood of the corresponding correct label
sequence y. Our model predict the corresponding
label yt based on the token representation pt and
its corresponding utterance representation hk:

p(yt|x;θ) = p(yt|pt,hk;θ)

= softmax(Wc[pt ⊕ hk])
T δyt

(1)

where Wc is the softmax matrix and δyt is Kro-
necker delta with a dimension for each output sym-
bol, so softmax(Wc[ht ⊕ gk])T δyt is exactly the
yt’th element of the distribution defined by the soft-
max.

Intra-Argument Objective. The arguments in
CSRL could be categorized into two classes, i.e.,
the intra- and cross-arguments, where the former
are in the same dialogue turns as the predicate while
the latter usually occur in the dialogue history. In-
tuitively, the model should be able to identify the
intra-arguments without using the dialogue contex-
tual information. Motivated by this observation,
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Method
DuConv NewsDialog PersonalDialog

F1all F1cross F1intra F1all F1cross F1intra F1all F1cross F1intra

SimpleBERT 86.54 81.62 87.02 77.68 51.47 80.99 66.53 30.48 70.00
CSRL-BERT 88.46 81.94 89.46 78.77 51.01 82.48 68.46 32.56 72.02
Ours 89.47 84.57 90.15 80.86 55.54 84.24 71.82 36.89 75.46

w/o Predicate-Aware Rep. 88.34 82.09 89.36 79.94 56.46 82.87 69.51 28.25 73.36
w/o SAGN 88.64 83.03 89.36 77.97 50.16 81.86 70.32 32.41 72.24

w/ SRL Objective 89.10 83.88 89.73 78.70 54.25 82.14 69.54 29.00 73.49
w/o Intra-Argument Objective 88.67 83.90 89.33 80.55 55.87 84.00 70.29 34.04 73.91
w/o Utterance-Type Objective 89.16 83.66 90.15 79.36 54.02 82.80 70.70 33.04 74.81
w/ Full Attention 88.75 83.08 89.68 79.09 51.78 82.64 70.07 32.32 73.66
w/o speaker dependency 89.03 83.84 89.56 79.75 56.31 82.75 70.61 34.89 74.21
w/o predicate dependency 89.04 84.12 89.55 79.70 54.76 83.11 71.06 36.23 74.66

Table 1: Evaluation results on the DuConv, PersonalDialog and NewsDialog datasets.

we introduce a new loss function that only uses e
and p to predict the intra-arguments:

Lintra = −
n∑

t=1

log p(yt|x;θ)σ(yt)

P = [pt, |pt − et|,pt � et, et]
p(yt|x;θ) = p(yt|et,pt;θ)

= softmax(WcP)T δyt

(2)

where σ(yt) is a boolean scalar that indicates
whether yt is an intra-argument token, Wc is the
softmax matrix that used in the SRL Objective.

Utterance Type Objective. We additionally in-
troduce a utterance type objective to learn better
utterance representations. Specifically, we clas-
sify all utterances into three categories, namely
predicate-utterance (utterances containing the pred-
icate), argument-utterance (utterances containing
arguments) and irrelevant-utterance (utterances
without any arguments). We use utterance repre-
sentations g and h to classify the utterance type:

Lut = −
K∑
k=1

log p(yk|gk,hk;θ) (3)

where yk is the utterance type and K is the total
number of utterances.

Finally, we jointly consider these three types of
loss: L = α1 ∗ LSRL + α2 ∗ Lintra + α3 ∗ Lut,
where α1, α2, α3 are hyper parameters.

4 Experiments

We evaluate our model on three datasets, i.e.,
DuConv (Wu et al., 2019), NewsDialog (Wang

et al., 2021) and PersonalDialog (Wu et al., 2019).1

DuConv is a multi-turn dialogue dataset that fo-
cuses on the domain of movie and star, while News-
Dialog and PersonalDialog are open-domain dia-
logue datasets.2 We use the same train/dev/test
split as Xu et al. (2021): DuConv annotations are
splitted into 80%/10%/10% as train/dev/in-domain
test set while the NewsDialog and PersonalDialog
annotations are treated as the out-domain test set.

The hyper-parameters used in our model are
listed as follows. The hop size and embedding
dimension of CSAGN is set to 4 and 100, respec-
tively. The α1, α2, α3 are set to 1.0, 1.0 and 1.0,
respectively. The batch size is set to 128.

Results and Discussion. We used the micro-
average F1 scores over the (predicate, argument,
label) tuples. Following Xu et al. (2021), we also
evaluate F1 scores over intra- and cross-arguments.
We compare with two baselines that use differ-
ent strategies to encode the dialogue history and
speaker information. In particular, SimpleBERT
(Shi and Lin, 2019) uses the BERT as their back-
bone and simply concatenates the entire dialogue
history with the predicate; CSRL-BERT (Xu et al.,
2021) also uses the BERT but attempts to encode
the dialogue structural information by integrating
the dialogue turn and speaker embeddings in the
input embedding layer. Table 1 summarizes the
results of our model and these baselines.

We can see that our model significantly outper-
forms existing baselines on both the in-domain
and out-domain datasets. We can also see that

1The CSRL annotations of these datasets are provided by
Xu et al. (2021)

2More details about the annotations on these datasets are
listed in Appendix.
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our model benefits from the multi-task training. In
particular, when only using the SRL objective, the
F1all scores drop by 0.37, 2.16 and 2.28 on three
datasets. Without using either the intra-argument
or utterance-type objective, the performances on
all datasets also decrease. Moreover, we observe
that introducing the intra-argument objective could
consistently improve F1intra while the utterance-
type objective is more important to the F1cross. We
think this is because (1) the intra-argument objec-
tive denoises the noise from other irrelevant infor-
mation within the dialogue context; (2) identifying
cross-arguments requires a better understanding of
the global dialogue structures.

Let us first look at the impact of different com-
ponents on our model. From Table 1, we can see
that both the predicate-aware representation and
speaker-aware graph network (SAGN) could im-
prove the F1cross performance. These results in-
dicate that (1) the predicate-aware attention strat-
egy could help the model to better capture the
long-distance dependencies between arguments
and predicates; (2) the speaker information en-
coded in the SAGN is also helpful to identify argu-
ments across dialogue turns. Furthermore, we also
experiment with the full attention strategy to ob-
tain predicate-aware representations, that is, each
token attends to all tokens in the entire dialogue.
From Table 1, we can see that this strategy achieves
worse performance over all metrics. This result
is expected since the full attention treats all utter-
ances equally, therefore it may encode irrelevant
and noisy dependencies into the contextual repre-
sentation.

Recall that, we model two types of dependencies
in our graph neural network, i.e., the speaker and
predicate dependency. We investigate the impact
of each dependency on our model and results are
shown in Table 1. We can see that removing either
dependency may hurt the performance, especially
the F1cross score. This result suggests that these
structural information is useful for identifying the
cross arguments.

5 Conclusion

In this paper, we propose a conversational structure
aware graph network for the task of conversational
semantic role labeling and a multi-task learning
method. Experimental results on the benchmark
dataset show that our method significantly outper-
forms previous baselines and achieves the state-of-

the-art performance.
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