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Abstract

Neural conversation models have shown great
potentials towards generating fluent and infor-
mative responses by introducing external back-
ground knowledge. Nevertheless, it is labori-
ous to construct such knowledge-grounded di-
alogues, and existing models usually perform
poorly when transfer to new domains with
limited training samples. Therefore, building
a knowledge-grounded dialogue system under
the low-resource setting is a still crucial is-
sue. In this paper, we propose a novel three-
stage learning framework based on weakly su-
pervised learning which benefits from large
scale ungrounded dialogues and unstructured
knowledge base. To better cooperate with this
framework, we devise a variant of Transformer
with decoupled decoder which facilitates the
disentangled learning of response generation
and knowledge incorporation. Evaluation re-
sults on two benchmarks indicate that our ap-
proach can outperform other state-of-the-art
methods with less training data, and even in
zero-resource scenario, our approach still per-
forms well.

1 Introduction

Neural dialogue systems have made rapid progress
in recent years thanks to the advances in sequence
generation technology (Vinyals and Le, 2015;
Vaswani et al., 2017). Though such models in
neural architectures are able to reply with plausi-
ble responses regarding to dialogue history, people
can still feel a clear gap when they converse with
the chatbots, compared with the conversation with
humans. To bridge the gap and generate fluent
and informative responses, a number of approaches
have been proposed by leveraging external knowl-
edge. Knowledge-grounded dialogue is a task of
generating an informative response based on both
dialogue history and a collection of external knowl-
edge (Dinan et al., 2019). The forms of knowledge
∗ Corresponding author.

are diverse, and in this work, we only focus on
knowledge in the form of unstructured documents.

Generally, it is difficult to construct large scale
conversations that are naturally grounded on the
documents for learning of a response generation
model (Zhao et al., 2020a), and most of the pre-
vious methods (Lian et al., 2019; Li et al., 2019;
Kim et al., 2020; Dinan et al., 2019) perform poorly
when transfer into a new domain with limited train-
ing samples. So there are growing appeals for low-
resource dialogue response generation, which aims
to leverage past experience to improve the perfor-
mance with limited labeled training examples of
target corpus.

To address this issue, we envisage to absorb use-
ful information from other easily accessible het-
erogeneous datasets to enhance the performance of
the knowledge-based dialogue model under low-
resource setting. Based on this assumption, we pro-
pose a novel Three-Stage Learning Framework
(TSLF). TSLF attempts to divide the parameters
of a model into dialogue-related and knowledge
integration-related. In the first stage, we use super-
vised learning to pre-train dialogue-related parame-
ters on general dialogues (e.g., online forum com-
ments), and perform domain-adaptive pre-training
(Gururangan et al., 2020) to initialize knowledge-
related parameters on unlabeled knowledge base
(e.g., items in Wikipedia). In the second stage,
inspired by the distant supervision in the relation
extraction (Mintz et al., 2009), we match a set of
pseudo-knowledge for each ungrounded dialogue
to construct a lower quality knowledge-grounded
dialogue dataset, and further co-pretrain the above
two groups of parameters on this dataset. In the
third stage, the trained model will be fine-tuned on
the target low-resource dataset. The flow of TSLF
is shown in Figure 1.

In order to better cooperate with the disen-
tangled learning mechanism in TSLF, we devise
Knowledge-Aware Transformer (KAT), a vari-
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Figure 1: Our three-stage learning framework (TSLF).

ant of vanilla Transformer (Vaswani et al., 2017)
whose parameters are decoupled that facilitates the
separate learning of dialogue generation and knowl-
edge incorporation. As shown in Figure 2, besides
dialogue history, KAT also accepts a set of knowl-
edge as additional input. KAT has a knowledge-
aware decoder which could obtains information
from the dialogue context and background docu-
ments through cross-attention and integrates them
through a controller.

We conduct experiments on two knowledge-
grounded dialogue generation benchmarks includ-
ing Wizard-of-Wikipedia (Dinan et al., 2019) and
CMU_DoG (Zhou et al., 2018). Evaluation results
in terms of both automatic metrics and human judg-
ment indicate that using only about 1/4 of the train-
ing data on Wizard (1/16 on CMU_DoG), the per-
formance of our approach outperforms the compet-
itive baselines which are learned from full crowd-
sourced training corpora. Even without using any
training data of the target dataset, our method still
performs well.

The contributions in this work are summarized as
follows: (1) We propose a novel three-stage learn-
ing framework that leverages weakly supervised
learning to help build a low-resource knowledge-
grounded dialogue generation model; (2) We de-
vise knowledge-aware Transformer, a knowledge-
grounded neural conversation model with a novel
dynamic knowledge selection mechanism, which
can fully exploits the external knowledge to gener-
ate fluent and informative dialogue responses; (3)
Our KAT-TSLF achieves surprising performance
under the scenarios of full data, low-resource and
even zero-resource.

The source code is available at https://
github.com/neukg/KAT-TSLF.

2 Approach

Low-resource knowledge-grounded dialogue gen-
eration is task that requires a method to learn
from experience E, which consists of direct expe-
rience Ed containing limited monolingual context-
knowledge-response triples and indirect experience
Ei, to improve the performance in response gen-
eration measured by the evaluation metric P . The
direct experience Ed refers to the training samples
of target corpus Dl = {(Ui,Ki, Yi)}m1

i=1 (Ui is dia-
log history, Yi is response, and Ki = {Kj}sj=1 is a
set of external knowledge documents of i-th sam-
ple) which are under low-resource settings. In this
work, we consider Ei as a large scale ungrounded
dialogue dataset Dd = {(Ui, Yi)}m2

i=1, a knowledge
base Dk = {Ki}m3

i=1 (m2,m3 � m1) and a pre-
trained language model which are easy to obtain.
In the following, we first introduce our KAT, and
then show how to train it from coarse to fine under
our TSLF.

2.1 Knowledge-Aware Transformer

KAT accepts U and K = {Ki}si=1 as inputs, and
generates a response Ŷ . It consists of three compo-
nents: a dialogue context encoder (DE) to encode
U , a knowledge encoder (KE) to encode K, and
a decoder to incorporate dialog history, dynami-
cally select knowledge and generate response. The
architecture of KAT is shown in Figure 2.

2.1.1 Encoder
We define DE as a Transformer encoder, and the
output is represented as U ∈ Rn×d, where n is the
sequence length, and d is the hidden state dimen-
sion. Similarly, KE is defined as another Trans-
former encoder, and it encode each document indi-
vidually. Following KE is a concatenation opera-

https://github.com/neukg/KAT-TSLF
https://github.com/neukg/KAT-TSLF
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Figure 2: The architecture of our KAT.

tion that concatenates all document representations:
K = [K1; ...;Ks] ∈ Rsz×d, where Ki ∈ Rz×d is
output of i-th KE, and z is the sequence length of
each document. K and U will be used for the input
of the decoder.

2.1.2 Knowledge-Aware Decoder
Generally, not all knowledge in the K contributes
to the generation of the response, so the model
should have the ability to select knowledge. Dif-
ferent from (Dinan et al., 2019; Lian et al., 2019;
Kim et al., 2020) who perform knowledge selec-
tion in the encoding phase (or in a pipeline), we
leaves it to the decoding phase. Based on the Trans-
former decoder, we propose a cross attention based
decoder which can select knowledge dynamically
and generate informative response.

Knowledge Integration Block (KIB) As shown
in the right part of Figure 2, we add a new block
after the dialogue history attention block in Trans-
former decoder layer. It takes the output from last
block as query, and the memory from K as key and
value. The output of this block can be obtained by

multi-head attention mechanism (Vaswani et al.,
2017). During decoding, KIB can dynamically
select different knowledge according to dialogue

context and the tokens that have been generated at
current time step.

Controller To control the knowledge and context
contributions in each layer, we add a gate after the
knowledge selection block. Denote hk as output of
KIB and hc as the residual from the previous block,
the output of controller can be expressed by

CT(hk,hc) = β · LN(hk) + (1− β) · hc

β = σ (w · [hk;hc])
(1)

where w ∈ R2d is a learnable parameter and σ
denotes sigmoid function.

2.2 Three-Stage Learning Framework
For further discussion, we denote θd, θk, and θa
as the learnable parameters of the green, yellow
and pink parts in Figure 2 respectively. We can
observe that θd is related to context encoding and
response generation, θk is related to knowledge
representation and integration, and these two parts
are disentangled. In order to benefit from a wealth
of heterogeneous corpora, we propose a three-stage
learning framework. In TSLF, we first initialize
θd and θk in a decoupled scheme by training in
ungrounded dialogues and unstructured knowledge
documents respectively, and then co-optimize them
with θa by weakly supervised learning and finally
transfer KAT to target low-resource dataset. The
illustration of TSLF is shown in Figure 1.

2.2.1 Stage I
We choose the state-of-the-art Transformer based
encoder-decoder model BART (Lewis et al., 2020)
as the the backbone, pre-training it on Dd with
dialogue response generation task:

Ld(θd) = −
∑

(U,Y )∈Dd

∑
t

log p(yt|y<t, U) (2)

Besides, inspired by Gururangan et al. (2020),
we conduct domain-adaptive pre-training on unla-
beled knowledge documents to improve knowledge
representation ability. Specifically, 15% of tokens
in a text K are replaced with <mask> or noise
words, and another Transformer tries to rebuild it:

Lk(θ+k ) = −
∑

K∈Dk

∑
t

log p(kt|k<t, K̂) (3)

where K̂ is the corrupt K. We disentangle the en-
coder and the cross-attention block in each decoder
layer from this Transformer (θ+k ) and initialize θk
with them.
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Algorithm 1 Construction of Dp

Input: Ungrounded dialogues Dd, documents Dk,
threshold γ and number of negative samples o;
Output: Dp;

1: Initialize Dp = φ;
2: for (U, Y ) in Dd do
3: K, score = I(Y,Dk);
4: if score > γ then
5: K = {K};
6: for i in {1, ..., o} do
7: Sample K ′ from Dk −K randomly;
8: K ← K ∩ {K ′};
9: end for

10: Dp ← Dp ∩ {(U,K, Y )};
11: end if
12: end for
13: return Dp;

2.2.2 Stage II

In stage I, θd and θk are trained separately, and
the connection between knowledge and dialogue
has not yet been established. If KAT is fine-tuned
directly on low-resource dataset Dk, it may cause
inconsistency problems, so we add a warm-up pro-
cess to it.

Intuitively, responses from humans carry clues to
relevance of the knowledge candidates (Zhao et al.,
2020b), so the knowledge document that promotes
the flow of dialogue usually has a high textual simi-
larity with the response. Based on this assumption,
we construct a set of pseudo-knowledge for some
dialogues in Dd to form a new weak supervision
dataset Dp according to Algorithm 1.
I(query, documents) means retrieve the docu-

ment with the highest similarity (e.g., TF-IDF and
BM25). Context-response pairs with low quality
will be removed. In the knowledge-grounded dia-
logue corpora, only less documents in knowledge
pool are valuable, and others are noise. The design
of negative samples is to simulate this situation and
make the distribution of knowledge in Dp closer to
the target data set.

We perform weakly supervised learning on Dp

to warmup KAT:

L(θd, θk, θa) = −
∑

(U,K,Y )∈Dp

log p(Y |K, U) (4)

2.2.3 Stage III
After warming up on Dp, KAT will be fine-tuned
on the target low-resource dataset:

L(θd, θk, θa) = −
∑

(U,K,Y )∈Dl

log p(Y |K, U) (5)

If not fine-tuned, KAT can also be directly ap-
plied to zero-resource response generation.

3 Experiments

3.1 Datasets and Evaluation Methods

We conduct extensive experiments on two public
English knowledge-grounded datasets: Wizard-of-
Wikipedia (Dinan et al., 2019) and CMU_DoG
(Zhou et al., 2018). Wizard-of-Wikipedia is a chit-
chatting dataset between two agents, and the two
participants are not quite symmetric: one will play
the role of a knowledgeable expert (which we re-
fer to as the wizard) while the other is a curious
learner (the apprentice). Each wizard turn is as-
sociated with ∼60 sentences retrieved from the
Wikipedia and each sentence contains ∼30 words,
and most of them are noise. The test set is split
into two subsets, test seen and test unseen. The
difference between the two is that the former con-
tains some topics that overlap with the training set.
CMU_DoG also contains conversations between
two workers who know the background documents
and try to discuss the content in depth. Different
from Wizard-of-Wikipedia which spans multiple
topics, CMU_DoG mainly focuses on film reviews.

Reddit Conversation Corpus is a large scale open
domain dialogue corpus cleaned by Dziri et al.
(2018) which consists of ∼15M samples for train-
ing and ∼0.8M samples for validation. Following
Zhao et al. (2020a); Li et al. (2020), we merge the
training and validation data of RedditCC as Dd.
Besides, we split ∼0.5M Wikipedia articles pro-
vided by ParlAI(Miller et al., 2017) into ∼6.6M
sentences as Dk. Information retrieval function I
mentioned in Sec. 2.2.2 is implemented by Apache
Lucene with BM25 algorithm and the size of Dp is
∼0.1M. γ and o are set to 16.4 and 39 respectively.

Following the common practice in evaluating
open domain dialogue generation, we choose per-
plexity (PPL), corpus-level BLEU (Papineni et al.,
2002), sentence-level ROUGE (Lin, 2004) and
corpus-level DISTINCT (Li et al., 2016) as metrics.
Response with higher BLEU and ROUGE is closer
to the ground-truth, and response with higher DIST
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Models PPL BLEU-1 BLEU-2 BLEU-3 BLEU-4 R-1 R-2 DIST-1 DIST-2

ITDD (Li et al., 2019) 17.8 15.8 7.1 4.0 2.5 16.2 - - -
BARTcat 19.7 23.1 11.4 6.7 4.3 19.3 5.1 7.1 29.9
BARTskt (Kim et al., 2020) 20.3 23.2 11.9 7.6 4.4 19.4 5.4 6.8 30.3
DRD (Zhao et al., 2020a) 23.0 21.8 11.5 7.5 5.5 18.0 - - -
ZRKGC† (Li et al., 2020) 40.4 22.2 7.3 2.8 1.8 18.6 2.4 5.4 22.5

KAT Full Data 14.5 25.5 13.9 9.0 6.6 21.6 7.5 9.3 37.0
KAT-TSLF Full Data 14.4 25.5 13.9 9.1 6.7 21.7 7.6 9.5 38.3
KAT-TSLF 1/4 Data 17.6 23.3 12.2 7.7 5.5 20.3 6.8 9.9 39.1
KAT-TSLF 1/8 Data 18.8 22.5 11.5 7.1 4.9 19.8 6.3 9.9 39.5
KAT-TSLF Zero Data 100+ 19.5 8.1 4.0 2.2 14.7 3.0 7.5 33.9

Table 1: Evaluation results on Wizard test seen. † marks zero-resource setting. The results of ITDD and DRD are
copied from (Zhao et al., 2020a) and DRD is under full-data. The performance of KAT-TSLF 1/4 Data outperforms
BARTcat and BARTskt significantly except BLEU-1 (t-test with p-value < 0.01, the same table below).

Models PPL BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 DIST-1 DIST-2

ITDD 44.8 13.4 4.7 2.1 1.1 11.4 - - -
BARTcat 24.5 23.2 11.0 6.3 4.1 18.9 4.5 5.3 22.2
BARTskt 22.3 23.4 10.9 6.8 4.6 19.0 4.7 5.2 24.5
DRD 25.6 20.7 10.1 6.2 4.3 16.5 - - -
ZRKGC† 41.5 21.8 7.1 2.7 1.1 18.5 2.4 3.4 15.6

KAT 15.8 24.4 12.5 7.8 6.6 20.5 6.4 10.1 39.1
Full Data 15.8 24.1 12.9 8.3 6.0 20.7 7.2 6.7 26.0
1/4 Data 18.4 23.1 11.9 7.5 5.2 19.9 6.4 6.6 25.1
1/8 Data 20.1 22.3 11.3 7.0 4.8 19.0 5.9 6.6 25.3
Zero Data 100+ 19.6 8.6 4.7 2.7 14.9 3.0 5.7 26.4

Table 2: Evaluation results on Wizard-of-Wikipedia test unseen.

has a larger vocabulary that could express more in-
formation. BLEU is computed with NLTK library
(Bird, 2006) and ROUGE is calculated with the
code published with Kim et al. (2020).

Besides quantitative evaluation, we also recruit
three human annotators to do qualitative analysis
on response quality. For each dataset, we randomly
sample 100 samples, and each sample contains
the conversation history, response, and external
knowledge set (for Wizard-of-Wikipedia, we only
provide ground-truth knowledge). The annotators
then judge the quality of the responses from three
aspects, including context coherence, language flu-
ency and knowledge relevance, and assign a score
in {0, 1, 2} to each response for each aspect. Each
response receives 3 scores per aspect, and the agree-
ment among the annotators is measured via Fleiss’
kappa (Fleiss, 1971).

3.2 Baselines

We compare our approach with the following base-
lines: (1) ITDD: an Transformer-based architec-
ture which incrementally represents multi-turn dia-
logues and knowledge, and conducts response de-
coding in two passes (Li et al., 2019); (2) BARTcat:

A simple BART-based model that take the concate-
nation of dialogue context and all knowledge as
the input of BART for response generation. BART
sets constraint on the maximum number of tokens
it can handle, and we directly truncate the text that
exceeds the length limit; (2) BARTskt: SKT is vari-
ational model that introduced BERT on the basis
of Lian et al. (2019) and considered the knowl-
edge selection history in multi-turn dialogue (Kim
et al., 2020). We feed the knowledge candidate se-
lected by SKT to BART for response generation. It
should be noted that training SKT requires human
labels that indicate ground-truth knowledge which
are crucial to the performance of the model. For
fair comparison, we use I to reselect the knowl-
edge label; (3) DRD: Another low-resource dia-
logue model which devise a disentangled response
decoder with copy mechanism (See et al., 2017)
and use a two-stage framework to learn it (Zhao
et al., 2020a). DRD is not open source, so we
can’t make a very detailed comparison with it;
(4) ZRKGC: A double latent variable model that
achieves the state-of-the-art performance in zero-
resource knowledge-grounded dialogue generation
(Li et al., 2020). ZRKGC is based on UNILM
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Models PPL BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 DIST-1 DIST-2

ITDD 26.0 9.5 3.6 1.7 0.9 10.4 - - -
BARTcat 36.4 17.0 8.6 5.3 3.4 13.6 3.1 1.5 7.3
BARTskt 40.1 16.2 8.3 5.1 3.1 12.7 2.6 1.2 7.3
DRD 54.4 15.0 5.7 2.5 1.2 10.7 - - -
ZRKGC† 53.5 15.1 4.2 1.2 0.4 12.5 0.7 1.2 8.1

KAT 22.2 19.4 10.5 6.9 4.7 14.4 3.3 1.8 8.9
Full Data 21.7 20.4 10.6 6.7 4.4 15.1 3.7 2.0 11.1
1/8 Data 25.7 19.1 10.1 6.5 4.4 13.9 3.2 1.9 10.5
1/16 Data 28.1 18.5 9.8 6.3 4.2 13.4 2.9 1.8 9.9
Zero Data 100+ 12.8 4.7 2.4 1.4 7.9 1.0 2.6 15.7

Table 3: Evaluation results on CMU_DoG. The performance of KAT-TSLF 1/16 Data outperforms BARTcat and
BARTskt significantly except ROUGE-1 and ROUGE-2 (t-test with p-value < 0.01).
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Figure 3: Comparison with DRD in low-resource setting. DRD does not provide results when the training data is
less than 1/16 (1/8 in CMU_DoG). In order to save space, we merge the Wizard seen and unseen into one subfigure.

(Dong et al., 2019) with 110M parameters whose
performance is close to BART, so we will not re-
place the backbone of ZRKGC.

3.3 Implementation Details

The knowledge pool of target dataset is usually
very large (e.g. ∼60 sentences in Wizard), in order
to reduce the time overhead, following (Kim et al.,
2020), we only keep the first 40 sentences. We use
the base version of BART with 139M parameters in
our work, and the number of parameters of KAT is
196M. The batch size in stage I, II and III is 2048,
128 and 16 respectively. The max sequence length
in source and target is 256 and 64 respectively. All
models are optimized with AdamW (Loshchilov
and Hutter, 2017) with learning rate 5e − 5 in 3
epochs. We employ beam search in response decod-
ing (the number of beams from 1 to 3) implemented
by Wolf et al. (2020).

3.4 Evaluation Results

Table 1, 2 and 3 reports the evaluation results on
automatic metrics, and we have the following obser-
vations: (1) In the full-data scenario, KAT achieves
state-of-the-art performance without using any ad-
ditional corpora, which means that KAT itself is
an excellent dialogue model. Besides, additional

resources are unnecessary when there are enriched
training datas, so TSLF has little effect in this
setting; (2) KAT-TSLF achieves the comparable
performance with BARTcat/skt even though the
baselines have leveraged all training data, while
our model is only learned with 1/4 training data
on Wizard (1/16 on CMU_DoG). We compare the
low-resource performance with DRD, and the re-
sults are shown in Figure 3. For a fair comparison,
we removed the pre-training language model and
reduce the number of model parameters. We can
see that KAT-TSLF outperforms DRD (especially
in CMU_DoG). The comparison with BARTcat is
supplemented in Figure 4; (3) Although our TSLF
is mainly for low-resource scenarios, under the set-
ting of zero resources (i.e., without stage III), the
performance of KAT-TSLF also surpasses ZRKGC
in most evaluation metrics; (4) Responses gener-
ated by KAT have higher DIST-n, which means that
our KAT can better obtain information from multi-
ple knowledge and generate more diverse texts.

Table 4 reports the human evaluation results. We
observe that responses from our KAT-TSLF are
more fluent and more contextually coherent than
those from BARTskt and ZRKGC. Compared with
our low-resource model, SKT has stronger knowl-
edge relevance in the case of full data, thanks to its
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Models Wizard Test Seen Wizard Test Unseen CMU_DoG

CC LF KR Kappa CC LF KR Kappa CC LF Kappa

BARTskt 1.78 1.80 1.34 0.61 1.72 1.74 1.36 0.64 1.70 1.72 0.65
ZRKGC 1.72 1.75 1.12 0.63 1.69 1.70 1.16 0.63 1.67 1.69 0.63
Ours 1/8 Data 1.81 1.82 1.35 0.63 1.79 1.78 1.35 0.66 1.74 1.75 0.69
Ours Zero Data 1.76 1.78 1.14 0.64 1.70 1.72 1.24 0.64 1.69 1.71 0.66

Table 4: Human evaluation results on Wizard-of-Wikipedia and CMU_DoG. CC, LF and KR marks context coher-
ence, language fluency and knowledge relevance respectively. In zero-resource setting, our KAT-TSLF outperforms
ZRKGC. Besides, our model surpasses BARTskt (full data) in most metrics with only only 1/8 of the training data.

well-designed knowledge selection module.

3.5 Ablation Study

We conduct ablation experiments on Wizard and
CMU_DoG, and the results are shown in Figure 4.

So as to verify the effect of TSLF, we first re-
moved stage I, stage II, and stage I II respectively.
Inserting a new module into an already well-trained
large-scale pre-trained language model will cause
inconsistency problems, which require a lot of data
to reconcile, so after removing stage II or stage I
II, the performance of our KAT in low-resource
dropped sharply. Although the quality of the auto-
matically constructed warm-up dataset Dp is lower
than the target dataset Dl, it also helps to establish
the connection between the knowledge representa-
tion component and the dialogue component. Be-
sides, we tried not to pre-train θk on unlabeled doc-
uments, and the result has dropped slightly, which
demonstrates that is still helpful to tailor a pre-
trained model to the domain of a target task. In
addition, replacing negative sampling with top-k
retrieval will increase the inconsistency with the
knowledge distribution of target dataset, leading
to performance degradation. Moreover, the con-
troller also has an effect on the generalization of
the model. It can help KAT quickly adapt to new
domains by adjusting the proportion of knowledge
and context in the response. In order to improve the
generalization performance with limited training
data, some works (Chen and Shuai, 2021; Zhao
et al., 2020a) fix most of the parameters during
fine-tuning. We also tried to frozen knowledge en-
coder and context encoder in stage III or stage II
III, and the results show that the performance has
not improved, indicating that with the help of stage
II, our model can hardly fall into overfitting.

In order to verify the effect of our TSLF on other
models, we try to combine BARTcat with TSLF.
Since the parameters of BART are tightly coupled,
we can only apply stage II to it. Experimental

results show that the performance is improved sig-
nificantly under low-resource setting.

3.6 Discussions

Case Study Table 5 shows a case from Wizard,
from which we can see that the response from our
model with zero data not only smoothly catches
the ground-truth knowledge (highlighted in blue),
but also expands the topic with proper pieces of
other knowledge (highlighted in yellow). ZRKGC
generated sentences that were inconsistent with
the facts. Although BARTskt chose the correct
knowledge, the narrative was too straightforward,
and there is a repetition phenomenon. We showed
some other cases in the supplementary material.

Comparison with DRD If we ignore the details,
DRD is actually a special case of our method,
which skips stage II. During pre-training, DRD
completely separates dialogue-related components
and knowledge representation-related components,
which makes it difficult to effectively promote the
integration of dialogue and knowledge with only
a small number of samples during fine-tuning. So
when the training data is extremely small, DRD
can hardly work. Besides, in order to prevent over-
fitting, DRD has to limit the number of parameters
of the knowledge integration component and use
fix other parameters when fine-tuning, which leads
to limited performance of the model. In addition,
the complex model structure makes it difficult for
DRD to use pre-trained language models.

KAT v.s. BARTcat BART (as well as most other
pre-training language models) has a limit on the
maximum tokens of the input, so useful knowledge
is likely to be truncated. For example, there are
about 60 external documents per sample in Wiz-
ard, and about 40 documents will be truncated. In
theory, KAT can accept an unlimited number of
knowledge, so this should be one of the reasons
why KAT’s performance is better than BAERcat.
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Figure 4: Ablation experiments on Wizard-of-Wikipedia and CMU_DoG. The number of beams are set to 1 for all
models. It is recommended to view the picture after zooming in, and the more the curve is to the upper right, the
better the result.

When we reduce the maximum number of knowl-
edge that KAT can handle (a hyperparameter) to
15, the performance is close to BARTcat.

Dial.
Hist.

A: Yea it was a great movie. The Last of the
Mohicans was released in 1992.
B: I didn’t realize it’s been out that long!
What is it about?

GT
Kno.

The Last of the Mohicans is a 1992 American
epic historical drama, set in 1757 during the
French and Indian War.

Ref.
Well The Last of the Mohicans is an epic
historical drama. It was set in 1757 during
the Indian and French war.

(BARTskt) It’s about the French and Indian War. It’s
about the French and Indian War.
(ZRKGC) It ’s a classic movie. The Last of My Moh-
icans was released in 2016, and is still out on Netflix.
(Ours Zero Data) It’s a series of short stories set in
1757 during the French and Indian War in the Adi-

rondack mountains of Virginia .
(Ours 1/16 Data) It is about a group of people who
fight to keep their independence from the French and
Indian War.

Table 5: A case from test seen of Wizard-of-Wikipedia.
This dialogue contains a total of 40 external knowledge,
one of which is marked as ground-truth (GT).

4 Related Work

Open domain end-to-end dialogue response gener-
ation is inspired by the success of applying neural
sequence to sequence models on machine transla-
tion (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). Very recently, in order to
generate fluent, coherent and informative response,
many approaches have been proposed by introduc-
ing external background documents (Ghazvinine-
jad et al., 2018; Yavuz et al., 2019; Li et al., 2019;
Lin et al., 2020). Besides documents (Dinan et al.,

2019; Zhou et al., 2018), the are many forms of
knowledge such as images (Huber et al., 2018) and
triples in knowledge graph (Wu et al., 2019; Tuan
et al., 2019).

Dinan et al. (2019) presents to divide knowledge-
grounded dialogue into two steps: knowledge selec-
tion and dialogue generation. PostKS (Lian et al.,
2019), SKT (Kim et al., 2020), PIPM (Chen et al.,
2020) and SKT-KG (Zhan et al., 2021) use the prior
and posterior distribution of knowledge to improve
the accuracy of knowledge selection. Zhao et al.
(2020b) devise a reinforcement learning method
to train a knowledge selector without ground-truth
knowledge label. DeepCopy (Yavuz et al., 2019),
ITDD (Li et al., 2019) and KIC (Lin et al., 2020)
have improved the structure of the decoder so that it
can better integrate knowledge. Since knowledge-
guided dialogue corpora need to be constructed
through crowdsourcing, the size of datasets such as
Wizard-of-Wikipedia (Dinan et al., 2019) are rela-
tively small. Zhao et al. (2020a) and Li et al. (2020)
proposed to conduct the knowledge-grounded con-
versation under the low-resource and zero-resource
settings respectively. We do not compare with Lin
et al. (2020); Zhao et al. (2020b) since they did not
release their entire source codes.

Our three-stage learning framework is inspired
by Zhao et al. (2020a), which uses ungrounded
dialogues and unstructured documents to train a
knowledge-grounded dialogue model that can work
in low-resource situations. In addition, the design
of stage II is inspired by distant supervision technol-
ogy in relation extraction task (Mintz et al., 2009).
The idea of KAT is also encouraged by disentan-
gled decoder (Raghu et al., 2019) and the recent
breakthrough in variants of Transformer (Li et al.,
2019; Hashemi et al., 2020; Izacard and Grave,
2020).
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5 Conclusion

We study knowledge-grounded dialogue generation
under a low-resource setting by proposing a three-
stage learning framework and a knowledge-aware
Transformer. Evaluation results on two bench-
marks indicate that our model achieves the state-
of-the-art performance with less training data. Be-
sides, KAT-TSLF exhibits a good generalization
ability on zero-resource scenario.
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Broader Impact

Incorporating knowledge into dialogue systems has
been the pursuit of researchers in this field for
many years. This kind of system will make AI
dialogue more natural definitely. It will be more
favored by people when the technology does not
require a large amount of artificially annotated data.
More importantly, the knowledge-based dialogue
system can fundamentally change the experience of
human-machine dialogue, because system can de-
velop with the update of external knowledge base.
One day it will be true that people can obtain ef-
fective information through simple conversations.
However, coins always have two sides. In addition
to the well-known problems caused by large pre-
trained datasets for end-to-end dialogue models,
special knowledge bases which may be deliberately
tailored can also be used to make the generated di-
alogues biased, just as search engines inadvertently
spread biased content created by someone. In order
to prevent this technology from being abused, we
look forward to more research effort for detecting
fake/biased/offensive content. At the same time,
we recommend that developers choose content care-
fully to build a knowledge base for the dialogue
system. Good external knowledge can adjust the
behavior of the dialogue model in the response
process and help the model overcome the biases
hidden in large-scale social media datasets.
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