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Abstract

Human dialogue contains evolving concepts,
and speakers naturally associate multiple con-
cepts to compose a response. However, current
dialogue models with the seq2seq framework
lack the ability to effectively manage concept
transitions and can hardly introduce multiple
concepts to responses in a sequential decoding
manner. To facilitate a controllable and coher-
ent dialogue, in this work, we devise a concept-
guided non-autoregressive model (CG-nAR)
for open-domain dialogue generation. The pro-
posed model comprises a multi-concept plan-
ning module that learns to identify multiple
associated concepts from a concept graph and
a customized Insertion Transformer that per-
forms concept-guided non-autoregressive gen-
eration to complete a response. The experi-
mental results on two public datasets show that
CG-nAR can produce diverse and coherent
responses, outperforming state-of-the-art base-
lines in both automatic and human evaluations
with substantially faster inference speed.

1 Introduction

Creating a "human-like" dialogue system is one
of the important goals of artificial intelligence.
Recently, due to the rapid advancements in nat-
ural language generation (NLG) techniques, data-
driven approaches have attracted lots of research
interest and have achieved impressive progress in
producing fluent dialogue responses (Shang et al.,
2015; Vinyals and Le, 2015; Serban et al., 2016;
Li et al., 2016). However, such seq2seq models
tend to degenerate generic or off-topic responses
(Tang et al., 2019; Welleck et al., 2020). An
effective way to address this issue is to leverage
external knowledge (Zhou et al., 2018a,b) or
topic information (Xing et al., 2017), which are
integrated as additional semantic representations to
improve dialogue informativeness.

Although promising results have been obtained
by equipping dialogue models with external knowl-

[ What are your hobbies ? j O
/ \
Q [ I like going shopping and watching tv . j
_ N\
[Same. I like to sit on my couch and watch anime) O
L\

That’s cool. I'm a big fan of | japanese \
anime. I really like hearing its music .

Figure 1: An exemplar dialogue with concept transi-
tions, where each utterance is composed of multiple
associated concepts to convey diverse information.

edge, the development of dialogue discourse still
has its own challenge: human dialogue generally
evolves around a number of concepts that might
frequently shift in a dialogue flow (Zhang et al.,
2020). The lack of concept management strategies
might lead to incoherent dialogue due to the loosely
connected concepts. To address this problem,
recent studies have combined concept planning
with response generation to form a more coherent
and controllable dialogue (Wu et al., 2019; Xu et al.,
2020a,b; Wu et al., 2020; Zhang et al., 2020).

Most of these approaches incorporate concepts
into responses in an implicit manner, which cannot
guarantee the appearance of a concept in a response.
Compared with dialogue concepts, a large propor-
tion of chit-chat words are common and usually
have a high word frequency and are relatively over-
optimized in language models (Gong et al., 2018;
Khassanov et al., 2019). Consequently, conven-
tional seq2seq generators are more "familiar" with
these generic words than those requiring concept
management, which prevents introducing certain
concepts to the response with sequential decoding
(either greedily or with beam search) (Mou et al.,
2016). Moreover, speakers naturally associate
multiple concepts to proactively convey diverse
information, e.g., action, entity, and emotion (see
Figure 1). Unfortunately, most existing methods
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can only retrieve one concept for each utterance
(Tang et al., 2019; Qin et al., 2020). Another line of
approaches attempt to explicitly integrate concepts
into responses and generate the remaining words in
both directions (Mou et al., 2016; Xu et al., 2020a),
but they also fail to deal with multiple concepts.

In this paper, we devise a concept-guided non-
autoregressive model (CG-nAR) to facilitate dia-
logue coherence by explicitly introducing multiple
concepts into dialogue responses. Specifically,
following Xu et al. (2020a), a concept graph is
constructed based on the dialogue data, where the
vertices represent concepts, and edges represent
concept transitions between utterances. Based on
the concept graph, we introduce a novel multi-
concept planning module that learns to manage
concept transitions in a dialogue flow. It recurrently
reads historical concepts and dialogue context to
attentively select multiple concepts in the proper
order, which reflects the transition and arrangement
of target concepts. Then, we customize an Insertion
Transformer (Stern et al., 2019) by initializing
the selected concepts as a partial response for
subsequent non-autoregressive generation. The
remaining words of a response are generated in
parallel, aiming to foster a fast and controllable
decoding process.

We conducted experiments on Persona-Chat
(Zhang et al., 2018) and Weibo (Shang et al., 2015).
The results of automatic and human evaluations
show that CG-nAR achieves better performance in
terms of response diversity and dialogue coherence.
We also show that the inference time of our model
is much faster than conventional seq2seq models.
All our codes and datasets are publicly available.!

Our contributions to the field are three-fold: 1)
We design a concept-guided non-autoregressive
strategy that can successfully integrate multiple
concepts into responses for a controllable decoding
process. 2) The proposed multi-concept plan-
ning module effectively manages multi-concept
transitions and remedies the problem of dialogue
incoherence. 3) Comprehensive studies on two
datasets show the effectiveness of our method in
terms of response quality and decoding efficiency.

2 Related Work

2.1 Open-Domain Dialogue Generation

Neural seq2seq models (Sutskever et al., 2014)
have achieved remarkable success in dialogue

'https://github.com/RowitZou/CG-nAR

systems (Shang et al., 2015; Vinyals and Le, 2015;
Serban et al., 2016; Xing et al., 2017), but they
prefer to produce generic and off-topic responses
(Tang et al., 2019; Welleck et al., 2020). Dozens
of works have attempted to incorporate external
knowledge into dialogue systems to improve in-
formativeness and diversity (Zhou et al., 2018a;
Zhang et al., 2018; Dinan et al., 2019; Ren et al.,
2020). Beyond the progress on response quality,
a couple of works focus on goal planning or
concept transition for a controllable and coherent
dialogue (Yao et al., 2018; Moon et al., 2019;
Wu et al., 2019; Xu et al., 2020a,b; Wu et al.,
2020; Zhang et al., 2020). Most of these works
mainly explore how to effectively leverage external
knowledge graphs and extract concepts from them.
Nevertheless, they generally introduce concepts
into the response implicitly with gated controlling
or copy mechanism, which cannot ensure the
success of concept integration because seq2seq
models prefer generic words. Some works (Mou
et al., 2016; Xu et al., 2020a) try to produce concept
words first and generate the remaining words to
both directions to complete a response, but they
cannot handle the situation of multiple concepts.
By contrast, we focus on how to effectively in-
tegrate multiple extracted concepts into dialogue
responses. The proposed CG-nAR applies the non-
autoregressive mechanism, which can explicitly
introduce multiple concepts simultaneously to
responses to enhance coherence and diversity.

2.2 Non-Autoregressive Generation

Compared with traditional sequential generators
that conditions each output word on previously
generated outputs, non-autoregressive (non-AR)
generation avoids this property to speed up de-
coding efficiency and has recently attracted much
attention (Gu et al., 2018, 2019; Ma et al., 2019;
Stern et al., 2019). Another relevant line of research
is refinement-based generation (Lee et al., 2018;
Kasai et al., 2020; Hua and Wang, 2020; Tan
et al., 2021), which gradually improves generation
quality by iterative refinement on the draft instead
of one-pass generation. For dialogue systems, there
has been prior works that attempt to improve the
traditional autoregressive generation. Mou et al.
(2016) explores the way of generating words to
both directions, but it is still in an autoregressive
manner. Song et al. (2020) introduces a three-
stage refinement strategy for improving persona
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(a) Multi-Concept Planning

(b) Concept-Guided Non-AR Generation

Figure 2: The overall framework of CG-nAR. (a) The multi-concept planning module conditions on the previous
concept flow and the dialogue context to attentively select multiple associated concepts from the concept graph.
(b) The selected concepts are used to initialize a partial response for subsequent non-autoregressive generation.

consistency of dialogue generation, but it requires
a specialized consistency matching model for
inference. Han et al. (2020) applies the non-
AR mechanism to dialogue generation, aiming to
alleviate the non-globally-optimal issue to produce
a more diverse response. In this work, we further
use dialogue concepts to guide response generation.
We customize an Insertion Transformer (Stern et al.,
2019) and arrange dialogue concepts as a partial
input sequence, which is different from the original
setting where texts are generated from scratch. By
this means, multiple concepts can be naturally
introduced to the response as a guidance to foster a
more controllable non-AR generation.

3 Methodology

The overall framework of CG-nAR is shown in
Figure 2. Based on a concept graph that represents
candidate concept transitions, a multi-concept
planning module is designed to select and arrange
appropriate target concepts from the contextually
related subgraphs, which is conditioned on the
previous concept flow and the dialogue context.
Then, we input the selected concepts as a partial
response into an Insertion Transformer (Stern et al.,
2019) to parallelly generate the remaining words.

3.1 Concept Graph Construction

Inspired by Xu et al. (2020a), we build a concept
graph with two steps: vertex construction’ and

2The original constructed vertices in Xu et al. (2020a)
involve what-vertices and how-vertices, where how-vertices
represent different ways of expressing response content with
a multi-mapping model (Chen et al., 2019). Here, we only
collect what-vertices as dialogue concepts.

edge construction. Given a dialogue corpus S, we
exploit a rule-based keyword extraction method
to identify salient keywords from utterances in S
(Tang et al., 2019). All extracted keywords are col-
lected as dialogue concepts that represent vertices
in the concept graph. For edge construction, we
use pointwise mutual information (PMI) (Church
and Hanks, 1989) to construct a concept pairwise
matrix that characterizes the association between
concepts in the observed dialogue data (Mou et al.,
2016; Tang et al., 2019), where each concept pair
consists of two concepts that are extracted from
the context and the response, respectively. For
each head vertex v", we select concepts with top
PMI scores as tail vertices v* and build edges by
connecting v" with all v’s. In this way, we filter out
low-frequency edges to narrow the search space for
downstream concept planning.

3.2 Multi-Concept Planning Module

Given the dialogue context D, the historical con-
cept flow F, and a concept graph G, the goal of
multi-concept planning is to predict a sequence
of target concepts C, namely P(C|D, F,G). All
target concepts are extracted from G and arranged
in a sequence C' = {¢y, o, ..., ¢ }, which reflects
the order of target concepts in the final response.
Hierarchical Dialogue Encoder. To facilitate
the understanding of dialogue context D, we
employ Transformer blocks (Vaswani et al., 2017)
to hierarchically encode dialogue context, aiming
to capture the global semantic dependency between
utterances. Formally, given the dialogue context
D = {uj,ug,...,un} with N utterances, where

2217



w; = {wi1, w;, ..., w;p } is the word sequence of
t-th utterance, we transform u; into a sequence of
hidden vectors with a Transformer encoder:
cls 1.
[hl 5 hll g eee

Jhi] = TFy, ([e5%, €%, ...,eY]).

m

(1

Here, 7 is the embedding of the j-th word in u;.

h¢'* and e;fls represent a special token [CLS] that is
used to aggregate sequence representations, which
is inspired by Devlin et al. (2019). Then, we collect
utterance representations derived from [CLS] and
input them into another Transformer encoder to
hierarchically fuse context information:
L hs, ... ) = TFy, ([hCZS hds ceey ﬁﬁ\l,s]).
2
hgls is a context-aware utterance representation
that can be used to guide concept selection in the
following steps.

Concept Flow Encoder. Formally, a concept
flow F' = {f1, fa, ..., fn} represents the observed
concepts in the dialogue context, where f; means
a concept set corresponding to the i-th utterance
that collects all the concept words in u;, namely
fi = {ci1, cia, ...cim }. Here, ¢;; is the j-th concept
word in u;. For an empty set f; = (), a special
NULL token is served as the concept word.

To capture information of history concept tran-
sitions, we exploit a vanilla GRU unit (Cho et al.,
2014) to recursively read concept words in the flow:

S; = GRU(Si_l,fZ'), 1€ [1,N] 3)

Here f; denotes the representation of concept set f;,
which is calculated as a weighted sum of concept
word embeddings e

£.=Y " ales
4 j=1 zjzj?

B;
af; = ;Xp( ])f , S
Zk 1 exp(B;,)
5f =s, Wy ej;

where W ; is trainable parameters. The output state
s;—1 atthe ¢ — 1 step is used as a query to compute
BZJ; scores, which can measure the preference of
transitions to associated concepts. Empirically, sg
is a zero vector to initialize the recurrent process,
and the final output s can serve as a memory to
enable history-aware concept planning.
Multi-Concept Extractor. Recall that our goal
is to produce a concept sequence C, which is a

subsequence of the target response. Inspired by
pointer network (Vinyals et al., 2015), we design a
multi-concept extractor to achieve this goal, which
can attentively read the dialogue context and the
concept flow to sequentially extract target concepts
from the contextually related subgraphs in G.

To implement concept extraction in a sequential
decoding manner, we use a Transformer decoder
and compute its decoding states as follows:

Hcls _ [hcls hcls ...,h%s],
m; = TFy,([e];], Hds)' )

The utterance representations H* are memories
for decoder-encoder attention. [ef., ;] denotes
the embeddings of previously decoded concepts.
my, is the output state at step ¢ conditioned on the
dialogue context and partially decoded outputs.
Given the decoder state m; and the concept
flow memory sy, the following step is to select
target concepts from G. We first retrieve a group
of subgraphs that corresponds to the concept set
fn of the last utterance u to prepare for the next
round of concept transition. Here, each subgraph g;
consists of a hit concept cy; € fy and its concept
. N,
neighbours. Formally, g; = {(c;?ead, c?‘}g"l) P
where c;wad and Cjj represent head concept vertex
and tail concept Vertex, respectively. Ny means
the number of vertex pairs in g;. Then, we employ
a dynamic graph attention mechanism to calculate
subgraph vectors g; at each decoding step ¢ to fuse
information of all concept neighbours:

Ny. ,
L i 9 head, _tail
8j = § :kzl ajk[ej ek ),

tazl

g
exp(fS:
0= —x——— By0) : 6)
El:f exp( SZ)
9 = (Wil sy; e )T - (Wieli™h).

W, W are trainable parameters. e/°*?, e/ are

embeddlngs of head and tail concepts in g;. Here,
af, is the probability of choosing ¢/} from all
concept neighbours in g; at step ¢ conditioned on
the dialogue context and the concept flow. We then
compute the probability of choosing g; at step ¢ as

a top-level concept selection, denoted as az-:

b exp(f3)
Z?; eXP(ﬁfY
B = (Whmysy]) " -

Q
()

(Wkg]) (7
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where W/, and W}, are trainable parameters. Fi-
nally, the selection probability of target concepts at
step ¢ can be derived as:

P(Ct|61;t71,D,F, g) = a;a?k. (8)

The multi-concept extractor has two stop condi-
tions: 1) We add a special token ¢*°P to the concept
neighbour set of gj3. The extractor treats c5°P as
a legal candidate target, and the selection of 5P
results in a stop action. 2) the number of target
concepts exceeds N,,q,. Furthermore, for all the
concepts extracted at step k(k < t), we set their
probabilities to O to avoid duplicate extraction.

3.3 Concept-Guided Insertion Transformer

After obtaining the target concept sequence C, the
next step is to generate a response that covers C.
General autoregressive approaches cannot ensure
the success of introducing certain contents because
they prefer to generate generic words (Mou et al.,
2016). Given a substantially big language model,
the problem might be alleviated but still cannot
be completely solved. To address the issue, we
use an Insertion Transformer (Stern et al., 2019) to
generate a response based on C, which ensures the
appearance of target concepts. On the other hand,
the explicit planned concepts can be regarded as a
prompt or a signal to guide the generation process.
Generation is accomplished by repeatedly making
insertions into a sequence initialized by C' until a
termination condition is met. At each decoding
step t, the Insertion Transformer produces a joint
distribution over the choice of words w; and all
available insertion locations /; € [0, |¢;—1|] in the
previously decoded response 3;—1:

QO = C’
E; = [ef lwk € g, ©)
p(wty lt‘D7 gt—l) == InSTF(HCZS7 Et—l)a

where E; is the word embedding list of ¢;. Notably,
9 has multiple available insertion locations, and
we can perform parallel decoding by applying
insertions at multiple locations simultaneously. For
more details of Insertion Transformer, please refer
to Stern et al. (2019) due to the space limitation.

*In this case, we make sure that N, g; > 0, where g; has at

least one special vertex pair (c/**?, c**P)

Persona Weibo
# training pairs 101,935 1,818,862
# validating pairs 5,602 9,187
# testing pairs 5,317 9,186
# concept vertices in G 2,409 4,000
# transition edges in G 50,744 74,362
# concepts in each utterance 2.56 1.61

Table 1: Statistics of the dialogue datasets and the
constructed concept graphs.

3.4 Training and Loss Functions

Given the list of ground truth concepts C' in the
target response y, the concept extractor is trained
as a usual sequence generation model to minimize
the negative log likelihood (NLL) loss as follows:

Lo= ‘(1;, Zgl —logp(ct|ert—1, D, F, G).
(10)
To train the Insertion Transformer, we first
sample a subsequence § containing all the target
concepts from the target response y. Then, for
each of the k£ + 1 locations [ = 0,1, ...,k in g, let
(Wi, Wi;+1, ..., wj,) be the span of words from the
target response yet to be produced at location [.
The loss function is finally defined as follows:

kg
1 ~ .
= 77 2 2 ~logp(wi, 1|D. ) - w(i).

1=0 i=i
an
Here w;(7) is a softmax weighting policy (Stern
et al., 2019) that performs a weighted sum of the
negative log-likelihoods of the words in the span.
It encourages the generator to produce the central
words of the span for a faster decoding process.

Lr

4 Experimental Settings

4.1 Datasets

Experiments are conducted on two public open-
domain dialogue datasets Persona-Chat (Zhang
et al., 2018) and Weibo (Shang et al., 2015). For
Persona-Chat, the associated persona information
is discarded so that the model can focus on the
development of dialogues. Following previous
works (Tang et al., 2019; Xu et al., 2020a), we em-
ploy a rule-based method to automatically extract
concept words of each utterance, which combines
tf-idf and POS features for scoring word salience.
After dataset cleaning, we re-split the Persona-Chat
dataset into train/valid/test sets as done in Tang
et al. (2019), while the Weibo dataset is split in
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Model Persona-Chat . . Weibo . .

BLEU RG-1 RG-L Dist-l1 Dist-2 | BLEU RG-1 RG-L Dist-1 Dist-2
Without Concept Planning

Seq2seq+Att 0325 1698 .1691 .0127 .0402 | .0106 .0790 .1004 .0160 .0520

Transformer 0285 1565 .1553 .0181 .0738 | .0287 .1175 .1480 .0186  .0898

HRED 0332 1781 .1785 .0136  .0410 | .0151 .0830 .1029 .0145 .0730

ReCoSa 0306 .1576 .1606 .0192 .0820 | .0232 .0858 .1069 .0171 .0841

With Concept Planning

Seq2BF 0197 1234 1201 .0595 3058 | .0157 .1506 .1434 .0447 .1952

CCM 0389  .1902 .1922 .0463  .1537 | .0249 .1883 .1845 .0257 .1750

ConceptFlow .0401 2216 2154 .0487 .1939 | .0282 2133 2071 .0348 .1948

CG-nAR (ours) | .0477 .2611 .2502 .0626 .2516 | .0304 .2576 .2417 .0401 .2809

Table 2: Results of automatic evaluation for CG-nAR and baseline methods, which are categorized into two
groups: with / without concept planning. The best results are highlighted in bold.

random. After constructing the graph of Persona-
Chat, we randomly sample 100 concept vertices
and 200 edges and ask three human annotators to
evaluate their appropriateness. About 93% vertices
and 72% edges are accepted by the annotators. For
the graph of Weibo, we use the graph released by
Xu et al. (2020a). Statistics of the two dialogue
datasets along with the constructed graphs is shown
in Table 1.

4.2 Comparison Methods

We compare CG-nAR with two groups of base-
lines: general seq2seq models and concept-guided
systems. General seq2seq models produce re-
sponses conditioned on the dialogue messages
without concept planning, including: Seq2seq+Att
(Sutskever et al., 2014), a standard RNN model
with attention mechanism; Transformer (Vaswani
et al., 2017), a seq2seq model with a multi-head
attention mechanism; HRED (Serban et al., 2016),
a hierarchical encoder-decoder framework to model
context utterances; ReCoSa (Zhang et al., 2019),
a state-of-the-art model using the self-attention
mechanism to measure the relevance of response
and context. Concept-guided dialogue systems
leverage concept information to control response
generation, including: Seq2BF (Mou et al., 2016),
a non-left-to-right generation model that explicitly
incorporates a keyword into the response; CCM
(Zhou et al., 2018a), a model that uses the graph
attention mechanism to choose graph entities*, and
introduces them into response implicitly by a copy
mechanism; ConceptFlow (Zhang et al., 2020), a
state-of-the-art model that grounds each dialogue in
the concept graph and traverses to distant concepts,

“The original CCM uses an external knowledge graph.
Here we adapt it to our constructed concept graph for a fair
comparison. The same strategy is applied to ConceptFlow.

which also generates concept words implicitly in
an autoregressive manner; CG-nAR (our model), a
model that explicitly introduces multiple concepts
into responses with non-autoregressive generation.

4.3 Implementation Details

We used VGAE (Kipf and Welling, 2016) to
initialize the representation of concept vertices in
the concept graph, and used Word2Vec (Mikolov
et al., 2013) to initialize word embeddings. The
embedding size of vertices and words was set to
128 and 300, respectively. We employed Adam
(Kingma and Ba, 2015) with learning rate le-3
to train the concept extractor and the Insertion
Transformer. All Transformer blocks have 3 layers,
768 hidden units, 8 heads, and the hidden size for
all feed-forward layers is 2,048. The hidden size
of GRU cells is 768. At inference time, the multi-
concept extractor produces concepts greedily, and
the maximum number of allowed concepts N4z
was set to 5. For the Insertion Transformer, we
used the configuration that achieved the best results
reported in Stern et al. (2019). The whole model
was trained for 100,000 steps with 8,000 warm-up
steps on a 3090 GPU. Checkpoints were saved and
evaluated on the validation set every 2,000 steps.
Checkpoints with the top performance were finally
evaluated on the test set to report final results.

5 Results and Analysis

5.1 Automatic Evaluation

We adopt widely used BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) to measure the relevance
between the generation and the ground-truth. We
report averaged BLEU scores with 4-grams at most
and ROUGE-1/L (RG-1/L) F-scores. To measure
the diversity of generated responses, we report
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Model App. Inf.
Persona-Chat

CG-nAR vs. ReCoSa 72.5%"  59.3%"
CG-nAR vs. Seq2BF 63.0%"  53.1%
CG-nAR vs. CCM 60.5%"  55.0%
CG-nAR vs. ConceptFlow  58.2%"  54.4%
Weibo

CG-nAR vs. ReCoSa 782%"  61.9%'
CG-nAR vs. Seq2BF 65.5%"  52.9%
CG-nAR vs. CCM 61.4%"  54.0%
CG-nAR vs. ConceptFlow  61.1%"  54.7%

Table 3: Results of manual evaluation with appropri-
ateness (App.) and informativeness (Inf.). The score is
the percentage of times CG-nAR is chosen as the better
in pairwise comparison with its competitor. Results
marked with  are significant (using sign test, p<0.05).

the ratio of distinct uni/bi-grams (Dist-1/2) in all
generated responses (Li et al., 2016).

Table 2 shows the results of automatic evaluation
for CG-nAR and baseline methods. All methods
can be categorized into two groups: traditional
seq2seq based generators and concept grounded
methods. CG-nAR outperforms all other baselines
significantly on BLEU and ROUGE scores (us-
ing Wilcoxon signed-rank test, p< 0.05), which
manifests that the responses generated by CG-nAR
match better with the ground-truth responses. This
means CG-nAR can maintain the dialogue flow
on-topic by the multi-concept planning mechanism.
In terms of Dist-1/2 that measures the response
diversity, all methods with concept planning can
produce more diverse responses than those without,
which indicates the problem of generic responses
is alleviated by integrating concept information.
Compared to the baselines with concept planning,
CG-nAR has a better performance on response
diversity. It verifies the effectiveness of our multi-
concept planning module and the concept-guided
non-autoregressive strategy, which can produce
and combine multiple context-related concepts to
compose diverse responses and keep concept words
in the output response in an explicit manner.

5.2 Manual Evaluation

Considering automatic metrics may not suitably
reflect the content to be evaluated, we further
performed manual evaluation following previous
works (Zhou et al., 2018a; Wu et al., 2020).
Specifically, we randomly sampled 200 testing
pairs from each test set and employed three anno-
tators with professional background knowledge to
evaluate the responses. Given a dialogue message,

Model P R F1 Num.
Persona-Chat

ReCoSa .0137 .0077 .0099 1.29
Seq2BF .0280 .0189 .0226 1.55
CCM 2406 1853 2094 1.34
ConceptFlow .3580 .4041 .3797 1.50
CG-nAR 5330 5029 5175 217
Weibo

ReCoSa 0643 0611 .0626 1.53
Seq2BF 1685 1657 .1671 1.58
CCM 2514 2059 2264 1.61
ConceptFlow .3859 4177 4012 1.78
CG-nAR 5119 6455 5710 2.03

Table 4: Results of Concept-P/R/F1 that compare the
concepts in output responses with those in ground-truth
ones. Num. denotes the average number of concepts
predicted in output responses.

annotators were required to conduct pair-wise
comparison between the response generated by CG-
nAR and the one by a baseline (1,600 comparisons
with four baselines on two datasets in total).
For each comparison, annotators decided which
response is better in terms of appropriateness (the
model’s ability to produce a fluent, coherent, and
context-relevant response) and informativeness (if
the response provides diverse information). For
appropriateness, the percentage of pairs that at least
2 annotators gave the same judge (2/3 agreement)
is 95.8%, and the percentage for 3/3 agreement
is 62.7%. For informativeness, the at least 2/3
agreement is 89.0% and 3/3 agreement is 56.2%.
We compare CG-nAR against four baselines on
Persona-Chat and Weibo (see Table 3). The score
represents the percentage of times CG-nAR is cho-
sen as the better in pair-wise comparisons. For ap-
propriateness, CG-nAR significantly outperforms
all other baselines on two datasets (using sign test,
p<0.05). It means that CG-nAR can generate more
context-relevant and coherent responses accepted
by annotators, which validates the effectiveness
of our multi-concept planning module. In terms
of informativeness, the percentages that CG-nAR
wins ReCoSa are noticeably higher than those
against other baselines. It indicates that systems
with a concept planning mechanism can produce
more informative responses by content introducing.

5.3 Analysis of Multi-Concept Planning

To validate if the multi-concept planning module
has the ability to extract context-relevant concepts
and form a coherent dialogue, we calculate the
precision, recall, and F1 score of predicted con-
cepts against golden ones in responses (Concept-
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Model BLEU RG-1 RG-L Dist-1 Dist-2 Concept-P  Concept-R  Concept-F1
CG-nAR 0477 2611 2502 .0626 2516 .5330 5029 5175
w/o. concept planning 0217 1504 1568 .0350 .1884 2711 2507 .2605
w/o. concept flow encoder | .0344 2283 2232 .0583  .1938 5778 .3696 4508
w/o. hierarchical encoder 0327 2130  .2009  .0468  .2650 3242 4250 3678
w. gated controller (AR) | .0405 2399 .2320 .0423  .1893 .3926 A177 4048

Table 5: Ablation study using automatic metrics on the Persona-Chat dataset. The best results are highlighted.

Model Param. total time (sec) words/sec
Transformer 127.3M 71.36 672.1
ReCoSa 143.8M 65.27 766.9
CG-nAR 172.1M 25.99 1131.1

Table 6: Inference speed on the Persona-Chat test set.
Param. denotes the number of parameters.

P/R/F1). We also record the average number of
predicted concepts to measure the model’s ability
to introduce multiple concepts. From Table 4 we
can observe that CG-nAR achieves a higher recall
and F1 score against all baselines by a large margin,
especially for ReCoSa and Seq2BF. It probes that
our concept planning module can successfully ex-
tract more concepts relevant to the dialogue. This is
also reflected in the number of predicted concepts,
where CG-nAR produces more concept words
than those methods with autoregressive generators,
e.g., CCM and ConceptFlow. It indicates that the
concept-guided generator can effectively keep the
concept information in output responses using a
non-autoregressive generation mechanism.

5.4 Ablation Study

We perform ablation studies to validate the effec-
tiveness of each part of CG-nAR. Table 5 shows
the results. One of the variants is a vanilla Insertion
Transformer where the concept planning module is
removed. The model performance unsurprisingly
degrades by a large margin, because the model
might produce generic responses without concept
planning. After removing the concept flow encoder,
the information of historical concept transitions
is missing, which also leads to a performance
drop. We further replace the hierarchical dialogue
encoder with a vanilla Transformer encoder, the
performance drop shown in Table 5 indicates that
it is necessary to capture the context dependency
information when performing dialogue modeling.
To probe the effectiveness of the concept-guided
non-autoregressive strategy, we replace the Inser-
tion Transformer with a universal Transformer
framework equipped with a gated controller as

done in Zhang et al. (2020), where the gener-
ation probabilities are calculated over the word
vocabulary and the set of selected concept words.
Table 5 shows that with the autoregressive decoding
strategy, the performance drop is significant. A
possible explanation is that the appearance of
some key concepts cannot be guaranteed by such
an implicit concept-oriented generator, especially
when the generator encounters concepts that are
not frequently seen in the training set.

5.5 Speed Comparison

Our concept-guided non-autoregressive generation
model shows not only the superiority on response
quality, but also gives a significant speed-up at test
time over the methods equipped with autoregres-
sive generators. The results of speed comparison
is shown in Table 6. For a fair comparison, we
choose the baselines with a Transformer encoder-
decoder framework, since our customized Insertion
Transformer uses the same model components. The
main advantage of the insertion-based generator
at inference time is that we can predict words at
different insertion locations simultaneously. From
Table 6 we can see that CG-nAR achieves sub-
stantially test-time speed-up compared to the two
autoregressive generators (up to 2.7x in total time
and 1.6x in word generation rate) even when CG-
nAR has more parameters’.

5.6 Case Study

To compare different models intuitively, we show
two dialogue cases of the Persona-Chat dataset
with output responses in Table 7. We observe
that CG-nAR can successfully output context-
associated concepts, e.g., grow vegetable that is
related to garden, and singer that is related to
country music. Compared to other baselines, CG-
nAR produces a response that is more coherent and
relevant to the dialogue context, and shows a more

SHere we test the autoregressive baselines with a beam
size of 3 (used for their best scores). Without beam-search,
they have significantly worse results, so we do not compare
speed-ups with that version.
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A: What do you do for work? A: Hi. How are you doing?
B: No work just the hits that’s all I need. B: I'm good, just finished practicing the
Context A:Isee, I am a volunteer at my local guitar. You?
animal shelter. B: Do you do that for a living?
B: Well this good work. I am a veteran and I | A: No, just a hobby because country music
have a garden. is my favorite.
Ground Truth Thank you for your service! Do you grow Who is your favorite singer?
any vegetables?
ReCoSa That’s cool. Do you have any pets? I’'m a teacher. I've a dog.
Seq2BF Cool! I work part time at an animal shelter. I like music. I love my job.
CCM I’'m a teacher. What do you do? Do you have any hobbies?
ConceptFlow | I enjoy to eat organic foods. I love music. What are your hobbies?
CG-nAR Do you grow vegetable for a living? That’s cool. Who is your favorite singer?

Table 7: Dialogue cases with output responses from different systems. Words in Blue are the observed concepts
in the dialogue flow. Words in Red represent the context-associated concepts in the output response.

natural transition of concepts, which again proves
the effectiveness of our concept-guided non-AR
strategy for controllable dialogue generation.

6 Conclusion

In this work, we propose a novel concept-guided
non-autoregressive approach for open-domain dia-
logue generation. It consists of a multi-concept
planning module that selects multiple context-
relevant concepts to facilitate a coherent dialogue,
and a customized Insertion Transformer that pro-
duces a response based on the selected concepts to
control the generation process. The experimental
results show that our method can not only produce
high-quality responses, but can also significantly
speed up the inference time.
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