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Abstract

We present a grounded neural dialogue model

that successfully collaborates with people in a

partially-observable reference game. We focus

on a setting where two agents each observe

an overlapping part of a world context and

need to identify and agree on some object they

share. Therefore, the agents should pool their

information and communicate pragmatically

to solve the task. Our dialogue agent accu-

rately grounds referents from the partner’s ut-

terances using a structured reference resolver,

conditions on these referents using a recurrent

memory, and uses a pragmatic generation pro-

cedure to ensure the partner can resolve the ref-

erences the agent produces. We evaluate on

the OneCommon spatial grounding dialogue

task (Udagawa and Aizawa, 2019), involving a

number of dots arranged on a board with con-

tinuously varying positions, sizes, and shades.

Our agent substantially outperforms the previ-

ous state of the art for the task, obtaining a

20% relative improvement in successful task

completion in self-play evaluations and a 50%

relative improvement in success in human eval-

uations.

1 Introduction

In grounded dialogue settings involving high de-

grees of ambiguity, correctly interpreting and in-

formatively generating language can prove chal-

lenging. Consider the collaborative dialogue game

shown in Figure 1. Each player has a separate, but

overlapping, view on an underlying context. They

need to communicate to determine and agree on

one dot that they share, and both players win if they

choose the same dot. To succeed, each participant

must—implicitly or explicitly—ground their part-

ner’s descriptions to their own context, maintain

a history of what’s been described and what their

partner is likely to have, and informatively convey

parts of their own context.

We present a grounded pragmatic dialogue sys-

tem which collaborates successfully with people

Underlying Hidden State

Agent’s View Partner’s View

A: I have two large light grey dots with a smaller darker dot
below and to the right of it

P: I have one large lightest grey dot in my entire view
A: I have two large light grey dots
P: There is a smaller slightly darker grey dot next to the

lightest grey and larger dot
A: Yes , let’s pick the light one
P: The light grey and large dot?
A: Yes it ’s the one . Let’s pick that one
P: SELECT red
A: SELECT blue

Figure 1: An example dialogue produced by our system

(A) with a human partner (P). The participants have dif-

ferent but overlapping views of a shared board, which

contains dots of different shapes and sizes. The part-

ners must collaborate through dialogue in order to find

and select a dot that is visible to both.

on the task above. Figure 1 shows a real example

game between our system and a human partner.

Our approach is centered around a structured mod-

ule for perceptually-grounded reference resolution.

This reference resolution module plays two roles.

First, the module is used to interpret the partner’s

utterances: explicitly predicting which referents (if

any) in the agent’s context the partner is referring

to, for example a smaller darker grey dot and the

lightest grey and larger dot. Second, the reference

module is used for pragmatic generation: choos-

ing utterances by reasoning about how the partner

might interpret them in context. Our pragmatic gen-

eration procedure selects referents to describe as

well as choosing how to describe them, for example

focusing on the light one (Figure 1).
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Much past work that has constructed systems

for grounded collaborative dialogue has focused

on settings that have asymmetric player roles (Kim

et al., 2019; de Vries et al., 2018; Das et al., 2018,

2017), are fully-observable, or are grounded in

symbolic attributes (He et al., 2017). In contrast,

we focus on the ONECOMMON corpus and task

(Udagawa and Aizawa, 2019), which is symmetric,

partially-observable, and has relatively complex

spatial and perceptual grounding. These traits ne-

cessitate complex dialogue strategies such as com-

mon grounding, coordination, clarification ques-

tions, and nuanced acknowledgment (Udagawa and

Aizawa, 2019), leading to the task being challeng-

ing even for pairs of human partners.

Past work on ONECOMMON has focused on

the subtask of reference resolution (Udagawa and

Aizawa, 2020; Udagawa et al., 2020) and only

evaluated dialogue systems automatically: using

static evaluation on human–human games and

self-play evaluations that simulate human part-

ners using another copy of the agent. Our sys-

tem outperforms this past work on these eval-

uations. We further confirm these results by

performing—for the first time on this task—human

evaluations, where we find that our system ob-

tains a 50% relative increase in success rate over

a system from past work when paired with hu-

man partners. We release code for our system at

https://github.com/dpfried/onecommon.

2 Setting

We choose to focus on the ONECOMMON task

(Udagawa and Aizawa, 2019) since it is a par-

ticularly challenging representative of a class of

partially-observable collaborative reference dia-

logue games (e.g., He et al. 2017; Haber et al.

2019). In this task, two players have different but

overlapping views of a game board, which consists

of dots of various positions, shades of gray and

sizes. The players must coordinate to choose a

single dot that both players can see, which is chal-

lenging because neither knows which dots the other

can see.

Each player’s world view, w, consists of a cir-

cular view on an underlying board containing be-

tween 8 and 10 randomly scattered dots, with con-

tinuously varying positions, shades, and sizes (Fig-

ure 1). Each player’s view contains 7 dots, and

the views of the players overlap so that there are

between 4 and 6 dots which appear in both views.

We focus on a turn-based version of the dialogue

task. In a given turn t, a player may communicate

with their partner by either sending an utterance

ut or selecting a dot s. In the event of selection,

the partner is notified but cannot see which dot the

player has selected. Once a player has selected a

dot, they can no longer send messages. The dia-

logue ends once both players have selected a dot,

and is successful if both selected the same one.

3 Model Structure

Our approach is a modular neural dialogue model

which factors the agent’s generation process into

a series of successive subtasks, all centered on

grounding language into referents in the world

context. In this section, we describe our model

structure, which defines a neural module for each

subtask. We then describe our reference-centric

pragmatic generation procedure in Section 4.

An overview of the relationship between mod-

ules in our model is shown in Figure 2. Each mod-

ule can condition on neural encodings of the con-

text (the world and past dialogue), as well as the

outputs of other modules. We describe our sys-

tem at a high-level here, then give task-specific

implementation details about each component in

Section 5.

3.1 Context Encodings

Our modules can condition on encodings of (i) the

past utterances u1:t in the dialogue, represented as

a memory vector Ht produced by a word-level re-

current encoder and (ii) the continuous dots in the

world context w, produced by the entity encoding

network of Udagawa and Aizawa (2020), which

produces a vector w(d) for each dot d encoding

the dot’s continuous attributes as well as its pair-

wise attribute relationships to all other dots in the

context (Santoro et al., 2017). (i) and (ii) both fol-

low Udagawa and Aizawa (2020). To explicitly

encourage the model to retain and use information

about the history of referents mentioned by both

players, which affects the choice of future refer-

ents as well as the selection of dot at the end of

the game, we also use (iii) a structured recurrent

referent memory grounded in the context. This

memory, inspired by He et al. (2017), has one repre-

sentation for each dot d in the agent’s view, Mt(d),
which is updated based on the referents predicted

in turn t. See Section 5.4 for details.

https://github.com/dpfried/onecommon
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Reference Detector

Reference Resolution

Partner: Do you see a large black dot to the left of the three grey dots?

large black dot three grey dots

1

2

Mention Prediction
4

Yes, I see that, Let’s select the black

Utterance Generation
5

Memory Update

Confirmation

one

3

Figure 2: In a given turn, an agent first identifies referring expressions in their partner’s utterance ut using the

reference detector (1). Each reference is then resolved with the reference resolution module (2), which uses

encoded representations z1:Kt of the reference segments and the world context w. The referents are then used to

update the referent memory Mt, and cross-referenced against the agent’s own dots to confirm whether or not the

agent can also see them (3). Given the referent memory Mt and confirmation variable ct+1, the mention prediction

module (4) produces a sequence of dot configurations z
1:Kt+1

t+1 to mention. Finally, the utterance generation module

(5) uses the dialog history Ht, confirmation variable, and attended representations of the selected mentions and

world context to generate a response ut+1.

3.2 Decomposing Turns into Subtasks

We assume turn t+1 in the dialogue has the follow-

ing generative process (numbers correspond to Fig-

ure 2). Steps (1) and (2) identify and resolve refer-

ring expressions in the partner’s utterance ut; step

(3) updates the memory and determines whether the

model can confirm any referents from the partner’s

utterance; steps (4) and (5) produce the agent’s next

utterance ut+1.

(1) First, a sequence of Kt (with Kt ≥ 0) referring

expressions are identified in ut using the reference

detector tagging model of Udagawa and Aizawa

(2020)1, and encodings zt = z1:Ktt are obtained for

them by pooling features from a recurrent utterance

encoder.

(2) Then, the referring expressions are grounded.

From each referring expression’s features zk, we

predict a referent rk, which is the set of zero or

more dots in the agent’s own view which are de-

scribed by the referring expression. For exam-

ple, the referring expression three gray dots cor-

responds to a single referent containing three dots.

A reference resolution module PR(rt | zt, w,M),
where rt = r1:Ktt , predicts a sequence of referents,

one for each referring expression.

(3) Given these referents, the agent updates the ref-

erent memory Mt using the predicted referents and

constructs a discrete confirmation variable ct+1,

which indicates whether the agent can confirm in

1Udagawa and Aizawa refer to this as a markable detector
given their work’s focus on referent annotation.

its next utterance that it has all the referents the

partner is describing (e.g., Yes, I see that). ct+1

takes on one of three values: NA if no referring

expressions were in the partner’s utterance, YES if

all of the partner’s referring expressions have refer-

ents that are at least partially visible in the agent’s

view, and NO otherwise.

(4) The agent chooses a sequence of referents to

mention next using a mention prediction module

PM (rt+1 | ct+1,Mt+1, Ht, w).
(5) Finally, the next utterance ut+1 is produced us-

ing an utterance generation module PU (ut+1 |
rt+1, ct+1, Ht, w), also updating the word-level re-

current memory Ht+1.

At the end of the dialogue (turn T ), the agent

selects a dot s using a choice selection module

PS(s | HT ,MT , w) (not shown in Figure 2).2

Modules that predict referents (reference resolu-

tion, mention selection, and choice selection) are

all implemented using a structured conditional ran-

dom field (CRF) architecture (Section 5.2), with

independent parameterizations for each module.

Our model bears some similarities to Udagawa

and Aizawa (2020)’s neural dialogue model for this

task: both models use a reference resolution mod-

ule3 and both models attend to similar encodings

2The choice selection module is invoked when the utter-
ance generation model predicts a special <SELECT> token,
following Udagawa and Aizawa (2020).

3Our model, however, uses a structured CRF while Uda-
gawa and Aizawa’s model does not use structured output mod-
eling.
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of the dots in the agent’s world view (w(d)) when

generating language. Crucially, however, our de-

composition of generation into subtasks results in

a factored, hierarchical generation procedure: our

model identifies and then conditions on previously-

mentioned referents from the partner’s utterances,4

maintains a structured referent memory updated at

each utterance, and explicitly predicts which ref-

erents to mention in each of the agent’s own utter-

ances. In Section 4, we will see how factoring the

generation procedure in this way allows us to use a

pragmatic generation procedure, and in Section 6

we find that each of these components improves

performance.

4 Pragmatic Generation

The modules as described above can be used to gen-

erate the next utterance ut+1 using the predictions

of PM (rt+1) and PU (ut+1|rt+1) (omitting other

conditioning variables from the notation for brevity;

see Section 3 for the full conditioning contexts).

This section describes an improvement, pragmatic

generation, to this process. Referents and their ex-

pressions should be relevant in the dialogue and

world context, but they should also be discrimina-

tive (Dale, 1989): allowing the listener to easily

understand which referents the speaker is intending

to describe. Our pragmatic generation approach,

based on the Rational Speech Acts (RSA) frame-

work (Frank and Goodman, 2012; Goodman and

Frank, 2016), uses the reference resolution mod-

ule, PR(rt+1|ut+1), to predict whether the partner

can identify the intended referents. This encour-

ages selecting referents that are easy for the partner

to identify and describing them informatively in

context.5

We use the following objective over referents r

and utterances u for a given turn:

argmax
r,u

L(r, u)

L(r, u) = PM (r)wM · PU (u|r)
wS · PR(r|u)

wL

(1)

where wM , wS , and wL are hyperparameters.

4Udagawa and Aizawa used the reference resolution mod-
ule only to define an auxiliary loss at training time.

5Note that the reference resolution model, which has ac-
cess to the agent’s own view and not the partner’s, can only
approximate whether the referents are identifiable by the part-
ner; nevertheless we find that it is beneficial for pragmatic
generation. Future work might explore also inferring and
using the partner’s view.

Partner: Do you see a large black dot to the left of the three grey dots?

Mention Prediction

Utterance Generation

(1) Yes, I see that. Let’s select the grey one.
(2) Yes, I see that. Let’s select the right one.
(3) Yes, I see that. Let’s select it.
...

(1) Yes, I see that. Let’s select the black one.
(2) Yes, I see that. Let’s select the left one.
(3) Yes, I see that. Let’s select the middle.
...

(1)

(2)✔ ✔

Utterance Generation

Figure 3: Agents optimize for a combination of flu-

ency and informativity during pragmatic utterance gen-

eration (Section 4 and Algorithm 1). A set of paired

candidate referents (from the mention prediction mod-

ule) and utterances (from the utterance generation mod-

ule) is rescored using L(r, u) (Equation 1), a weighted

geometric mean of scores from the mention prediction,

utterance, and reference resolution modules. The pair

of referent and utterance that maximizes this score is

chosen as a response.

This objective generalizes the typical RSA setup

(as implemented by the weighted pragmatic infer-

ence objective of e.g., Andreas and Klein 2016 and

Monroe et al. 2017), which chooses how to describe

a given context (i.e., choosing an utterance u), to

also choose what context to describe (i.e., choos-

ing the referents r). Our objective also models the

tradeoff, explored in past work on referring expres-

sion generation (Dale, 1989; Jordan and Walker,

2005; Viethen et al., 2011), between producing ut-

terances relevant in the discourse and world context

and producing utterances that are discriminative.

We use PU and PM to model discourse and world

relevance, PS to model discriminability, and the

weights w to empirically model the tradeoff be-

tween them.

Given the combinatorially-large spaces of possi-

ble r and u, we rely on an early-stopping approxi-

mate search, which to our knowledge is novel for

RSA. The search (illustrated in Figure 3) iterates

through the highest probability structured referent

sequences r under the mention prediction module

PM (Figure 3 shows the top two) and for each r

sampling Nu utterances u from the utterance gen-

eration module (Figure 3 shows three u per r). If

the maximum of these (r, u) pairs under L is better

than an early-stopping threshold value τ , we return

the pair. Otherwise, we continue on to the next r.

If more than Nr referent sequences have been eval-

uated, we return the best (r, u) pair found so far.

See Appendix C for pseudocode and a discussion

of robustness to the threshold τ .
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5 Module Implementations

As described so far, our system is applicable to a

range of partially-observable grounded collabora-

tive referring expression dialogue tasks (e.g., He

et al. 2017; Haber et al. 2019). In this section, we

describe implementations of our systems’ modules,

some of which are tailored to ONECOMMON.

5.1 Reference Detection

We identify a sequence of referring expressions in

the utterance using the reference detector of Uda-

gawa and Aizawa (2020), a BiLSTM-CRF tagger

(Huang et al., 2015). Then, following Udagawa

and Aizawa (2020), we obtain features zk for each

of the K referring expressions in the utterance (for

use in the reference resolution model) with a bidi-

rectional recurrent encoder, using learned weights

to pool the encodings at the referring expression’s

boundaries as well as the end of the utterance.6

5.2 Structured Reference Resolution

We use a structured reference resolution module to

ground the referring expressions identified above:

identifying dots in the agent’s own view described

by each expression. Grounding referents in this do-

main involves reasoning not only about attributes

of individual dots but also spatially and compar-

atively within a single referring expression (e.g.,

a line of three dots) or across referring expressions

(e.g., a large grey dot left of a smaller dot).

To predict a sequence of referents r = r1:K from

the K referring expression representations z1:K ex-

tracted above, we use a linear-chain CRF (Lafferty

et al., 2001) with neural potentials to parameterize

PR(r
1:K |z1:K , w,M). This architecture general-

izes the reference resolution and choice selection

models of Udagawa and Aizawa (2020) and Uda-

gawa et al. (2020) to model, in the output structure,

relationships between dots, both inside and across

referring expressions.

There are three different types of potentials, de-

signed to model language-conditioned features of

individual dots d in a referent r, φ; relationships

within a referent, ψ, and transitions between suc-

cessive referents, ω. Given these potentials, the

6The bidirectional encoder only has access to the utter-
ances that have been produced so far, i.e., u1:t when the agent
is generating utterance ut+1.

distribution is parameterized as

P (r1:K |z1:K) ∝

exp

(

∑

k

f(rk, zk) + ψ(rk, zk) + ω(rk:k+1
, z
k:k+1)

)

,

where f(r, z) =
∑

d∈r φ(d, z), and we’ve omitted

the dependence of all terms onM andw for brevity.

We share all module parameters across the two

subtasks of resolving referents for the agent and for

the partner.7

Individual Dots. Dot potentials φ model the cor-

respondence between language features zk and in-

dividual dots represented by encodings w(d), as

well as discourse salience using the dot-level mem-

ory M(d) that tracks when the dot d has been men-

tioned:8

φ(d, zk) = MLPφ([M(d), zk, w(d)])

Dot Configurations. Configuration potentials

ψ(rk, zk) model the correspondence between lan-

guage features and the set of all active dots in the

agent’s view for a referent rk. These potentials

further decompose into (1) pairwise potentials be-

tween active dots in the configuration, which relate

the language embedding zk to attribute differences

between dots in the pair (including as relative po-

sition, size, and shade) and (2) a potential on the

entire configuration, which relates the language

embedding to an embedding for the count of active

dots in the configuration. See Appendix A.1 for

more detail.

Configuration Transitions. Transition poten-

tials ω(rk, rk+1, zk, zk+1) model the correspon-

dence between language features and relationships

between referring expressions, e.g., to the left of in

the black dot to the left of the triangle of gray dots.

See Appendix A.1 for details.

5.3 Confirmations

When applied to the partner’s utterances, the ref-

erence resolution module gives a distribution over

which referents the partner is likely to be refer-

ring to in the agent’s own context. If the agent can

identify the referents its partner is describing, it

should be able to confirm them, both in the dots it

7Parameters are shared for efficiency; sharing had little
effect on performance in preliminary experiments.

8For the subtasks of reference resolution and choice se-
lection, dot potentials are the same as the attention module
used by Udagawa and Aizawa (2020), with the addition of the
memory M .
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talks about next (e.g., choosing to refer to one of

the same dots the partner identified) and in the text

of the utterances (e.g., yes, I see it). The discrete-

valued confirmation variable (defined in Section 3)

models this, taking the value NA if no referring ex-

pressions were identified in the partner’s utterance,

YES if all of the K > 0 referring expressions have

a non-empty referent (at least one dot predicted in

the agent’s context) and NO otherwise.

5.4 Referent Memory

The memory state is composed of one state vec-

tor Mt(d) for each dot in the agent’s own context.

These dot states are updated using the referents

identified in each utterance. This update is pa-

rameterized using a decoder cell, which is applied

separately to each dot state:

Mt+1(d) = RNNC(Mt(d), ι(d, rt))

where ι is a function that extracts features from

the predictive distribution over referents from the

previous utterance, representing mentions of dot d

in the referring expressions. We implement the cell

using a GRU (Cho et al., 2014). See Appendix A.2

for more details.

5.5 Mention Selection

The mention selection subtask requires predicting

a sequence of referents to mention in the agent’s

next utterance, PM (rt+1 | u1:t,Mt+1, ct+1, w). To

produce these referents, we use the same structured

CRF architecture as the reference resolution mod-

ule PR. However, we use separate parameters from

that module, and instead of the referring-expression

inputs z use a sequence of vectors x1:Kt+1 pro-

duced by a decoder cell RNNM , implemented us-

ing a GRU (Cho et al., 2014). The decoder con-

ditions on the dialogue context representation Ht

from the end of the last utterance, a learned vec-

tor embedding for the confirmation variable ct+1,

and a mean-pooled representation of the memory

m = 1

|d|

∑

dM(d):

xk = RNNM (xk−1, [Ht, ct+1,m])

We obtain the number of referents Kt+1 by pre-

dicting at each step k whether to halt from each xk

using a linear layer followed by a logistic function.

5.6 Choice Selection

To parameterize the choice selection module PS(s |
u1:T ,MT , w), we again reuse the CRF architecture,

with independent parameters from reference resolu-

tion and mention selection modules, replacing ref-

erence resolution’s inputs z1:K with the dialogue

context representation HT from the end of the final

utterance in the dialogue. Since only a single dot

needs to be identified, we use only the CRF’s indi-

vidual dot potentials φ, removing ψ and ω. This is

equivalent to the choice selection model (TSEL)

used by Udagawa and Aizawa (2020) if the recur-

rent memory MT is removed.

5.7 Utterance Generation

The utterance generation module

PU (ut+1|rt+1, ct+1, Ht, w) is a sequence-to-

sequence model. The module first encodes the

sequence of dot encodings w(d) for dots in

the referents z
1:Kt+1

t+1
(predicted by the mention

selection module) to produce encodings y1:Kt .

Words in the utterance are then produced one at a

time using a recurrent decoder that has a hidden

state initialized with a function that combines y1:Kt ,

the dialog context Ht, and a learned embedding

for the discrete confirmation variable ct+1. The

decoder has two attention mechanisms over: (i) dot

encodings w(d), following Udagawa and Aizawa

(2020), and (ii) the sequence of encoded referents

y
1:Kt+1

t . See Appendix A.3 for details.

6 Experiments

We compare our approach to past systems for the

ONECOMMON dataset. While our primary evalu-

ation is to evaluate systems on their success rate

on the full dialogue game when paired with hu-

man partners (Section 6.4), we also compare our

system to past work, and ablated versions of our

full system, using the automatic evaluations of past

work.

6.1 Models

We compare our full system (FULL) to ablated ver-

sions of it that successively remove: (i) the referent

memory, ablating explicit tracking of referents men-

tioned (F–MEM) and (ii) the structured potentials

ψ, γ in the reference resolution and mention selec-

tion modules (F–MEM–STRUC), removing explicit

modeling of relationships within and across refer-

ents. We also compare to a reimplementation of

the system of Udagawa and Aizawa (2020), which

we found obtained better performance than their

reported results in all evaluation conditions due to

implementation improvements. See Appendix A.5.
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Choice Ref. Resolution

Model Acc. Acc. Ex.

U&A (2020) 69.3±2.0 86.4±0.4 35.0±2.0

U+ (2020) – 86.0±0.3 54.9±0.8

F–MEM–STRUC 71.6±0.9 87.7±0.2 44.3±0.5

F–MEM 70.9±1.2 92.6±0.2 76.2±0.5

FULL 83.3±1.2 93.3±0.2 78.2±0.5

Human 90.8 96.3 86.9

Table 1: Accuracies for predicting the dot selected

at the end of the game (Choice Acc.) and resolving

referents from utterances produced in the agent’s own

perspective (dot-level accuracy Acc. and exact match

Ex.) in 10-fold cross-validation on the corpus. Our

FULL model outperforms all past work on the dataset:

U&A (2020) is our reimplementation of Udagawa and

Aizawa (2020), and U+ (2020) are taken from Udagawa

et al. (2020). Human scores are annotator agreements

(Udagawa and Aizawa, 2019).

We obtain supervision for all components of the

systems by training on the referent-annotated cor-

pus of 5,191 successful human–human dialogues

collected by Udagawa and Aizawa (2019; 2020).

See Appendix A.6 for training details. We train

one copy of each model on each of the corpus’s 10

cross-validation splits. We report means and stan-

dard deviations across the splits’ models, except in

human evaluations where we use a single model.

6.2 Corpus Evaluation

Following Udagawa and Aizawa (2020), we evalu-

ate models’ accuracy at (1) predicting the dot cho-

sen at the end of the game (Choice Acc.) using

PS and (2) resolving the referents in utterances

from the human partner in the dialogue who had

the agent’s view (Ref Resolution dot-level accuracy

Acc. and exact match accuracy Ex.) using PR.

We see in Table 1 that our FULL model improves

substantially on past work, including the work of

Udagawa et al. (2020), who augment their refer-

ent resolution model with numeric features. Our

structured reference resolver is able to learn these

features in its potentials ψ (in addition to other

structured relationships), and improves exact match

from 44% to 76% compared to the ablated version

of our system. Our recurrent memory helps in

particular for the choice selection task, improving

from 71% to 83% accuracy.

We also compare the performance of our full and

ablated systems on the tasks of resolving the part-

ner’s referring expressions and mention prediction,

with results given in Appendix B.

Model #Shared=4 #Shared=5 #Shared=6

U&A (2020) 50.7±2.0 66.0±1.9 83.5±1.5

F–MEM–STRUC 42.3±2.1 57.0±2.1 75.4±1.1

F–MEM 52.6±1.5 67.1±1.9 84.1±1.6

FULL 58.5±2.7 71.6±2.9 86.8±1.8

FULL+PRAG 62.4±2.2 74.7±2.7 90.9±1.4

Human 65.8 77.0 87.0

Table 2: Task success rates in automatic self-play eval-

uations, by difficulty of context (the number of items

shared in the players’ views). Our FULL model out-

performs past work: U&A (2020) is our tuned reim-

plementation of Udagawa and Aizawa (2020). Human

shows success rates of trained human annotators in col-

lecting the dataset (Udagawa and Aizawa, 2019).

6.3 Evaluation in Self-Play

To evaluate systems on the full dialogue task, we

first use self-play, where a system is partnered with

a copy of itself, following Udagawa and Aizawa

(2020). We evaluate systems on 3,000 world con-

texts, stratified into contexts with 4, 5, and 6 dots

overlapping between the two agents’ views, with

1,000 contexts in each stratification.

Table 2 reports average task success (the fraction

of times both agents chose the same dot at the end

of the dialogue) averaged across the 10 copies of

each model trained on the cross-validation splits.

As in the corpus evaluation, we see substantial im-

provements to our system from the structured refer-

ent prediction and the recurrent reference memory.

Our Full system, without pragmatic generation, im-

proves over the system of Udagawa and Aizawa

(2020) from 51% to 58% in the hardest setting,

with a further improvement to 62% when adding

our pragmatic generation procedure.

6.4 Human Evaluation

Finally, we perform human evaluation by compar-

ing system performance when playing with work-

ers from Amazon’s Mechanical Turk (MTurk). To

conduct evaluation, we used 100 world states from

the #Shared=4 partition, and collected 718 com-

plete dialogues by randomly pairing worker with

one of the following three: our best-performing

model in self-play (FULL+PRAG), the model from

Udagawa and Aizawa (2020), or another worker.

In order to ensure higher quality dialogues, and

following Udagawa and Aizawa (2019), we filtered

workers by qualifications, showed workers a game

tutorial before playing, and prevented dots from be-

ing selected within the first minute of the game. We
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Figure 4: Success rates of systems on the full dialogue

game task when paired with human partners. Error

bars show standard errors. Our FULL+PRAG system

achieves a 50% relative performance improvement over

past work (U&A 2020: Udagawa and Aizawa 2020).

paid workers $0.30 per game, with a bonus of $0.15

if the dialogue was successful. See Appendix E for

sample dialogues.

We compare systems based on the percentage

of successful dialogues. The results, in Figure 4,

corroborate the trends observed in self-play. Both

the models of U&A (2020) and our FULL+PRAG

perform worse against humans than against agent

partners in the automatic self-play evaluation, illus-

trating the importance of performing human evalu-

ations. However, the trend is preserved, and we see

that the FULL+PRAG system substantially outper-

forms the U&A (2020) model, resulting in a 50%

relative improvement in task success rate. This dif-

ference is statistically significant at the p ≤ 0.05
level using a one-tailed t-test.

6.5 Success by Human Skill Level

In Section 6.4, we compared our systems to a hu-

man population of MTurk workers. However, hu-

man populations themselves vary greatly based on

many factors, including the day and time workers

are recruited, training and feedback given to work-

ers, and worker retention. One difference between

our worker population and the population that pro-

duced the dataset is training. When collecting the

dataset, Udagawa and Aizawa (2019) performed

manual and individualized coaching of their MTurk

workers which made them more effective at the

game: giving players personalized feedback on

how to improve their game strategies, e.g., “please

ask more clarification questions.”9 Manual coach-

ing produced a high-quality corpus by increasing

players’ skill and obtained a success rate of 66%;

9Udagawa and Aizawa also manually removed around 1%
of dialogues where workers did not follow instructions. While
we do not perform post-hoc manual filtering of the dialogues,
in order to avoid introducing systematic bias that would favor
or disfavor one of the systems we compare, an inspection of
a subset of our collected dialogues indicates a similarly high
fraction of our workers were making a good effort at the task.
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Figure 5: Success rates of human players against each

system type, and other humans, with progressive filter-

ing of humans by their overall success rate (across all

conditions) along the x-axis. Shaded regions give stan-

dard errors. Our FULL+PRAG system outperforms past

work (U&A 2020) at all levels.10

however coaching would make human evaluations

difficult to replicate across works due to the labor,

cost, and variability that coaching involves.

In this section, we run a sweep of system compar-

isons of the form of Section 6.4, but on increasingly

select sub-populations of MTurk workers. Results

are shown in Fig. 5. The x-axis gives the minimum

skill percentile for a worker’s games to be retained

(with a worker’s skill defined to be their average

success across all games; see Appendix D for an al-

ternative), so that the far left of the graph shows all

workers (corresponding to the numbers in Fig. 4),

the far right shows only those workers who won all

of their games, and the black vertical line marks the

player filtering needed to obtain a human-human

success rate comparable to Udagawa and Aizawa

(2019). Our FULL+PRAG system outperforms the

model of Udagawa and Aizawa (2020) at all player

skill levels.10 This result shows that, while more

accomplished workers’ overall success rates can

be much higher than the success rate of our gen-

eral worker population, in all cases the ordering

between the two systems remained the same.

7 Related Work

Goal-oriented dialog. The modular approach

that we use reflects the pipelined approach often

used in goal-oriented dialogue systems (Young

et al., 2013). Recent work on neural systems has

also used structured and memory-based approaches

(Bordes et al., 2017; He et al., 2018) including

10Until, by necessity, the point where filtering removes all
workers who lost a game against any system. Differences
between U&A’20 and FULL+PRAG are significant at the p ≤
0.05 level by a one-tailed t-test for minimum worker overall
skills up to the 68th percentile.
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tracking entities identified in text (Williams et al.,

2017; He et al., 2017). We also find improvements

from an entity-centric approach with a structured

memory, although our domain involves more chal-

lenging entity resolution and generation due to the

spatial grounding.

Referring expressions. A long line of past work

on referring expression grounding has tackled gen-

eration (Dale, 1989; Dale and Reiter, 1995; Vi-

ethen et al., 2011; Krahmer and van Deemter,

2012), interpretation (Schlangen et al., 2009; Liu

et al., 2013; Kennington and Schlangen, 2015) or

both (Heeman, 1991; Mao et al., 2016; Yu et al.,

2017). Closest to ours is the work of Takmaz et al.

(2020), which builds models for reference interpre-

tation and generation in the rich PhotoBook corpus

(Haber et al., 2019), focusing on a non-interactive

setting with static evaluation on reference chains

extracted from human-human dialogues.

Collaborative games. The closest work on di-

alogue systems for collaborative grounded tasks

has focused on tasks with different properties from

ours, as discussed in Section 1. A closely re-

lated task to the shared visual reference game we

pursue here is the PhotoBook task (Haber et al.,

2019), although a dialogue system has not been

constructed for it. Other work on grounded collab-

orative language games includes collection games

(Potts, 2012; Suhr et al., 2019), navigation and in-

teractive question games (Thomason et al., 2019;

Nguyen and Daumé III, 2019; Ilinykh et al., 2019),

and construction tasks (Wang et al., 2017; Kim

et al., 2019; Narayan-Chen et al., 2019).

Pragmatics. Our approach to pragmatics (Grice,

1975) builds on a large body of work in the RSA

framework (Frank and Goodman, 2012; Goodman

and Frank, 2016), which models how speakers

and listeners reason about each other to commu-

nicate successfully. The most similar applications

to ours in past work on computational pragmat-

ics have been to single-turn grounded reference

tasks (rather than dialogue), with much smaller

and unstructured spaces of referents than ours,11

such as discriminative image captioning (Vedan-

tam et al., 2017; Andreas and Klein, 2016; Cohn-

Gordon et al., 2018) and referent identification

(Monroe et al., 2017; McDowell and Goodman,

2019; White et al., 2020). Explicit speaker–listener

11Our setting has 27 possible referents for each referring
expression in the dialogue.

models of pragmatics have also been used for di-

alogue, and while these approaches plan or infer

across multiple turns (which our work does not do

explicitly), they have either involved ungrounded

settings (Kim et al., 2020) or constrained language

(Vogel et al., 2013; Khani et al., 2018).

8 Conclusion

We presented a modular, reference-centric ap-

proach to a challenging partially-observable

grounded collaborative dialogue task. Our ap-

proach is centered around a structured referent

grounding module, which we use (1) to interpret a

partner’s utterances and (2) to enable a pragmatic

generation procedure that encourages the agent’s ut-

terances to be able to be understood in context. We

perform, for the first time, human evaluations on

the full dialogue task, finding that our system coop-

erates with people substantially more successfully

than a system from past work and—in aggregate—

achieves a success rate comparable to pairs of hu-

man partners.

While our results are encouraging, there is still

much room for improving all systems in their in-

teractions with people on this challenging task.

As the examples in Appendix E illustrate, people

use sophisticated conversational strategies to build

common ground (Clark and Wilkes-Gibbs, 1986;

Traum, 1994; Clark, 1996) when they interact with

each other, producing utterances that play multi-

ple conversational roles and performing complex

reasoning. To better plan utterances (Cohen and

Perrault, 1979) and more accurately infer the part-

ner’s state (Allen and Perrault, 1980), we suspect it

will be helpful to extend the single-step pragmatic

utterance planning and implicit inference proce-

dures that we use here: planning over longer time

horizons, performing more explicit reasoning un-

der uncertainty, and learning richer models of the

full range of speech acts that people use. Future

work might continue to explore these directions on

this task and other similarly challenging tests of

collaborative grounding.
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A Model Details

A.1 Structured CRF

Dot Configurations. Dot configuration poten-

tials ψ(r, z) are composed of two terms: R(r, z)
which decomposes into functions of pairwise rela-

tionships between the dots (whether active or not)

in the context w and the text features z, and A(r, z)
which is a function of all active dots in the referent:

ψ(r, z) = R(r, z) +A(r, z)

The pairwise relationships are

R(r, z) =

N−1
∑

i=1

N
∑

j=i+1

α(r, z, i, j)

where N is the number of dots in view (7) and α is

a scalar-valued neural function of the text features

and whether the dots indexed by i and j are active

in the referent r:

α(r, z, i, j) =

{

p(z, i, j)0, r(i) ∧ r(j)
p(z, i, j)1, ¬r(i) ∧ ¬r(j)
p(z, i, j)2, otherwise

p is a 3-dimensional vector produced by an MLP:

p(z, i, j) = MLPψ([w(i)− w(j), z])

The active dot potential A is designed to model

group properties such as cardinality and common

attributes, which other work has found useful on

this and similar tasks (Tenbrink and Moratz, 2003;

Udagawa et al., 2020). We define the potential as

A(r, z) = MLPA([w(r), e(r)])

where w(r) is the mean of the feature values for

the active dots in r, 1

|ractive|

∑

d∈ractive
w(d) and

e(r) is a learned 40-dimensional embedding for

the discrete count of active dots in r.

Configuration Transitions. The configuration

transition potential ω(rk:k+1, zk:k+1) is similar to

the dot configuration potential above but bridges

the dots in referents k and k+1. It is the sum of two

terms: ω(rk:k+1, zk:k+1) = S(rk:k+1, zk:k+1) +
B(rk:k+1, zk:k+1). First is S, which decomposes

into pairwise relationships between dots across ref-

erents rk and rk+1:

S(rk:k+1, zk:k+1) =

N
∑

i=1

N
∑

j=1

β(rk:k+1, zk:k+1, i, j)

β(rk:k+1, zk:k+1, i, j) =

{

q0, rk(i) ∧ rk+1(j)
q1, ¬r

k(i) ∧ ¬rk+1(j)
q2, otherwise

q (short for q(zk:k+1, i, j)) is, like p in Dot Config-

urations, a 3-dimensional vector produced by an

MLP:

q = MLPω([w(i)− w(j), zk − zk+1])

Next is B, which is a function of the feature cen-

troids of the active dots in referents k and k+1. B

is defined analogously to A in Dot Configurations:

B(rk:k+1, zk:k+1)

= MLPB([w(r
k)− w(rk+1), zk − zk+1])

with w(r) again giving the mean of the fea-

ture values for the active dots in r. We fix

B(rk:k+1, zk:k+1) = 0 if |rkactive| > 3 or

|rk+1

active| > 3, which had little effect on model ac-

curacy but improves memory efficiency as it sub-

stantially reduces the number of group-pairwise

relationships that need to be computed.

Inference. We compute the normalizing constant

for the CRF distribution by enumerating the pos-

sible 27 assignments to each rk to compute the φ,

ψ, and ω potential terms, which can be performed

efficiently on a GPU. To compute the normaliz-

ing constant, which sums over all combinations of

assignments to these rk, we use the standard linear-

chain dynamic program. In training, we backprop-

agate through the enumeration and dynamic pro-

gram steps to pass gradients to the parameters of

the potential functions.

A.2 Referent Memory

The function ι collapses predicted values for the

dot d over K referents into a single representation

for the dot, which we do in two ways: by max-

and average- pooling predicted values for d across

the K referents. We also obtain the prediction val-

ues in two ways: by taking the argmax structured

prediction from PR, and by taking the argmax pre-

dictions from each dot’s marginal distribution. We

found that using these “hard” argmax predicted val-

ues gave slightly better results in early experiments

than using the “soft” probabilities from PR. In

combination, these give four feature values as the

output of ι(d, rt).
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A.3 Utterance Generation Module

We first use a bidirectional LSTM (Hochreiter and

Schmidhuber, 1997) to encode the sequence of K

referents-to-mention rt+1 = r1:Kt+1 , using the inputs

at each position k ∈ [1,K] a mean-pooled repre-

sentation of the world context embeddings for the

active dots in the referent: 1

|rkt+1|

∑

d∈rkt+1
w(d), to

produce a sequence of encoded vectors y1:Kt . We

make gated updates to the decoder’s initial state, up-

dating it with (i) a linear projection of the forward

and backward vectors for y1t and yKt , representing

the referent context and (ii) an embedding for the

discrete confirmation variable ct+1.

A.4 Implementation Choices

For our reimplementation of the system of Uda-

gawa and Aizawa (2020) in a shared codebase with

our system, we replace their tanh non-linearities

with ReLUs and use PyTorch’s default initializations

for all parameters. These improve performance

across all evaluation conditions in comparison to

the reported results.

For our system, we use separate word-level recur-

rent models, a Reader and a Writer, to summarize

the dialogue history. The Reader is bidirectional

over each utterance, and is used in the reference res-

olution and choice selection modules. The Writer is

unidirectional, and is used in the mention selection

and utterance generation modules.

A.5 Hyperparameters

Recurrent Unit Hyperparameters
Reader GRU size 512
Writer GRU size 512
Mention decoder RNNM size 512
Referent memory RNNC size 64
Confirmation embedding c size 512

CRF Hyperparameters
MLPφ hidden layers 2
MLPφ hidden size 256
MLPφ dropout 0.5
MLPψ and MLPω hidden size 64
MLPψ and MLPω dropout 0.2
MLPψ and MLPω hidden layers 1
MLPA and MLPB hidden size 64
MLPA and MLPB dropout 0.2
MLPA and MLPB hidden layers 1

Generation Hyperparameters
Sampling temperature in PU 0.25
# Utterance candidates, Nu 100
# Referent candidates, Nr 20
Mention weight, wM 0

Speaker weight, wS 1× 10−3

Listener weight, wL 1− wS
Early-stopping threshold, τ 0.8

Partner Refs. Next Refs

Model Acc. Ex. Ex.

F–MEM–STRUC 87.3±0.3 41.8±0.9 4.8±1.0

F–MEM 90.6±0.3 65.2±1.0 23.5±2.0

FULL 91.2±0.4 67.0±1.0 31.1±1.0

Table 3: Accuracies for resolving referents in the part-

ner’s view (dot-level accuracy Acc. and exact match

Ex.) and predicting the next referents to mention in the

dialogue (Next Refs Ex.) in 10-fold cross-validation on

the corpus of human–human dialogues. Our FULL ben-

efits from its recurrent referent memory (outperform-

ing F–MEM) and structured referent prediction module

(outperforming F–MEM–STRUC).

A.6 Training Details

For our full system and ablations, we train on each

cross-validation fold for 12 epochs using the Adam

optimizer (Kingma and Ba, 2015) with an initial

learning rate of 1 × 10−3 and early stopping on

the fold’s validation set. Our loss function is a

weighted combination of losses for the subtask ob-

jectives:

L = wS logPS(s|...)+

1

T

T
∑

t=1

(logPR(rt|...) + logPM (rt|...) + logPU (ut|...)),

where wS is a hyperparameter which we set to
1

32
following Udagawa and Aizawa (2020) and we

have omitted conditioning contexts from the proba-

bility distributions for brevity; see Section 3.2 for

the full contexts. We decay the learning rate when

the loss plateaus on validation data.

We train models on a Quadro RTX 6000 GPU.

Training takes around 1 day for models that use

the structured CRF, and several hours without the

structured CRF. Self-play evaluation takes around

1 hour.

B Evaluation for Other Subtasks

Table 3 gives performance accuracies for resolving

referents in the partner’s view (dot-level accuracy

Acc. and exact match Ex.) and predicting the next

referents to mention in the dialogue (Next Refs Ex.)

in 10-fold cross-validation on the corpus of human–

human dialogues. We observe improvements from

both the recurrent memory (comparing F-Mem to

Full) and the structured referent prediction module

(comparing F-Mem-Struc to Full) on both tasks.
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C Pragmatic Generation

We give pseudocode for the pragmatic generation

procedure (Section 4) in Algorithm 1. Figure 3

shows an example, showing 2 referents r (inputs to

the realize) function on the left, and 3 utterances

u sampled for each referent on the right. Fewer

thanNr referent candidates may be evaluated (as in

Figure 3) if one (r, u) pair is found with L(r, u) ≥
τ .

hyperparameters: Nr , Nu, τ
function generate(M,u1:t−1, ct, w):

(r̂, û, ŝ)← (None,None,−∞)
for r ∈ topkNr

PM (r|u1:t−1,M, c, w) :

u, s←realize(r)

if s > ŝ :
(r̂, û, ŝ)← (r, u, s)
if s ≥ τ :

break

return r̂, û
function realize(r):

for k ∈ 1 . . . Nu :

u(k)
∼ PU (· | r)

û← argmaxu(k) L(r, u(k)) (Eqn. 1 in Sec. 4)

ŝ← maxu(k) L(r, u(k))
return (û, ŝ)

Algorithm 1: Our pragmatic generation pro-

cedure chooses a sequence of referents r to

describe, and an utterance u to describe them,

to optimize the objective L(r, u) (Equation 1

in Section 4) using candidates from the models

PM and PU and an early stopping search with

threshold τ .

We used self-play evaluation on one of the cross-

validation splits to tune the early-stopping thresh-

old τ , selecting from among the values {0.0, 0.6,

0.7, 0.8, 0.9}. The optimal value was τ = 0.8,

but the success rate in self-play was fairly robust

to the value chosen (including τ = 0.0, which

results in performing pragmatic search only over

those utterances for the single highest-scoring ref-

erent sequence under PM ), with a range of about

2%. We did not evaluate without early-stopping

(searching over all candidate reference sequences

and utterances) as this would have made genera-

tion too computationally expensive to be feasible

in both self-play and human evaluations.

D Alternative Skill Analysis

In Section 6.5, we compared systems on increas-

ingly select sub-populations of MTurk workers,

selected by their average success across all condi-

tions (whether playing with other humans or one
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Minimum Worker Human-Human Skill Percentile

20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
r-C

on
di

tio
n 

Su
cc

es
s

Human -- Human
Human -- Full+Prag
Human -- U&A'20

Figure 6: Success rates of human players against each

system type, and other humans, with progressive fil-

tering of humans by their overall success rate (when

partnered with other humans) along the x-axis. Shaded

regions give standard errors. Our FULL+PRAG sys-

tem outperforms the model from Udagawa and Aizawa

(2020) at all levels.10

of the two system types). In this section, we run

a similar analysis but select workers by their aver-

age success when paired with human partners only.

Results are shown in Figure 6. The x-axis gives the

minimum skill percentile for a worker’s games to

be retained, with skill defined by a worker’s aver-

age success when paired with other human workers.

The far left of the graph shows all workers,12 the

far right shows only those workers who won all

of their games when paired with other workers,

and the black vertical line marks the player filter-

ing needed to obtain a human-human success rate

comparable to Udagawa and Aizawa (2019). As

we saw in Section 6.5, our FULL+PRAG system

outperforms the model of Udagawa and Aizawa

(2020) at all worker skill levels. However, focus-

ing on the sub-population of workers who are suc-

cessful when paired with other humans (the right

side of Figure 6) reveals a gap between humans

and our system: humans who are successful when

partnering with other humans are substantially less

successful when partnering with our FULL+PRAG

system (and even less successful when partnering

with the model of U&A’20). This indicates room

for improvement on the task, as we want to build a

system that can collaborate as well as humans with

any population of human partners.

E Dialogue Examples

We show one successful and one failed dialogue

from our human evaluations (Section 6.4) for each

system (Figure 7) and from human–human pairs

12After filtering to remove any workers who did not play at
least one game with another human worker.
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(Figure 8).

As seen in these examples, descriptions from

the baseline system (Figures 7a and 7b) typically

have a consistent syntactic structure (e.g., “i have

a <size> <color> dot with a <size> <color> dot

<spatial relation>”) but often do not correspond to

the visual context. We suspect that it is difficult

for this end-to-end generation model to simultane-

ously learn which dots to talk about (content selec-

tion) and how to describe them (surface realization)

with the amount of training data available. Our

FULL+PRAG system (Figures 7c and 7d) produces

broader and generally more accurate utterances,

which we attribute to our factored and pragmatic

generation procedure.

Our system’s utterances still have substantial

qualitative differences from those in human-human

dialogues (Figure 8), which—due to the richness

of the task (Udagawa and Aizawa, 2019)—often

use more complex strategies. Human strategies

can unfold across multiple turns, e.g., introducing

information in installments or referring to the same

dot in multiple turns without being repetitive, as

A does when providing more information about

the “light grey dot“ in Figure 8a. Sophisticated

strategies are also used even in single turns, e.g.,

in Figure 8b, B’s utterance “is one on top of the

other? if so pick the top one” combines multiple

types of speech act (Austin, 1962; Searle, 1976):

implicitly acknowledging A’s utterance, asserting

new information about the dots in view, and issuing

a command.
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Human’s view U&A20’s view

U&A’20: i have a large light gray dot with a
small black dot above it and to the left

Human: I don’t see that. I have a dark gray dot
on the line between 7 and 8 o’clock.

U&A’20: yes
Human: Let’s pick that!
U&A’20: ok
Human: SELECT red
U&A’20: SELECT blue

(a) An unsuccessful dialogue between a human and the system
of Udagawa and Aizawa (2020).

Human’s view Full+Prag’s view

U&A’20: i have a large black dot with a smaller
light grey dot to the left of it

Human: I don’t see that. I have a medium dark
dor to the left of all the others.

U&A’20: i have a large black dot with a smaller
one that is a little lighter and to the left of it .

Human: I have a large light gray with a medium
light gray above it.

U&A’20: yes , let ’s click the larger one
Human: SELECT red
U&A’20: SELECT blue

(b) A successful dialogue between a human and the system
of Udagawa and Aizawa (2020).

Human’s view Full+Prag’s view

FULL+PRAG: large black dot with a small light
grey dot above it

Human: Also have a large gray dot with 3
smaller dots around it

FULL+PRAG: i do n’t have that
Human: Medium sized and light gray dot

towards the middle
FULL+PRAG: yes , let ’s pick the larger one
Human: SELECT red
FULL+PRAG: SELECT blue

(c) An unsuccessful dialogue between a human and our
FULL+PRAG system.

Human’s view Full+Prag’s view

FULL+PRAG: i have a group of 3 dots , a tiny
light grey and a large dark grey

Human: yes me too
FULL+PRAG: let us select the small black
Human: okay
FULL+PRAG: pick the small black dot
Human: okay i will
FULL+PRAG: ok
Human: SELECT red
FULL+PRAG: SELECT blue

(d) A successful dialogue between a human and our
FULL+PRAG system.

Figure 7: Example dialogues collected during our human evaluation (Section 6.4) of the dialogue systems. We

show one unsuccessful (left) and one successful (right) example for each system. The top row is our reimple-

mentation of Udagawa and Aizawa (2020) and the bottom row is FULL+PRAG, our full system with pragmatic

inference.
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Human A’s view Human B’s view

Human B: three light grey dots in a diagonal line
Human A: i dont have that but i have a black

dot neer the top to the right, the only
black dot in the circle

Human B: i have two black dots. find something else
Human A: ok i have a light grey dot by itself

at the bottom to the left. right on the line
Human B: how big is it
Human A: its one of the bigger ones
Human B: okay just pick it then
Human A: ok
Human B: SELECT blue
Human A: SELECT red

Human A’s view Human B’s view

Human B: the smallest lightest grey dot. it’s
near a larger grey dot

Human A: did you see 3 dark dots in same line
Human B: no
Human A: did you see two larger black dots
Human B: is one on top of the other? if so, pick

the top one
Human A: ok
Human B: SELECT blue
Human A: SELECT red

Figure 8: Examples of unsuccessful (left) and successful (right) dialogues collected between pairs of people during

our human evaluation (Section 6.4).


