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Abstract

Tokenization is a fundamental preprocessing
step for almost all NLP tasks. In this paper,
we propose efficient algorithms for the Word-
Piece tokenization used in BERT, from single-
word tokenization to general text (e.g., sen-
tence) tokenization. When tokenizing a sin-
gle word, WordPiece uses a longest-match-
first strategy, known as maximum matching.
The best known algorithms so far are O(n2)
(where n is the input length) or O(nm) (where
m is the maximum vocabulary token length).
We propose a novel algorithm whose tokeniza-
tion complexity is strictly O(n). Our method is
inspired by the Aho-Corasick algorithm. We
introduce additional linkages on top of the trie
built from the vocabulary, allowing smart tran-
sitions when the trie matching cannot continue.
For general text, we further propose an algo-
rithm that combines pre-tokenization (splitting
the text into words) and our linear-time Word-
Piece method into a single pass. Experimen-
tal results show that our method is 8.2x faster
than HuggingFace Tokenizers and 5.1x faster
than TensorFlow Text on average for general
text tokenization.

1 Introduction

Tokenization is the process of splitting text into
smaller units called tokens (e.g., words). It is a
fundamental preprocessing step for almost all NLP
applications: sentiment analysis, question answer-
ing, machine translation, information retrieval, etc.

Modern NLP models like BERT (Devlin et al.,
2019), GPT-3 (Brown et al., 2020), and XL-
Net (Yang et al., 2019) tokenize text into sub-
word units (Schuster and Nakajima, 2012; Sennrich
et al., 2016; Kudo, 2018). As a midpoint between
words and characters, subword units retain linguis-
tic meaning (like morphemes), while alleviating
out-of-vocabulary situations even with a relatively
small-size vocabulary.

∗ Research conducted while working at Google.

In this paper, we propose efficient algorithms
for WordPiece, the subword tokenization used in
BERT (Devlin et al., 2019). Given Unicode text
that has already been cleaned up and normalized,
WordPiece has two steps: (1) pre-tokenize the text
into words (by splitting on punctuation and whites-
paces), and (2) tokenize each word into wordpieces.

For single-word tokenization, WordPiece uses
a greedy longest-match-first strategy: iteratively
pick the longest prefix of the remaining text that
matches a vocabulary token. This is well-known as
Maximum Matching or MaxMatch (Palmer, 2000),
which has also been used for Chinese word seg-
mentation since 1980s (Liu and Liang, 1986).

Despite its wide use in NLP for decades, to the
best of our knowledge, the most efficient Max-
Match algorithms so far are O(n2) (where n is the
input word length) or O(nm) (where m is the max-
imum vocabulary token length) (see Section 2).
It’s worth noting that the latter has a vocabulary-
specific multiplicative factor m, which can be large
when the vocabulary contains long words.

We propose LinMaxMatch, a novel MaxMatch
algorithm for WordPiece tokenization, whose
tokenization time is strictly O(n) without any
vocabulary-specific multiplicative factors. Inspired
by the Aho-Corasick algorithm (Aho and Cora-
sick, 1975), we organize vocabulary tokens in a
trie (Fredkin, 1960) and introduce precomputed
failure links and failure pops. During tokeniza-
tion, if an input character does not match any trie
edge, we perform smart transitions to avoid back-
tracking to earlier input characters. This involves
collecting the recognized tokens (i.e., failure pops)
and moving to a trie node (via the failure link),
from where we continue to match the same charac-
ter (Section 3).

For general text tokenization, referred to as
end-to-end tokenization in this paper, we propose
E2E WordPiece, an end-to-end algorithm that com-
bines pre-tokenization and WordPiece tokenization
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into a single, linear-time pass (Section 4).
Experimental results show that our method is

8.2x faster than HuggingFace Tokenizers (Hug-
gingFace, 2020) and 5.1x faster than Tensor-
Flow Text (Google, 2020) on average for general
text tokenization (Section 5).

Although tokenization is relatively faster than
other steps, it’s still worth improving the perfor-
mance: Tokenization is a prerequisite step for
almost all NLP tasks, and any improvement on
its efficiency helps reduce the latency of the en-
tire inference. One potential impact of the work,
for example, is on mobile NLP applications. On-
device models are generally highly optimized for
reducing latency, e.g., by distilling or compressing
larger models. Thus, the impact of tokenization
can be significant here. Another impact is on ag-
gregate computational savings for Web services
like Google, Facebook, Twitter, etc. For example,
Google uses BERT to power its Web search nowa-
days.1 Google serves billions of search queries per
day, and it processes hundreds of trillions of Web
pages in index building. By employing a faster
tokenization system, the aggregate computational
savings would be material, which also benefits the
environment (for less power consumption).

This paper also makes a theoretical contribu-
tion. The proposed LinMaxMatch algorithm solves
the decades-old MaxMatch problem in the optimal
O(n) time, and the idea is applicable to other string
matching or rewriting problems (Section 3.6).

The code will be available at https://www.
tensorflow.org/text.

2 Related Work

Maximum Matching (or MaxMatch) has been used
for Chinese word segmentation (CWS) since the
1980s (Liu and Liang, 1986; Palmer, 2000). Recent
CWS work focuses on machine learning-based seg-
mentation approaches, but MaxMatch remains a
commonly referenced baseline (Chang et al., 2008).

More recently, subword tokenization techniques
have become a near-universal feature of modern
NLP models, including BERT (Devlin et al., 2019),
GPT-3 (Brown et al., 2020), XLNet (Yang et al.,
2019), etc. Common subword tokenization tech-
niques include Byte-Pair Encoding (BPE) (Schus-
ter and Nakajima, 2012; Sennrich et al., 2016), Sen-
tencePiece (Kudo, 2018) (based on unigram lan-

1https://blog.google/products/search/
search-language-understanding-bert/

guage modeling), and WordPiece (Google, 2018).
The widely-adopted MaxMatch algorithm,

which is used in the original WordPiece algo-
rithm (Google, 2018), starts from the longest pos-
sible prefix and decrements the length in search
of the longest-matching token (Jie et al., 1989). A
variant starts from the shortest substring and in-
creases the length (Webster and Kit, 1992; Reps,
1998; Sassano, 2014). The worst-case time com-
plexity of the previous algorithms are O(n2) or
O(nm) or even higher than that.23 For example,
the complexity of Sassano (2014) is O(nm) (in our
notations), since Lookup(t,c,i,N) (Figure 1
in their paper) may take O(m) time (which is sim-
ilar to the analysis in Section 3.2 of this paper).
Reps (1998) recognizes maximum matching tokens
using regular expressions in the context of compil-
ers; their complexity is O(|Q|n), where |Q| is the
number of states in the automaton built from the
grammar/vocabulary. If applied to WordPiece tok-
enization, since vocabulary tokens are finite strings,
their complexity can be refined as O(nm).

Our algorithm is inspired by the Aho-Corasick
algorithm (Aho and Corasick, 1975), but the two
algorithms are designed to address different prob-
lems. Aho-Corasick is not optimal for the Max-
Match problem. In the worst-case scenario where
every substring in the input matches a vocabulary
token, Aho-Corasick finds a quadratic number of
matches, resulting in an overall quadratic complex-
ity for MaxMatch. By comparison, our algorithm
achieves the worst-case linear complexity for Max-
Match due to a novel definition of failure links, the
newly-introduced failure pops, as well as a differ-
ent way of emitting tokens.

It’s worth clarifying the difference between
our failure links and the tabular solution of
Reps (1998). In their work, a table called
failed_previously is used to store whether
a state <q,i> has been seen before in a failed at-
tempt to match a token (where q is a state of the
automaton and i is a position of the input). Reps
(1998) uses that table to avoid wasteful revisits of
the same state. The table entries <q,i> depend on
both the grammar/vocabulary and the actual input.
In contrast, our failure links capture which state

2The exact complexity depends on implementation details,
e.g., whether substring hashes are computed from scratch or
incrementally, how substrings are searched in vocabulary, etc.

3Previous studies usually do not explicitly state the
vocabulary-related multiplicative factor in the complexity, or
just treat it as a hidden constant.

https://www.tensorflow.org/text
https://www.tensorflow.org/text
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
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to transit to when trie matching cannot continue
(Definition 1), and they are precomputed based on
the vocabulary only, independent of the input.

Finally, we discuss the complexity of algorithms
for Byte-Pair Encoding (BPE) (Schuster and Naka-
jima, 2012; Sennrich et al., 2016) and Sentence-
Piece (Kudo, 2018). Note that they are different
problems from MaxMatch (the topic of this paper).
SentencePiece is based on unigram language mod-
eling, and the optimal segmentation can be found
in O(nm) time with the Viterbi algorithm (Viterbi,
1967). BPE algorithms can be implemented in two
ways. One is to enumerate the symbol pairs in the
order that they were added to the vocabulary in
the building phase. For each symbol pair, we scan
the current sequence and replace all their occur-
rences with the merged symbol. The complexity is
O(|V |n), where |V | is the size of the vocabulary.
The other approach is to repeatedly select the pair
of symbols from the current sequence that has the
highest priority (e.g., the maximum frequency). Us-
ing a heap, this approach can be done in O(nlogn).

3 Linear-Time Single-Word Tokenization

In this section, we present LinMaxMatch, an O(n)
algorithm for single-word WordPiece tokenization.

3.1 Background and Notations

Given a vocabulary,4 WordPiece tokenizes a word
using the MaxMatch approach: iteratively pick the
longest prefix of the remaining text that matches a
vocabulary token until the entire word is segmented.
If a word cannot be tokenized, the entire word is
mapped to a special token <unk>.

WordPiece tokenization distinguishes word-
pieces at the start of a word from wordpieces start-
ing in the middle. The latter start with a special
symbol ## (in BERT), which is called the suffix
indicator and is denoted as ♯ in this paper. Our
method works with any suffix indicator: ##, an
arbitrary string, or the empty string (i.e., no distinc-
tion between the two kinds of wordpieces).

For example, the word johanson may be tok-
enized as [johan, ##son].

We use the running example from Figure 1. Ta-
ble 1 summarizes our notations. We construct a
trie from the vocabulary V . We use �(u, c) = v to
denote a trie edge from node u to node v with char-
acter c as the label. If there is no outgoing edge

4The construction of the vocabulary is outside the scope
of this paper. We refer the interested reader to Google (2020).

from u with label c, �(u, c) = ∅. Let �v be the
string represented by the node v, that is, the string
obtained by concatenating all the edge labels along
the path from the root to node v. Let r be the root
of the trie and r♯ be the node for the suffix indicator
♯. Obviously, �r = " (where " denotes the empty
string) and �r♯ = ♯. The depth of node v is defined
as the number of characters in �v excluding the
suffix indicator prefix (if any). Hence, the depth
of r or r♯ is 0. In Figure 1a, nodes 0 and 2 have
depth 0, nodes 1, 3, and 8 have depth 1, node 10
has depth 2, etc.

Symbol Meaning
" The empty string
♯ The suffix indicator string
V The vocabulary
<unk> The unkown token
w, s A string
c A character

A whitespace character
r, r♯ The trie root and the node for ♯
u, v Trie nodes; u is often the parent of v
∅ Null node
�(u, c) Trie edge from node u, with label c
�v The string represented by node v
f (v), F (v) Failure link and failure pops
n The length of the input
m The maximum length of tokens in V
M The sum of the lengths of tokens in V

Table 1: Notations.

3.2 Intuition

To motivate our linear algorithm, let’s first consider
an alternative approach to MaxMatch using a sim-
ple vocabulary trie: when searching the longest
token at a position, it starts from the shortest sub-
string and iterates over the input text from left to
right, following trie matching to find the longest
prefixes that matches a vocabulary token.
Example 1. Consider the vocabulary and the trie
from Figure 1a, with the input string abcdz. The
expected output is [a,##b,##c,##dz].

Starting from position 0, we follow the trie edges
to match the input characters from a to d, arriving
at node 6. No trie edge exits node 6 with character
z as the label. The longest matching prefix seen so
far is a, which is the first recognized token. ◊

The challenge of this approach is that, when the
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VVV : {a, abcdx, ##b, ##c, ##cdy, ##dz}

0

1

#

3a

2

#
8

b

9c

12

d

4b 5c 6d 7x

10d 11y

13z

Legend

Trie link

Data node

(a) The vocabulary and the corresponding trie.

vvv 0 1 2
F (v)F (v)F (v) [ ] [ ] [ ]
f (v)f (v)f (v) ∅ ∅ ∅
vvv 3 4 5 6 7

F (v)F (v)F (v) [a] [a] [a, ##b] [a, ##b] [abcdx]
f (v)f (v)f (v) 2 8 9 10 2
vvv 8 9 10 11 12 13

F (v)F (v)F (v) [##b] [##c] [##c] [##cdy] [ ] [##dz]
f (v)f (v)f (v) 2 2 12 2 ∅ 2

(b) Complete table of f (v) and F (v).

Figure 1: Example vocabulary, the corresponding trie, and the table of auxiliary links and data. The suffix indicator
is ##. Node 0 is the root node. Data nodes (in grey) indicate vocabulary tokens, i.e., the represented string is in V .

trie fails to match the next character, the longest
vocabulary token match may be several characters
back. As shown in Example 1, from position 0
we’ve matched the prefix abcd but found that the
longest matching token is a. When looking for the
next token, we reset the start position at character
b and reprocess bcd.., resulting in repetitive and
wasteful iterations. The time complexity is O(nm).

The idea of LinMaxMatch is to use precomputed
information to avoid reprocessing the characters.

Example 2. For the same example as above, when
the trie matching fails at character z, since abcd
has been matched, given the vocabulary in use (Fig-
ure 1a), we should be able to know that the first two
longest-matching tokens are [a,##b]. After col-
lecting the tokens, we should reset our state as if we
just matched ##cd and then continue to match the
same character z. No need to reprocess bcd. ◊

Specifically, when trie matching arrives at node
v but cannot continue further, it must have matched
the string represented by v (i.e. �v). We consider
the tokens that MaxMatch would generate for the
beginning of �v (called “failure pops” F (v)), which
should be popped off the beginning of �v and put
into the result. After that, we should transit to a
state (following the “failure link” f (v)) that corre-
sponds to the remaining suffix of �v, from which
the algorithm continues to match the next charac-
ter. F (v) and f (v) are defined as below and can be
precomputed based on the vocabulary.

Definition 1. Failure links and pops. Given a
node v and the corresponding string �v, consider
the shortest non-empty list of longest-matching-
prefix tokens [p1, p2, ..., pk] (where pi ∈ V , pi ≠ "
or ♯, for 1 ≤ i ≤ k) that we can remove from �v (in

order) until the remaining suffix can be represented
by some node v′ from the trie.

We define failure pops for node v as F (v) =
[p1, p2, ..., pk] and failure link as f (v) = v′.

If such a non-empty list [p1, p2, ..., pk] does not
exist, we define f (v) = ∅. F (v) is undefined and
unused in this case.

Put it another way, F (v) and f (v) are defined
by finding the longest prefix of the string �v that
matches a vocabulary token, popping it, and repeat-
ing this procedure until the suffix string is found on
the trie. Figure 1b shows F (v) and f (v) computed
for the example vocabulary and trie.

For readers with the background of finite-state
transducers (FSTs) (Mohri, 1997), it’s helpful to
see that f (v) is related to the state transition func-
tion and F (v) is related to the output function (more
discussions in Section 3.6).

3.3 LinMaxMatch Tokenization
Assume that, based on the vocabulary, we have pre-
computed the trie, failure links, and failure pops
(precomputation is discussed in Section 3.4). Given
an input string, we follow the trie edges to pro-
cess the input characters one by one. When trie
matching cannot continue from node v, we make a
failure transition in two steps: (1) retrieve failure
pops F (v) and append to the end of tokenization
result, and (2) follow the failure link to node f (v).
After that, we continue from the new node f (v).

Algorithm 1 shows the tokenization algorithm.
For now, ignore lines 4-5; we explain it later.

The main function calls MATCHLOOP() with
two inputs: w appended by a whitespace and the
start position 0 (line 1). Inside that function, let’s
use the term step to denote an iteration of the loop
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Algorithm 1: LinMaxMatch Tokenization

Function LINMAXMATCH(w):
1 tokens, u, i← MATCHLOOP(w , 0)
2 if i < |w| or u ∉ {r, r♯} then
3 tokens ← [<unk>]
4 else if u = r♯ and |tokens| = 0 then
5 tokens ← ORIGINALWORDPIECE(♯)
6 return tokens

Function MATCHLOOP(s, i):
7 u, tokens ← r, [ ]
8 while i < |s| do
9 while �(u, s[i]) = ∅ do

10 if f (u) = ∅ then return tokens, u, i
11 tokens ← EXTEND(tokens, F (u))
12 u← f (u)
13 u← �(u, s[i])
14 i← i + 1
15 return tokens, u, i

on lines 8-14, which processes one input character
s[i]. Each step starts from the current node u and
follows f (u) zero, one, or multiple times (line 12),
appending the tokens in F (u) to the result along the
way (line 11), until it finds a trie edge that matches
the current character (line 9) or f (u) = ∅ (line 10).

If the input string w can be tokenized, the loop
continues until i= |s|−1 pointing to the final ap-
pended whitespace. We know that �(u, ) = ∅
for any u (since whitespace is not in any vocabu-
lary token). MATCHLOOP() will keep following
f (u) while collecting F (u) tokens along the way
(line 11-12) until it arrives at r♯, where f (r♯) = ∅.
MATCHLOOP() returns on line 10 with u = r♯,
i = |s|−1 = |w|, and tokens being the expected
result (see Example 3). If w = ", MATCHLOOP()
returns immediately with u = r, i = 0 = |w|, and
empty tokens. In either case, the tokens are re-
turned by the main function (line 6).

On the other hand, if the word cannot be tok-
enized, when MATCHLOOP() returns on line 10,
there are two cases: (1) Some normal input char-
acter cannot be consumed after attempting failure
transitions (i.e., i < |w|). (2) i= |w| but the final
landing node u ∉ {r, r♯} representing a non-empty
string �u yet f (u) = ∅; according to Definition 1,
�u cannot be tokenized. In either case, the result to-
kens are reset to [<unk>] (line 3). See Example 4.

Line 15 is only for safety reasons; it will not be

visited since a whitespace is appended at the end.
Example 3. Consider s = w = abcdz , us-
ing the vocabulary from Figure 1a. The expected
tokenization is [a,##b,##c,##dz].

step i, s[i] node transition result tokens
0 [ ]

1 0, a �(0,a) → 3 [ ]
2 1, b �(3,b) → 4 [ ]
3 2, c �(4,c) → 5 [ ]
4 3, d �(5,d) → 6 [ ]
5 4, z f (6) → 10 [a,##b]

f (10) → 12 [a,##b,##c]
�(12,z) → 13 [a,##b,##c]

6 5, f (13) → 2 [a,##b,##c, ##dz]
f (2) = ∅ [a,##b,##c, ##dz]

Table 2: Sequence of node transitions and result tokens.

Table 2 shows the sequence of node transitions
and result tokens in MATHLOOP(). The first row is
the original state. Steps 1-4 are self-explanatory.

Step 5 is more complex: when we reach step 5,
the prefix abcd has already been processed. The
current node is node 6, and the next character is z.
As �(6,z) = ∅, we copy F (6) to the result (which
becomes [a, ##b]) and follow f (6) to node 10.
Next, as �(10,z) = ∅, we copy F (10) to the result
(which becomes [a, ##b, ##c]) and follow f (10)
to node 12. Now, as �(12,z) = 13, we follow the
trie edge to node 13 and proceed to step 6.

Step 6 processes . We first follow f (13) to
node 2, appending ##dz to the result tokens. Then,
at node 2 (i.e., u = 2 = r♯), �(u, ) = ∅ and
f (u) = ∅. MATCHLOOP() returns on line 10.

Back to the main function (line 2), since i =
5= |w| (meaning that MATCHLOOP() stopped at
the final whitespace) and u = r♯ (meaning that
all matched characters abcd are covered by the
result tokens), the word is successfully tokenized.
It returns [a, ##b, ##c, ##dz] as expected. ◊

Example 4. Consider two input words s1=w1 =
abcz , s2 =w2 = abcd . Using the same vo-
cabulary, neither w1 nor w2 can be tokenized.

For s1, MATCHLOOP() consumes abc but not
z. Hence it stops within the word: i = 3 < |w1|.

For s2, MATCHLOOP() consumes all normal
characters abcd but not the whitespace . When
it returns on line 10, i = |w2|, u is node 12
(since f (12) = ∅), and the result tokens are
[a,##b,##c], which do not cover character d. Ac-
tually, the string ##d represented by node 12 can-
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not be tokenized.
Tokens are reset to [<unk>] in both cases. ◊

Corner cases One behavior of the original Word-
Piece algorithm (Google, 2018) is that, if the input
starts with the suffix indicator, the first result token
may start with the suffix indicator. For example,
in Figure 1, if the input is ##bc, the tokenization
result is [##b, ##c]. In this paper, by having r♯ as
a descendant of r, LinMaxMatch follows the same
behavior and returns the same result.

Because r♯ is set as a descendant of r, if the
input w is ♯ itself (e.g., ##), normally Algorithm 1
would have returned an empty list of tokens, which
is inconsistent with Google (2018). We handle this
as a special case. Line 4 checks whether w is ♯
by the following (instead of directly comparing the
strings): if and only if w = ♯, the landing node u is
r♯ and the result tokens are empty after consuming
all normal input characters (i.e., i = |w|)5. If so,
the tokens are reset by the precomputed result of
the original WordPiece algorithm on ♯ (line 5).

Algorithm 1 can be proved to be consistent with
the original WordPiece algorithm (Google, 2018).

3.4 LinMaxMatch Precomputation

Given a vocabulary, it is straightforward to build
the trie. This section explains how to precompute
failure links f (⋅) and failure pops F (⋅).

We could compute f (⋅) and F (⋅) by directly us-
ing the procedure from Definition 1. Instead, we
propose a faster algorithm (see Section 3.5 for com-
plexity). Our algorithm computes f (v) and F (v)
by leveraging f (u) and F (u) from the parent node
u. Suppose �(u, c) = v. Intuitively, as the string
�u of parent u is a prefix of the string �v of node
v, it is likely that F (u) and F (v) share some com-
mon longest-matching-prefixes in the beginning. It
can be proved that when �v ∉ V , F (v) consists
of (1) the tokens from F (u), followed by (2) the
longest-matching-prefixes that the procedure from
Definition 1 generates for the string �f (u)c. Other-
wise, when �v ∈ V , it’s trivial that F (v) = [�v]
based on Definition 1. Notice that f (v) and F (v)
are computed using similar information for nodes
that have strictly smaller depth than v. Breadth-
First-Search (BFS) is suitable for the computation.

Algorithm 2 is the precomputation algorithm.
On line 1, the algorithm builds a trie for V and

5Note that i = |w| is satisfied implicitly on line 4 (Algo-
rithm 1) since it’s an else statement following the if statement
on line 2.

keeps track of r and r♯. These nodes have depth
0 and are the starting points for our BFS traver-
sal (line 2). We assume that initially f (v) = ∅
and F (v) = [ ] for every node v. The core part is
in lines 7-15, which computes f (v) and F (v) as
discussed earlier.

The rest of the algorithm handles technical de-
tails. E.g., if ♯ is the empty string, the nodes r and
r♯ are identical; accordingly, line 2 avoids dupli-
cate nodes. Otherwise, r♯ is a descendant of r, and
we need line 6 to avoid revisiting it in the BFS
traversal.

It can be proved that Algorithm 2 correctly pre-
computes f (v), F (v) for each trie node v.

Algorithm 2: Precomputation

Function PRECOMPUTE(V ):
1 r, r♯ ← BUILDTRIE(V )
2 queue ← (r♯ ≠ r) ? [r, r♯] : [r]
3 while not EMPTY(queue) do
4 u← DEQUEUE(queue)
5 for c, v in OUTGOINGEDGES(u) do
6 if v = r♯ then continue
7 if �v ∈ V then
8 f (v), F (v)← r♯, [�v]
9 else

10 z,Z ← f (u), [ ]
11 while z ≠ ∅ and �(z, c) = ∅ do
12 Z ← EXTEND(Z, F (z))
13 z← f (z)
14 if z ≠ ∅ then
15 f (v), F (v)← �(z, c), F (u) +Z

16 ENQUEUE(queue, v)

17 return r

3.5 Complexity Analysis
The complexity of tokenization (Algorithm 1) can
be proved to be O(n) in a similar way as Aho-
Corasick (Aho and Corasick, 1975). In brief, each
step (an iteration of the loop from lines 8-13) makes
zero or more failure transitions followed by exactly
one normal (non-failure) transition. In each step,
suppose we start at node u with depth d. We never
follow more than d failure transitions in that step:
each failure transition takes us to a node with a
strictly smaller depth. Any normal transition along
trie edges increments the depth d of node u by 1
(line 13). Therefore, the total number of failure
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transitions is no more than the total number of nor-
mal transitions, which is O(n). Each transition is
O(1) plus the work to extend the list of tokens on
line 11. As there are at most n resulting tokens in
total, the total tokenization time is O(n).

Since at least n operations are required to read
the entire input, our O(n) algorithm is asymptoti-
cally optimal. To the best of our knowledge, this
is the first time that the optimal complexity for
MaxMatch is proved to be strictly O(n), without a
vocabulary-specific multiplicative factor.

For precomputation (Algorithm 2), the BFS
traversal itself is O(M), where M is the sum of
the lengths of vocabulary tokens. A similar depth-
based analysis (as in the case of the tokenization
algorithm) shows that that the total number of times
we traverse a failure link on line 13 is O(M).

The non-trivial parts are the construction of F (⋅)
on lines 12 and 15. The total size of F (⋅) isO(Mm):
there are O(M) lists, and the size of each list is
O(m). A straightforward implementation needs
O(Mm) time and space to construct and store F (⋅).
This is good enough in practice, as the precompu-
tation is performed offline before any tokenization
process. We plan to discuss optimized implementa-
tions in a follow-up publication.

3.6 Connection with Other Methods / Tasks
LinMaxMatch can be turned into a finite-state trans-
ducer (FST) (Mohri, 1997) by eliminating the fail-
ure transitions in Algorithm 1.6 An FST extends a
finite-state automaton (FSA) with an output tape.
To turn LinMaxMatch into an FST, for node u and
character c, we define the state transition function
�′(u, c) and the output function �′(u, c) as follows:

• �′(u, c) precomputes the final state in lines 9-
13 of Algorithm 1, where it starts from u and
follows failure transitions as needed, until it
consumes c or meets a null failure link;

• �′(u, c) consists of the failure pops collected
along the way.

Specially, if the original trie link �(u, c) exists, ac-
cording to the above definition, it’s obvious that
�′(u, c) = �(u, c) and �′(u, c) = []. Then lines 9-
13 in Algorithm 1 can be replaced with two state-
ments: tokens ← EXTEND(tokens, �′(u, s[i])) and
u ← �′(u, s[i]); the loop (started on line 8) breaks

6This is analogical to Aho and Corasick (1975) where
the Aho-Corasick algorithm can be stated as a deterministic
finite-state automaton.

when u becomes ∅. Hence, LinMaxMatch makes
exactly one state transition on each input character.
Obviously, the time complexity is linear, despite
more space needed to store precomputed results.

LinMaxMatch extends the Aho-Corasick Algo-
rithm (Aho and Corasick, 1975). It can be ap-
plied to more string search or transducer problems.
Let us name a few here. LinMaxMatch can be
adapted to solve the multi-keyword search prob-
lem which Aho-Corasick is designed for. It can
be also adapted to address other MaxMatch vari-
ants, such as Backward MaxMatch (Webster and
Kit, 1992), recognizing unseen characters as single-
character tokens (Palmer, 2000), or combing with
transformation rules (Sassano, 2014). Other po-
tential applications include word segmentation in
Asian languages (Sassano, 2014), phonological or
morphological analysis (Kaplan and Kay, 1994;
Jurafsky and Martin, 2009).

4 Linear-Time End-to-End Tokenization

The existing BERT tokenization implementa-
tions (Google, 2018) pre-tokenize the input text
(splitting it into words by punctuation and whites-
pace characters) and then call WordPiece tokeniza-
tion on each resulting word. For example, the text
john johanson’s may be split into [john,
johan, ##son, ’, s].

We propose an end-to-end WordPiece tokenizer
that combines pre-tokenization and WordPiece into
a single, linear-time pass. It uses the LinMaxMatch
trie matching and failure transition loop as much
as possible and only checks for punctuation and
whitespace characters among the relatively few in-
put characters that are not handled by the loop. It
is more efficient as it traverses the input only once,
performs fewer punctuation / whitespace checks,
and skips the creation of intermediate words.

Precomputation We use the same process as in
Section 3.4, with several differences:

After the trie is constructed, we remove all trie
links labeled with a punctuation character.7 Then,
for every possible punctuation character c, we add a
trie data node v with no descendants, and a trie link
from the root r to v with label c. If c is part of the
vocabulary, we set �v = c, otherwise �v = <unk>.

The resulting trie matches all punctuation charac-
ters, as either themselves or as <unk>, depending

7This may remove links on the path from r to r♯ when
the suffix indicator contains a punctuation; those links were
unnecessary: r♯ is reached only by following failure links.
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on the vocabulary. Punctuation characters are not
part of longer tokens, and there is no suffix token
for a punctuation character. This reflects the fact
that each punctuation character is a word by itself.

We then run the rest of Algorithm 2 to compute
the failure pops and failure links.

Finally, for punctuation nodes, we set their fail-
ure links to a special node rp; their failure pops are
not changed. The special node rp has no parent and
no descendants, and �rp = ", f (rp) = ∅. Node rp
indicates that a punctuation character was matched.

Tokenization Algorithm 3 tokenizes general text
into wordpieces. It starts by appending a whites-
pace at the end of the input (line 1). In each
iteration, it recognizes wordpieces for the current
word by employing (almost) the same routine as in
single-word tokenization (lines 3-7 in Algorithm 3
versus lines 1-5 in Algorithm 1).8

When returning from MATCHLOOP(), Algo-
rithm 3 must have met a character that cannot be
consumed after attempting failure transitions, such
as a whitespace, a punctuation, or some unseen
character. Lines 4-5 examine whether the current
word can be tokenized (by checking if the current
position is at a word boundary and where the node
u lands at) and reset the tokens as appropriate (see
related discussions in Section 3.3).

Lines 6-7 further handle the corner case that the
word happens to be the suffix indicator itself (in
the same way as Algorithm 1, see Section 3.3).
Note that normally the suffix indicator contains
only punctuation characters (e.g., ## in BERT); in
that case lines 6-7 can be saved, because the suffix
indicator itself is not be tokenized as a single word.

The tokens of the current word are then appened
to the result (line 8). Finally, the algorithm moves
the cursor past the boundary of the current word
(lines 9-10) and skips any following whitespaces
(lines 11-12) to process the next word.

It can be shown that Algorithm 3 is consistent
with Google (2018) for general text tokenization,
and the time complexity is O(n).

5 Experiments

Experimental Setup We benchmark our method
against two widely-adopted WordPiece tokeniza-
tion implementations:

• HuggingFace Tokenizers (HuggingFace,
2020), from the HuggingFace Transformer

8The common routine can be factored out as a function.

Algorithm 3: End-to-End Tokenization

Function E2EWORDPIECE(text):
1 result, s, i← [ ], text , 0
2 while i < |s| do
3 tokens, u, i ← MATCHLOOP(s, i)
4 if not ISWDBNDRY(s,i) oru∉{r,r♯,rp}

then
5 tokens ← [<unk>]
6 else if u = r♯ and |tokens| = 0 then
7 tokens ← ORIGINALWORDPIECE(♯)
8 result ← EXTEND(result, tokens)
9 while i< |s| and not ISWDBNDRY(s, i)

do
10 i← i + 1
11 while i < |s| and ISSPACE(s[i]) do
12 i← i + 1

13 return result

Function ISWDBNDRY(s, i):
14 return i≥ |s| or (i>0 and

ISPUNC(s[i−1])) or ISSPACE(s[i]) or
ISPUNC(s[i])

library, one of the most popular open-source
NLP tools.

• TensorFlow Text (Google, 2020), the official
library of text utilities for TensorFlow.

In both cases, we use pre-tokenization and Word-
Piece tokenization, and skip other steps provided
by those libraries (text cleanup, normalization, etc)
for fair comparison. Both libraries use the original
WordPiece tokenization algorithm (Google, 2018).
They both generate not only the numeric ids of the
tokens, but also the token strings and start/end off-
sets of the input word. We modify both libraries to
generate only the token ids,9 for two reasons: (1)
most downstream models (e.g., BERT) consume
only the token ids, and (2) we want to focus on the
core tokenization work, not on, e.g., string copying.

We implement LinMaxMatch and E2E Word-
Piece and made them return the numeric ids of
the tokens, leveraging a double array-based trie
library (Yata et al., 2007).

We compare our algorithms with HuggingFace

9The original TensorFlow Text first generates the token
strings and next looks them up in a dictionary to generate
token ids. For a fair comparison, we adapt it to directly return
the token ids, with no intermediate token strings.
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and TensorFlow Text on a large corpus (several mil-
lion words) and found that the tokenization results
are identical for both single-word and end-to-end
tokenization. In the rest of this section, we focus
on the tokenization speed.

All experiments are conducted on a Linux desk-
top with a six-core Intel Xeon @ 3.60GHz CPU and
64GB memory. We iterate each benchmark (after
warming up) until it ran for a long-enough period of
time, repeat each experiment 10 times, and report
the average results. Our method is implemented
and benchmarked in C++; so is TensorFlow Text.
HuggingFace uses (and is benchmarked in) Rust.

We use the WordPiece vocabulary released with
the BERT-Base, Multilingual Cased model, a
model that supports 104 languages (Google, 2018).

To generate the test data, we sample 1,000 sen-
tences from the multilingual Wikipedia dataset,
covering 82 languages including English, Chinese,
French, Russian, etc. On average, each word has
4 characters, and each sentence has 82 characters
or 17 words. We found this dataset large enough:
a much larger dataset (consisting of hundreds of
thousands of sentences) generated similar results.

We run BERT’s BasicTokenizer (Google,
2018) to clean up and normalize each sentence, in-
cluding Unicode clean-up and normalization. Fol-
lowing the guidance for the BERT-Base Multilin-
gual Cased model (Google, 2018), we do not in-
struct BasicTokenizer to do lower casing or
accent stripping. In addition, preprocessing adds
spaces around every CJK character, and thus Chi-
nese is effectively character-tokenized. For sim-
plicity, we keep Chinese in the test set, but keep in
mind that each Chinese word is just one Chinese
character, and any WordPiece implementation is
efficient on such short words. Using a dataset with
long words would emphasize the speed advantage
of our algorithm even more than indicated below.

For single-word tokenization, we further used
BasicTokenizer to pre-tokenize each sentence
on punctuation and whitespace characters. This
results in 17,223 words, 8,508 of them unique.

Results Table 3 shows the mean and the 95 per-
centile10 running time when tokenizing a single
word or general text (end-to-end) for each system.
For single-word tokenization, ours is 3x faster on
average; the speedup is greater for long-tail in-

10When computing the 95 percentile, the running time on
each individual input is approximated by the average running
time of all input examples of the same length.

puts. Regarding general text end-to-end tokeniza-
tion, ours is 8.2x faster than HuggingFace and 5.1x
faster than TensorFlow Text on average. Figure 2
shows how the running time grows with respect to
the input length for single-word tokenization.

System
Single Word End-to-End

mean 95pctl mean 95pctl

HuggingFace 274 778 13,397 40,255
TensorFlow Text 246 622 8,247 23,507
Ours 82 139 1,629 4,400

Table 3: The running time of each system in ns.

Figure 2: Average running time of each system with
respect to the input length for single-word tokenization.

6 Conclusion

We proposed LinMaxMatch for single-word Word-
Piece tokenization, which is asymptotically-
optimal linear-time with respect to the input length,
without a vocabulary-specific multiplicative factor.
We also proposed E2E WordPiece that combines
pre-tokenization and WordPiece tokenziation into
a single, linear-time pass for even higher efficiency.
Experimental results show that our approach is 8.2x
faster than HuggingFace and 5.1x faster than Ten-
sorFlow Text on average for general text tokeniza-
tion. For future work, we will adapt the proposed
methods to more text processing techniques.
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A Mathematical Formulations and
Proofs of LinMaxMatch

In this section, we present the mathematical formu-
lations of the proposed LinMaxMatch algorithm
and prove the correctness.

We introduce more notations here.

Definition 2. The length of string w is |w| (i.e.,
the number of characters in w) if w does not start
with ♯; otherwise, its length is |w| − |♯|.

For example, the length of abc is 3, the length
of ##d is 1 (where ## is the suffix indicator), and
the length of " or ♯ is 0.

Definition 3. Given vocabulary V , let pw be the
longest non-empty prefix of w that is in V . That is,

pw ≝ argmax
w′

{

|w′| ∣ w′ is a prefix of w,

w′ ∈ V ,w′ ∉ {", ♯ }
}

Specially, pw ≝ " if no such prefixes exist. In
addition, if w starts with ♯, the prefix pw should
also start with ♯ (unless pw is empty).11 When
w = ♯, p♯ ≝ " for clarity.

Definition 4. Let qw be the suffix of w after replac-
ing the prefix pw with ♯. That is, if w = pww′′,
qw ≝ ♯w′′.

For example, if V = {a,ab,##c}, let the suf-
fix indicator ♯ be ##, then pabcd = ab, qabcd =
##cd, p##cd = ##c, and q##cd = ##d. We see
that if w ∈ V , pw = w and qw = ♯.

Lemma 1. For an nonempty string wc, where c
is the last character and w is the prefix (w could
be " or ♯), if wc ∉ V , we have pwc = pw and
qwc = qwc.

Sketch of Proof. First, we prove that pwc does not
include the last character c by contradiction. Let’s
suppose that pwc includes the last character c. Then
pwc = wc (since pwc is a prefix of wc). Because
pwc ∈ V (Definition 3), wc ∈ V , which contra-
dicts that wc ∉ V .

Now, because pwc does not include the last char-
acter c, it is obvious that pwc = pw.

Next, let w = pww′′, then qw = ♯w′′ (Defini-
tion 4). Since pwc = pw, we have wc = pww′′c =
pwcw′′c. Therefore, qw = ♯w′′c = qwc.

11For example, suppose that the suffix indicator is ##, and
# (a single character) is in V but ##a is not in V . Then by
definition p##a is not # (the character); it is " instead.

Let 
w denote the trie node that represents the
string w (so �
w = w), or ∅ if no such nodes exist.
When 
w ≠ ∅, we say the string w is on the trie.
For the example in Figure 1, 
abcd is the node 6
while 
abcdz = ∅.

Table 4 summarizes the additional notations.

Symbol Meaning
pw The longest prefix of w being in V
qw The suffix of w after removing prefix

pw, plus a preceding ♯
M(w) MaxMatch result for w given V

w The node that represents string w
g(w) MinPop Matching w onto some node
G(w) Tokens popped when computing g(w)
ℎ(u, c) g(�uc) (or ∅ if u = ∅)
H(u, c) G(�uc) (or [ ] if u = ∅)

Table 4: Additional Notations (continued from Table 1)

A.1 MaxMatch in WordPiece
MaxMatch in WordPiece tokenization (Google,
2018) can be formalized as follows:12

Definition 5. MaxMatch
Given vocabulary V , for string w, MaxMatch

M(w) is recursively defined as:

M(w)≝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[ ] if w = " or ♯,
[<unk>] elif pw = ",
[<unk>] elif M(qw) = [<unk>],
[pw]+M(qw) otherwise.

(1)

Note that if the input is exactly the suffix indi-
cator ♯ itself, by Definition 5, M(♯) ≝ [ ], which
may be different from the original MaxMatch algo-
rithm (Google, 2018) (see Sec. 3.3). Throughout
this section, we focus on Definition 5, but be aware
that if the original input is exactly the suffix indica-
tor, we resort to the original MaxMatch algorithm.

A.2 MinPop Matching
We introduce a few concepts and discuss their
properties and relationships, as shown in Figure 3,
which eventually lead to the mathematical formula-
tion of the algorithm and the proofs.

The first concept is MinPop Matching, which
means "minimally popping longest-matching pre-
fixes off the beginning of a string until matching a
trie node". The formal definition is as follows:

12Excluding the corner case where w = ♯; see discussions.
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Figure 3: Definitions and the relationships.

Definition 6. MinPop Matching
For a string w, define:

• g(w): returns a node that representsw if possi-
ble, or a node pointing to the suffix of w after
popping the least number of consecutive pre-
fixes following the left-to-right longest-match-
first process if possible, otherwise ∅.

• G(w): returns the list of consecutive longest-
matching prefix tokens that are popped when
computing g(w).

[

g(w)
G(w)

]

≝

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[


w
[ ]

]

if 
w ≠ ∅,
[

∅
[ ]

]

elif pw = ",
[

g(qw)
[pw]+G(qw)

]

otherwise.

(2)

Example 5. Table 5 shows g(w) and G(w) of
example strings using the vocabulary in Figure 1.

◊

www abcd ##bcd ##cdz ##bcdz z
g(w)g(w)g(w) 6 10 13 13 ∅
G(w)G(w)G(w) [ ] [##b] [##c] [##b, ##c] []

Table 5: Examples of g(w) and G(w) for Figure 1

Note that ifw is on the trie, no popping is needed
when computing g(w) and G(w). See Example 5.

MinPop Matching provides an alternative way
to compute MaxMatch as shown in Lemma 2.

Lemma 2. For ease of presentation, we augment
the trie by adding two nodes representing and ♯ ,
respectively, where is the whitespace character
that is not in the alphabet of the vocabulary. Note
that although and ♯ are on the trie, the two
strings are not added to the vocabulary. Figure 4
shows the augmented trie built from the example
vocabulary in Figure 1. Then MaxMatch M(w)
can be equivalently computed as:

M(w) =

{

[<unk>] if g(w ) = ∅,
G(w ) otherwise.

(3)

Sketch of Proof. If w is either " or ♯, it’s straight-
forward that g(w ) is 
 or 
♯ , which is not ∅ on
the augmented trie, and G(w ) = [] =M(w).

Let w ∉ {", ♯}. Since is not in the vocabulary
alphabet, w is not on the trie (i.e., 
w = ∅).

If w can be successfully tokenized, according
to Equation 2, it will keep popping the longest-
matching prefixes until the remaining suffix be-
comes ♯ , which is on the augmented trie. Hence,
g(w ) becomes 
♯ (≠ ∅), and G(w ) equals to
M(w).

Otherwise, by Equation 2, at some point pw will
be "; thus, g(w ) will eventually be ∅. Equation 3
returns [<unk>], which equals to M(w).

Example 6. In Figure 4, M(abcdx) =
G(abcdx ) = [abcdx] since g(abcdx ) is
node 15 (≠ ∅). M(z) = [<unk>] since g(z ) =
∅. ◊

A.3 One-Step MinPop Matching
Given that MaxMatch M(w) can by computed via
MinPop Matching (Lemma 2), we now discuss
how to efficiently compute g(w) and G(w) via the
concept of One-Step MinPop Matching.

Definition 7. One-Step MinPop Matching
ℎ(u, c) and H(u, c) capture this process: from

node u, match one character c by minimally pop-
ping longest-matching prefixes. Mathematically:

[

ℎ(u, c)
H(u, c)

]

≝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

∅
[ ]

]

if u = ∅,
[

g(�uc)
G(�uc)

]

otherwise

(4)

Example 7. Table 6 shows some example values
of ℎ(u, c) and H(u, c) for Figure 4. ◊
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VVV : {a, abcdx, ##b, ##c, ##cdy, ##dz}

0

1

#

3a

2

#
8

b

9c

12

d

15

␣

4b 5c 6d 7x

10d 11y

13z

14

␣

Legend

Trie link

Data node

(a) The vocabulary and the augmented trie.

vvv 0 1 2 14 15
F (v)F (v)F (v) [ ] [ ] [ ] [ ] [ ]
f (v)f (v)f (v) ∅ ∅ ∅ ∅ ∅
vvv 3 4 5 6 7

F (v)F (v)F (v) [a] [a] [a, ##b] [a, ##b] [abcdx]
f (v)f (v)f (v) 2 8 9 10 2
vvv 8 9 10 11 12 13

F (v)F (v)F (v) [##b] [##c] [##c] [##cdy] [ ] [##dz]
f (v)f (v)f (v) 2 2 12 2 ∅ 2

(b) Complete table of f (v) and F (v).

Figure 4: Augmented trie of the same example vocabulary and the table of failure links and failure pops. Compared
to Figure 1, nodes 14 and 15 are added representing and ## . By Definition 1 we see that for the added nodes
(14 and 15), the failure links are ∅ and failure pops are [ ]. The remaining entries of F (⋅), f (⋅) remain the same.

uuu 8 9 10 13 6 0
ccc c d z z z

ℎ(u, c)ℎ(u, c)ℎ(u, c) 9 10 13 14 13 ∅
H(u, c)H(u, c)H(u, c) [##b] [ ] [##c] [##dz] [a, ##b, ##c] []

Table 6: Examples of ℎ(u, c) and H(u, c) for Figure 4

Lemma 3 shows how to compute g(w) andG(w)
efficiently using ℎ(u, c) and H(u, c).
Lemma 3. MinPop Matching g(⋅), G(⋅) can be
computed recursively as follows:

If the string is either " or ♯, g(") = r, G(") = [ ];
g(♯) = r♯, G(♯) = [ ] (Definition 6).

Otherwise, the string contains at least one char-
acter. Let’s denote the string as wc, where w is its
prefix and c is the last character. (w could be " or
♯). Let u = g(w), we have:

[

g(wc)
G(wc)

]

=
[

ℎ(u, c)
G(w) +H(u, c)

]

(5)

Sketch of Proof. We prove by induction on the
length of the prefix stringw. Note that the length of
a string does not count the leading suffix indicator
(Definition 2).

The basis is when the length of w is 0, i.e., w is
either " or ♯. It’s trivial to verify that Equation 5
holds for the basis case.

For the inductive steps, let the length of w be
k (≥ 1). Assume that Equation 5 holds for any
string w′ and character c where the length of w′ is
smaller than k. There are three cases to discuss.

Case 1. 
w ≠ ∅. In this case, u = g(w) = 
w ≠
∅, and �u = w, G(w) = [ ]. By Definition 7,
[

g(wc)
G(wc)

]

=
[

g(�uc)
G(�uc)

]

=
[

ℎ(u, c)
H(u, c)

]

=
[

ℎ(u, c)
G(w)+H(u, c)

]

.

In the remaining two cases, 
w = ∅, hence

wc = ∅, which means wc ∉ V . Hence, pwc = pw
and qwc = qwc (Lemma 1). When computing
g(wc) and G(wc), since 
wc = ∅, by Equation 2,
there are two remaining cases:

Case 2. 
w = ∅ and pwc = ". We have pw =
pwc = ", so by Equation 2 g(w) = g(wc) = ∅ and
G(w) = G(wc) = [ ]. Since u = g(w) = ∅, by
Equation 4 ℎ(u, c) = ∅ and H(u, c) = [ ]. Hence,

[

g(wc)
G(wc)

]

=
[

∅
[ ]

]

=
[

ℎ(u, c)
G(w) +H(u, c)

]

Case 3. 
w = ∅ and pwc ≠ ". Since pwc = pw,
we have qwc = qwc, and g(qw) = g(w) = u. Since
qw is a shorter string whose length is smaller than
k, by the induction assumption, we have
[

g(qwc)
G(qwc)

]

=
[

g(qwc)
G(qwc)

]

=
[

ℎ(u, c)
G(qw) +H(u, c)

]

Hence,
[

g(wc)
G(wc)

]

=
[

g(qwc)
[pwc] + G(qwc)

]

(Eq. 2)

=
[

ℎ(u, c)
[pw] + G(qw) +H(u, c)

]

=
[

ℎ(u, c)
G(w) +H(u, c)

]

(Eq. 2)
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Therefore, Equation 5 is proved.

Example 8. Take Figure 4 as an example, let
w = ##bcd and c = z. We know u = g(w)
is node 10 and G(w) = [##b] (Table 5). Given
u = 10 and c = z, we also know that ℎ(u, c) =
ℎ(10,z) = 13 and H(u, c) = H(10,z) = [##c]
(Table 6). For wc = ##bcdz, we can see that
g(wc) = ℎ(u, c) = 13, and G(wc) = G(w) +
H(u, c) = [##b] + [##c] = [##b,##c]. ◊

If we precompute and store ℎ(u, c),H(u, c) for
every pair of node u and character c, then for
an arbitrary string w, we can efficiently compute
g(w ), G(w ) (Lemma 3) and MaxMatch M(w)
(Lemma 2). This results in an algorithm that can
be formualized as a finite-state transducer (FST)
(more discussions in Section A.7). However, it
needs more space to store the ℎ(u, c) and H(u, c)
tables. For example, the size of the ℎ(u, c) table is
O(|T | ⋅ |Σ|), where |T | is the size of the trie and
|Σ| is the size of the alphabet.

In the following sections, we show that, while
maintaining the overall linear time complexity (Sec-
tion 3.5), failure links f (v) and failure pops F (v)
can be used to efficiently compute ℎ(u, c) and
H(u, c), but with much less space. For example,
the size of f (v) table is O(|T |), which is much less
than the O(|T | ⋅ |Σ|) space needed for the ℎ(u, c)
table. This eventually results in Algorithm 1, which
is a more practical approach.

A.4 Failure links and Failure Pops

The mathematical definition of f (v) and F (v) is:

Definition 8. Failure links and pops (continued
from Definition 1). Mathematically, let w = �v,
f (v) and F (v) are defined as follows:

[

f (v)
F (v)

]

≝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

∅
[ ]

]

if pw = ",
[

g
(

qw
)

[

pw
]

+G
(

qw
)

]

otherwise.

(6)

Lemma 4 shows how to compute ℎ(u, c) and
H(u, c) recursively based on f (⋅) and F (⋅).

Lemma 4. One-Step MinPop Matching ℎ(u, c) and

H(u, c) can be computed recursively as follows:

[

ℎ(u, c)
H(u, c)

]

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

∅
[ ]

]

if u = ∅,
[

�(u, c)
[ ]

]

elif �(u, c) ≠ ∅,
[

ℎ
(

f (u), c
)

F (u)+H
(

f (u), c
)

]

otherwise.

(7)

Sketch of Proof. The first two rows of Equation 7
hold obviously. Now we prove the third row, where
u ≠ ∅ and �(u, c) = ∅. Let w = �u. Since
�(u, c) = ∅, 
wc = ∅, or wc ∉ V . Hence, pwc =
pw and qwc = qwc (Lemma 1). There are two cases
to discuss.

Case 1. If pw = pwc = ", we have f (u) = ∅
and F (u) = [ ] (Equation 6). Hence ℎ(f (u), c) = ∅
and H(f (u), c) = [ ] (Equation 4). On the other
hand, since 
wc = ∅ and pwc = ", by Equation 2
g(wc) = ∅ and G(wc) = [ ]. So we have

[

ℎ(u, c)
H(u, c)

]

=
[

∅
[ ]

]

=
[

ℎ(f (u), c)
F (u) +H(f (u), c)

]

Case 2. Otherwise, pw = pwc ≠ ", we have
[

ℎ(u, c)
H(u, c)

]

=
[

g(wc)
G(wc)

]

(Eq. 4)

=
[

g(qwc)
[pw] + G(qwc)

]

(Eq. 2)

=
[

g(qwc)
[pw] + G(qwc)

]

(qwc=qwc)

=
[

ℎ(g(qw), c)
[pw] + G(qw) +H(g(qw), c)

]

(Eq. 5)

=
[

ℎ(f (u), c)
F (u) +H(f (u), c)

]

(Eq. 6)

Therefore, Equation 7 is proved.

Example 9. In Figure 4, let u be node 6 and c = z,

ℎ(u, c) = ℎ(f (u), c) = ℎ(10,z) = 13
H(u, c) = F (u) +H(f (u), c) = F (6) +H(10,z)

= [a,##b] + [##c] = [a,##b,##c]

◊

A.5 Tokenization and its Correctness
In this section, we show that Algorithm 1 correctly
computes MaxMatch M(w) (Definition 5) follow-
ing Lemma 2-4.13

13Assume that the original input string w is not the suffix
indicator ♯ itself. See Section 3.3.
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Given string s, if call MATCHLOOP(s, 0) (Al-
gorithm 1), lines 9-13 compute ℎ(u, s[i]) and
H(u, s[i]) based on Lemma 4, while lines 8-14
compute g(s) and G(s) incrementally based on
Lemma 3. In particular, if g(s) ≠ ∅, the resulted
tokens and u are G(s) and g(s), respectively.

We now prove the correctness of Algorithm 1
based on Lemma 2. There are two cases to discuss.

If the input w can be tokenized, according to
Lemma 2, when running MATCHLOOP(w , 0) on
the augmented trie, it will return with u = g(w ) ∈
{
 , 
♯ }(≠ ∅) and tokens = G(w ) = M(w).
Analogically, if running MATCHLOOP(w , 0) on
the original trie, it would follow the same behav-
ior as on the augmented trie until i = |w| and
u ∈ {r, r♯}. Then the function breaks and returns
(since �(u, ) = ∅ and f (u) = ∅)). The collected
tokens are the same as G(w ) on the augmented
trie, which is equal to MaxMatch M(w). This is
returned as the final output in Algorithm 1 (line 6).

Otherwise, g(w ) = ∅ on the augmented trie
(Lemma 2). If running on the augmented trie,
MATCHLOOP(w , 0) will break at line 10 when
f (u) = ∅, and in the outputs i < |w| or u ∉ {r, r♯}.
Now, when running MATCHLOOP(w , 0) on the
original trie, it would follow the same behavior
and return with the same outputs. Therefore, Algo-
rithm 1 returns [<unk> ] as expected (line 3).

A.6 Precomputation and its Correctness

Algorithm 2 precomputes failure links f (⋅) and
failure pops F (⋅) based on the following lemma.

Lemma 5. The following process correctly com-
putes f (v), F (v) for any trie node v. If v ∈ {r, r♯},
f (v) = ∅, F (v) = [ ] ( Definition 8).

Otherwise, let u be the parent of v and c be the
label from u to v (i.e., �(u, c) = v), we have:

[

f (v)
F (v)

]

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

r♯
[

�v
]

]

if �v ∈ V ,
[

ℎ
(

f (u), c
)

F (u)+H
(

f (u), c
)

]

otherwise.

(8)

Sketch of Proof. We just need to prove the second
case in Equation 8. Let w = �u, hence �v = �uc =
wc. Since wc ∉ V , we have pwc = pw and qwc =
qwc (Lemma 1).

If p�v = p�u = ", f (v) = f (u) = ℎ(f (u), c) = ∅

and F (v) = F (u) = H(f (u), c) = [ ], we have
[

f (v)
F (v)

]

=
[

∅
[ ]

]

=
[

ℎ(f (u), c)
F (u) +H(f (u), c)

]

.

Otherwise, since pwc = pw, qwc = qwc. Hence,
[

f (v)
F (v)

]

=
[

g(qwc)
[pwc] + G(qwc)

]

(Eq. 6)

=
[

ℎ(f (u), c)
pw + G(qw) +H(f (u), c)

]

(Eq. 7)

=
[

ℎ(f (u), c)
F (u) +H(f (u), c)

]

(Eq. 6)

A.7 LinMaxMatch as a Finite-State
Transducer (FST)

In Section 3.6 we discussed that LinMaxMatch can
be turned into a finite-state transducer (FST) by
precomputing the transition function �′(u, c) and
the output function �′(u, c) to eliminate the fail-
ure transitions. As aforementioned in Section A.3,
�′(u, c) and �′(u, c) are essentially one-step Min-
Pop matching:

[

�′(u, c)
�′(u, c)

]

=
[

ℎ(u, c)
H(u, c)

]

(9)

If we precompute and store �′(u, c) and �′(u, c),
i.e. ℎ(u, c) and H(u, c), Algorithm 1 can be rewrit-
ten as Algorithm 4 (according to Lemma 3), where
the differences are lines 8-11 in bold.

Algorithm 4: LinMaxMatch as an FST

Function LINMAXMATCH(w):
1 tokens, u, i← MATCHLOOP(w , 0)
2 if i < |w| or u ∉ {r, r♯} then
3 tokens ← [<unk>]
4 else if u = r♯ and |tokens| = 0 then
5 tokens ← ORIGINALWORDPIECE(♯)
6 return tokens

Function MATCHLOOP(s, i):
7 u, tokens ← r, [ ]
8 while i < |s| and u ≠ ∅ do
9 tokens ← EXTEND(tokens, H(u, s[i]))

10 u ← h(u, s[i])
11 i ← i + 1
12 return tokens, u, i

In Algorithm 4, we can see that the failure tran-
sitions are eliminated and LinMaxMatch works as
an FST. The time complexity is trivially linear.


