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Abstract

Recent state-of-the-art (SOTA) effective neu-

ral network methods and fine-tuning methods

based on pre-trained models (PTM) have been

used in Chinese word segmentation (CWS),

and they achieve great results. However, pre-

vious works focus on training the models with

the fixed corpus at every iteration. The inter-

mediate generated information is also valuable.

Besides, the robustness of the previous neural

methods is limited by the large-scale annotated

data. There are a few noises in the annotated

corpus. Limited efforts have been made by pre-

vious studies to deal with such problems. In

this work, we propose a self-supervised CWS

approach with a straightforward and effective

architecture. First, we train a word segmenta-

tion model and use it to generate the segmen-

tation results. Then, we use a revised masked

language model (MLM) to evaluate the quality

of the segmentation results based on the pre-

dictions of the MLM. Finally, we leverage the

evaluations to aid the training of the segmenter

by improved minimum risk training. Experi-

mental results show that our approach outper-

forms previous methods on 9 different CWS

datasets with single criterion training and mul-

tiple criteria training and achieves better ro-

bustness1.

1 Introduction

In extensive natural language processing (NLP) sce-

narios, most of the tasks are based on word-level

methods. When we deal with the Chinese language,

∗Corresponding author
1Code and dataset can be found at https://github.

com/miradel51/Self_Supervised_CWS

Figure 1: Word segmentation with self-supervision.

Our work leverages the reward generated by the pre-

dictor to assist the training of the segmenter.

there is no specific boundary between two Chinese

words. The situation is different in western lan-

guages. For instance, there is a space between two

words. Thus, Chinese word segmentation (CWS) is

considered an essential task, which will accurately

represent semantic information of Chinese NLP

tasks. Besides, the length of the sentence is short-

ened by word segmentation. The shorter length of

a sentence is effective for the deep learning method

in some cases.

Recently, good performance for CWS has al-

ready been achieved in large-scale annotated cor-

pora as reported by related research (Huang and

Zhao, 2007; Zhao et al., 2019). Most methods start

with data-driven to improve the performance for

CWS. For instance, some neural methods try to

incorporate external resources to achieve good per-

formance for in-domain and cross-domain CWS

(Zhou et al., 2017; Zhang et al., 2018). The previ-

ous methods fall into two categories: (1) the statis-

tical machine learning methods and (2) neural net-

work methods. In statistical machine learning meth-
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ods, Conditional Random Fields (CRF) is the most

effective model for the sequence labeling problem

(Zhao and Kit, 2008; Zhao et al., 2010). However,

the performance of the CRF model depends on the

quality of the hand-crafted features. To minimize

the effects of different hand-crafted features, neu-

ral network methods (Chen et al., 2015b; Cai et al.,

2017; Ma et al., 2018) have been widely used.

On the other hand, these supervised learning

methods are usually limited by the training data.

Recent SOTA approaches utilize the pre-trained

models (PTM) to improve the quality of CWS (Tian

et al., 2020; Huang et al., 2020). However, the

CWS methods based on the PTM only utilize the

large-scale annotated data to finetune the parame-

ters. It omits much-generated information of the

training step. Besides, the annotated data has some

incorrect labels due to lexical diversity in Chinese,

therefore the robustness of methods is quite impor-

tant for the CWS.

In this work, we propose a self-supervised CWS

approach to enhance the performance of CWS

model. In addition, we also investigate on the cross-

domain and low-quality datasets to analyze the ro-

bustness of CWS models. As depicted in Figure

1, our model consists of two parts: segmenter and

predictor. We leverage the Transformer encoder as

a word segmenter. We exploit the revised masked

language model (MLM) as a predictor to improve

the segmentation model. We generate masked se-

quences with respect to the segmentation results.

Then we exploit MLM to predict the masked part

and evaluate the quality of the segmentation based

on the quality of the predictions. We leverage an

improved version of minimum risk training (MRT)

(Shen et al., 2016) to enhance the segmentation.

Our contributions are as follows:

• We propose a self-supervised method for

CWS, which uses the predictions of revised

MLM to assist the word segmentation model.

• We present an improved version of MRT by

adding regularization terms to boost the per-

formance of the word segmentation model.

• Experimental results show that our approach

outperforms previous methods with different

criteria training, and our proposed method

also improves the robustness of the model.

2 Related Work

Chinese word segmentation (CWS) has been stud-

ied for several years as an essential Chinese NLP

task. CWS methods are divided into two streams

of approaches: word-based methods and character-

based methods. Since Xue (2003) first formalizes

the CWS task as a sequence labeling problem, al-

most all methods transfer the CWS results into the

sequence labels. As a sequence labeling task, the

CRF-based model can achieve a competitive per-

formance with multiple features (Peng et al., 2004;

Tseng et al., 2005; Zhao and Kit, 2008; Zhao et al.,

2010). However, the effect of each method is deter-

mined by the quality of manual features. To reduce

the influence of feature engineering, neural CWS

methods have been studied and further progress

has been made (Zheng et al., 2013; Pei et al., 2014;

Chen et al., 2015a,b; Cai and Zhao, 2016; Chen

et al., 2017; Cai et al., 2017). Neural methods grad-

ually replaces traditional machine learning meth-

ods. Ma et al. (2018) propose the basic LSTM

model that is the same with Chen et al. (2015b).

But the former study could achieve SOTA perfor-

mance through tuning the hyper-parameters. Some

studies leverage the rich pre-trained embeddings

to improve the performance for neural CWS meth-

ods (Zhou et al., 2017; Yang et al., 2017, 2019). To

alleviate the issue of OOV words for CWS, some re-

searches have been studied for cross-domain CWS.

Zhang et al. (2018) incorporate the domain dictio-

nary into the neural network, and Zhao et al. (2018)

utilize the unlabeled data to enhance the ability to

recognize OOV words. With the development of

pre-trained language models (PLM) (Devlin et al.,

2019), CWS methods also make further progress.

Previous SOTA methods effectively achieve good

performance for CWS (Meng et al., 2019; Huang

et al., 2020; Duan and Zhao, 2020), and they take

the advantages of PLMs rather than the pure mod-

els themselves. The redundant components get

slight improvements that are not as much as the

PLMs learning paradigm.

3 Method

The overall process of our method is shown in algo-

rithm 1: First, we train a word segmentation model

and use it to generate segmentation results. Then,

according to the segmentation results, the masked

sentence is generated based on certain strategies,

and an MLM is trained with the masked sentence.

Afterward, we mask the sentences in the training
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Figure 2: The architecture of our model. D, D(t) and D
(t)
p represent the original sequence, segmented sequence

and predicted tokens, while S(θ) and M(γ) stand for segmentation model and revised mask prediction model

respectively. ∆(xm, x
(s)
m ) denotes the loss as a reward during predicting the masked tokens.

Algorithm 1 Self-supervised Word Segmentation

Input: Original sequence D = {x(s)}Ss=1.

Output: Predicted sequence D
(t)
p .

1: Train Mask-Predictor M(γ) based on D.

2: Train Segmenter S(θ(o)) based on D.

3: Employ S(θ(o)) to segment D and achieve seg-

mented sequence D(t).

4: Mask D(t) to obtain the masked sequence D
(t)
m

with the strategy.

5: Exploit M(γ) to achieve predicted sequence

D
(t)
p based on D(t).

6: Calculate the accuracy by comparing D
(t)
p and

D(t) as a reward.

7: Update the S(θ(o)) to S(θ(n)).

set and predict the masked part using the MLM

to evaluate the quality of the segmentation results.

Finally, we use the results to aid the training of the

segmentation model.

3.1 Segmentation Model

The model architecture is shown in Figure 2. Sim-

ilar to the architecture of Huang et al. (2020) our

segmentation model architecture is also based on

BERT (Devlin et al., 2019). The input is a sentence

with character-based tokenization and the output

is generated by a BERT model and a CRF layer

sequentially. The segmentation results are repre-

sented by four tags B, M, E, and S. B and E denote

the beginning and end of a multi-character word,

respectively. M denotes the middle part of a multi-

character word, and S represents a single-character

word. Our segmentation model is initialized with

PTM (i.e. BERT) and trained with negative log-

likelihood (NLL) loss.

3.2 Revised MLM as Predictor

In this work, we use a revised MLM similar to

BERT (Devlin et al., 2019) to evaluate the quality

of segmentations. However, the masking strategy

adopted in the training of the Chinese BERT PTM

makes the character a unit. This masking strategy

cannot reflect the segmentation information, thus

we design a new masking strategy that can reflect

the segmentation information:

1. Only one character or multiple consecutive

characters within a word can be masked si-

multaneously.

2. We set a threshold mask_count. If the length

of a word is less than or equal to mask_count,

the entire word will be masked. Otherwise, we

randomly choose consecutive mask_count

words and mask them.

3. From all possible maskings, we randomly se-

lect one with equal probability and apply it to

the input.

Table 1 shows an example of the masking strat-

egy we introduce above.

When evaluating the quality of segmentation re-

sults, we first find all the legal masked sequences
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Segged Seq. 小明喜欢吃巧克力。

Masked Input

[M] [M]喜欢吃巧克力。

小明 [M] [M]吃巧克力。

小明喜欢 [M]巧克力。

小明喜欢吃 [M] [M]力。

小明喜欢吃巧 [M] [M]。

小明喜欢吃巧克力 [M]

Table 1: Possible masked input examples of our mask-

ing strategy when mask_count = 2. “Segged Seq."

and “[M]" represent Segmented Sequence and Masked

Token, respectively.

based on the segmentation result. Then, we use

the revised MLM to evaluate the prediction quality

of all masked words in these inputs. We take the

average of all the quality scores as the quality of

the segmentation result:

q(y,x) =
xm|x

(s)
o ,y;γ

[

∆

(

xm,x(s)
m

)]

=
∑

x
(s)
o ∈M(x,y)

P (xm|x(s)
o ; γ)∆

(

xm,x(s)
m

)

,

(1)

where x and y represent the input sequence and

tag sequence, respectively, M(x,y) denotes the set

of all the legal maskings of x when the segmenta-

tion result is y, and xm denotes the results of the

prediction from MLM. x
(s)
m and x

(s)
o respectively

represent the ground-truth of the masked part and

the observed part. γ indicates the parameter of the

MLM. ∆
(

xm,x
(s)
m

)

= 1 − sim
(

xm,x
(s)
m

)

rep-

resents the difference between xm and x
(s)
m , where

sim
(

xm,x
(s)
m

)

is the cosine similarity between

xm and x
(s)
m , which can be obtained from BERT

embeddings.

According to Equation (1), a larger value of

q(y,x) indicates a larger gap between the predic-

tion result and ground-truth, i.e, a worse quality of

prediction results.

3.3 Training Procedure with Improved MRT

After we train the segmentation model with NLL

loss, we further train it using MRT (Shen et al.,

2016). Specifically, on the training data X, we

optimize

J(θ) =
∑

x∈X

y|x;θ [q(y,x)]

=
∑

x∈X

∑

y∈Y (x)

P (y|x; θ)q(y,x),
(2)

Cand. q(·,x)
Model

θ1 θ2
P Q P Q

y1 −1.0 0.81 0.90 0.099 0.99
y2 0.0 0.09 0.10 0.001 0.01

y|x;·,α [q(y,x)] −0.90 −0.99

Table 2: Example of an abnormal phenomenon in MRT

loss without regularization. “Cand.", P and Q denote

“Candidate", P (·|x; ·,α) and Q(·|x; ·), respectively.

where θ is the parameter of the segmentation model,

and Y (x) is the set of all possible word segmenta-

tion results of x.

However, due to the large number of possible

segmentation results, the computational cost of

Equation (2) is unacceptably large. Therefore, we

sample a subset of S(x) from Y (x), and define a

new probability distribution Q on S(x):

Q(y|x; θ,α) =
P (y|x; θ)α

∑

y′∈S(x) P (y′|x; θ)α
, (3)

where α is a parameter that controls the sharpness

of Q. We calculate the approximation of Equation

(2) on Q:

J(θ)≈
∑

x∈X

y|x;θ,α [q(y,x)]

=
∑

x∈X

∑

y∈S(x)

Q(y|x; θ,α)q(y,x),
(4)

Additionally, the loss defined in Equation (4) can

only provide a weak supervision signal, because

when the denominator of Equation (3) becomes

smaller, the loss can be rather low even if the value

of P (y|x; θ) is very small (see Table 2). This may

decrease the probability of some good segmenta-

tion results, thereby reducing the performance of

the segmentation model. Therefore, we modify the

loss defined in Equation (4) by adding a regular-

ization term to mitigate the impact of getting the

denominator of Q(y|x; θ,α) smaller:

J(θ) =
∑

x∈X

(

∑

y∈S(x)

Q(y|x; θ,α)q(y,x)

− λ
∑

y′∈S(x)

P (y′|x; θ)α
)

,

(5)

where the hyper-parameter λ is used to adjust the

weight of the regularization term.
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Corpora Train Dev. Test
Word Char

Type Token. Avglen. Type Token. Avglen.

MSRA 84.80K 2.0K 4.0K 90.10K 2.50M 27.24 5.20K 4.01M 46.62

PKU 19.06K 2.0K 1.9K 58.20K 1.21M 57.82 4.70K 1.83M 95.85

AS 0.7M 2.0K 14.4K 0.14M 5.60M 7.7 6.11K 8.37M 11.80

CITYU 53.02K 2.0K 1.5K 70.76K 1.50M 27.45 4.92K 2.40M 45.33

CTB 24.42K 1.9K 2.0K 47.60K 0.80M 27.67 4.44K 1.30M 45.50

SXU 15.62K 1.5K 3.7K 35.92K 0.64M 30.90 4.28K 1.04M 50.50

CNC 0.21M 25.9K 25.9K 0.14M 7.30M 28.19 6.86K 10.08M 43.28

UDC 4.0K 0.5K 0.5K 20.13K 0.12M 24.67 3.60K 0.20M 39.14

ZX 2.37K 0.8K 1.4K 9.14K 0.12M 26.87 2.61K 0.17M 38.05

Table 3: Statistics of our corpora. “Dev." indicates the validation set, “Type” and “Token” denote non-repeated

tokens and all tokens, respectively. “Avglen” represents the average length of sentences.

Parameter BERT

Hidden Layer 768

Number of Layers 12

Number of Heads 12

Learning Rate 2e− 5

Batch Size 64

Dropout 0.1

Epochs 10

Table 4: Hyper-parameter settings.

4 Experiments

4.1 Setup

Data Preparation

All the corpora used in our experiment are from

SIGHAN05 (Emerson, 2005), SIGHAN08 (Jin

and Chen, 2008), SIGHAN10 (mei Zhao and Liu,

2010) and some OTHER open datasets (Zhang

et al., 2014) respectively. The statistics of our

corpora are shown in Table 3 and some hyper-

parameters also given in Table 4. The datasets

MSRA, PKU, AS and CITYU are from the cor-

pora SIGHAN052, while the datasets CTB and

SXU are from SIGHAN08 and CNC, UDC and

ZX are from OTHER open datasets. Both the cor-

pora SIGHAN08 and OTHER datasets are also

openly available3. SIGHAN10 contains data in dif-

ferent domains, and we choose “Finance", “Litera-

ture" and “Medicine" for our cross-domain experi-

2http://sighan.cs.uchicago.edu/

bakeoff2005/
3https://github.com/hankcs/

multi-criteria-cws/tree/master/data/other

ment. Besides, we take CTB6 as CTB dataset in

our whole experiment. We use the original format

of AS and CITYU instead of using their corre-

sponding simplified versions. Furthermore, we use

the same data pre-processing as used in Huang et al.

(2020) for whole experiment.

Both in the single criterion and multiple criteria

experiments, the majority of results are originated

from their corresponding papers. For the multiple

criteria experiment (Chen et al., 2017), we follow

He et al. (2018) and prepare the training data by

combining all the datasets. For the noisy-labeled

experiment, we convert the input sequence into

character and randomly generate four tags (e.g. B,

M, E, and S) for each position of the characters

among the input sequence. We use the identical

pre-processed data for all architectures and we only

build 10% noisy-labeled data of each corpus and

use 90% real data. For the revised masking strategy,

we explore the best accuracy of the predictor by

training and testing the MLM on SIGHAN05.

Baselines

We compare our method with the following strong

baselines in the field of CWS:

1. LSTM+BEAM: Cai et al. (2017) present a

greedy neural word segmenter. The model is

based on LSTM and modifies beam search for

decoding.

2. LSTM+CRF: Ma et al. (2018) find that a bidi-

rectional LSTM, when tuning the parameters

carefully, can achieve better accuracy on many

of the benchmark datasets.



2073

Methods
SIGHAN05 SIGHAN08 OTHER

MSRA PKU AS CITYU CTB SXU CNC UDC ZX

Chen et al. (2017) 95.84 93.30 94.20 94.07 95.30 95.17 − − −

Zhou et al. (2017) 97.80 96.00 − − 96.20 − − − −

Yang et al. (2017) 97.50 96.30 95.70 96.90 96.20 − − − −

He et al. (2018) 97.29 95.22 94.90 94.51 95.21 95.78 97.11 93.98 95.57

Gong et al. (2019) 96.46 95.74 94.51 93.71 97.09 95.57 − − −

LSTM+BEAM 97.10 95.80 95.30 95.60 96.10 95.95 96.10 96.20 96.30

LSTM+CRF 98.10 96.10 96.00 96.80 96.30 96.55 96.61 96.00 96.40

BERT 96.91 95.34 96.47 97.10 97.27 96.40 96.66 97.23 96.49

SELFATT+SOFT 97.60 95.50 95.70 96.40 97.28 96.60 96.88 97.12 96.50

BERT+LTL 97.53 96.23 97.03 97.63 97.34 96.65 96.89 97.51 96.72

Ours 98.12 96.24 97.30 97.83 97.45 96.97 97.25 97.74 96.82

Table 5: Comparison among the SOTA performance (F1-score, %) on the test datasets of 9 standard CWS datasets

using single criterion learning. “BERT" denotes we take BERT as our PTM in the training. Any underlined result

represents that re-implemented scores.

Methods
SIGHAN05 SIGHAN08 OTHER

MSRA PKU AS CITYU CTB SXU CNC UDC ZX

Chen et al. (2017) 96.04 94.32 94.64 95.55 96.18 96.04 − − −

He et al. (2018) 97.35 95.78 95.47 95.60 95.84 96.49 97.00 94.44 95.72

Gong et al. (2019) 97.78 96.15 95.22 96.22 97.26 97.25 − − −

BERT 97.22 96.06 97.07 97.39 97.36 96.81 96.71 97.48 96.60

BERT+LTL 96.67 96.30 97.16 97.72 97.38 96.90 97.10 97.61 96.81

Ours 98.19 96.32 97.43 97.80 97.66 97.03 97.34 98.25 97.08

Table 6: Comparison among the SOTA performance (F1-score, %) on the test datasets of 9 standard CWS datasets

using multiple criteria learning. “BERT" represents that we regard BERT as our PTM in the training. The

underlined results represent that we re-implement the existing methods for a fair comparison.

3. BERT: Devlin et al. (2019) present an ef-

fective pre-trained language model based on

Transformer. It can achieve good performance

via fine-tuning.

4. SELFATT+SOFT: Duan and Zhao (2020)

modify a Gaussian-masked Directional Trans-

former without bi-gram features, and a bi-

affine attention scorer.

5. BERT+LTL: Huang et al. (2020) present a

linear transfer layer to incorporate multiple-

criteria segmentation data into one model.

4.2 Main Experiments

Results of Single Criterion Learning

As shown in Table 5, our proposed method ob-

tains better results on different standard datasets

with single criterion learning. Different segmenta-

tion criteria are used in the popular datasets. Es-

pecially, the segmentation rules of PKU, MSRA

and ZX are different from each other (Huang et al.,

2020). Therefore, to investigate the quality of our

segmentation model, we compare our approach

with the previous SOTA methods on the 9 bench-

mark datasets of CWS. We refer to the reported

results in their corresponding papers, except the

baselines BERT and BERT+LTL on SIGHAN05

corpora. However, for the other two corpora (i.e.,

SIGHAN08 and OTHER) we almost re-run the not

reported results in their papers. Due to the low

GPU memory, we re-implement the BERT version

of BERT+LTL rather than using ROBERTA. We

report all the results with single criterion learning.

Results of Multiple Criteria Learning

As given in Table 6, to further validate the quality

of our method, we also conduct the multiple cri-
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Methods
SIGHAN05 SIGHAN08 OTHER

MSRA PKU AS CITYU CTB SXU CNC UDC ZX

LSTM+BEAM 96.86 95.70 95.17 95.35 95.89 95.83 95.89 96.07 96.18

LSTM+CRF 97.89 95.89 95.88 96.67 96.19 96.47 96.49 95.85 96.25

BERT 96.78 95.20 96.28 97.01 97.14 96.24 96.51 97.11 96.30

SELFATT+SOFT 97.47 95.40 95.57 96.29 97.16 96.49 96.61 97.08 96.33

BERT+LTL 97.42 96.15 96.76 97.52 97.27 96.55 96.69 97.40 96.53

Ours 97.93 96.18 97.12 97.68 97.32 96.83 97.12 97.63 96.67

Table 7: Comparison among the strong baselines (F1-score, %) with noisy-labeled training on 9 CWS datasets

using single criterion learning. “BERT" denotes that we take BERT as our PTM in the training.

Methods Fin. Lit. Med.

Chen et al. (2015b) 95.20 92.89 92.16

Cai et al. (2017) 95.38 92.90 92.10

Huang et al. (2017) 95.81 94.33 92.26

Zhao et al. (2018) 95.84 93.23 93.73

Zhang et al. (2018) 96.06 94.76 94.18

BERT 95.87 95.57 94.66

BERT+LTL 95.96 95.88 94.87

Ours 95.93 95.96 95.08

Table 8: Comparison among the SOTA performance

(F1-score, %) with supervised training on different do-

mains. “Fin.", “Lit." and “Med." represent different

domains (i.e., “Finance", “Literature" and “Medicine").

The underlined results represent that we re-implement

the existing methods for a fair comparison.

teria experiment which is proposed by Chen et al.

(2017) and we compare the performance of our

model with other methods on the same corpora as

single criterion training. Our proposed approach

consistently outperforms previous SOTA methods.

Although we remarkably outperform all baselines

on the majority of datasets, we find that some re-

sults in multiple criteria learning are highly close

to, and sometimes lower than the results of single

criterion training. We also directly refer to the re-

sults of their papers except BERT and BERT+LTL.

We only compare with a few baselines which also

explore multiple criteria learning. The effective-

ness of multiple criteria learning does not improve

the performance of our model on CITYU corpus.

However, on the other datasets, we obtain higher

results than single criterion learning.

Comparison on Low-quality Datasets

As Table 7 shows, to analyze the robustness of our

proposed method with respect to the revised MLM,

we prepare noisy-labeled datasets which contain

90% real data and 10% randomly shuffled data (see

Section 4.1). In this experiment, we exploit the

single criterion training on the noisy-labeled data

rather than using multiple criteria training. We run

all the models on the same noisy-labeled datasets

with their corresponding architectures. Obviously,

all the results are almost lower than the results from

single criterion training. However, our proposed

method still gains better results than SOTA base-

lines with noisy-labeled datasets rather than the

standard labeled data. Not only with the single

criterion training and multiple criteria training but

also with the noisy-labeled data training, we con-

stantly obtain improvements over highly similar

previous work.

Comparison on Different Domains

In Table 8, to further validate the effectiveness of

our model, we choose some datasets in different

domains from SIGHAN10 corpora and compare

the segmentation quality of highly similar previous

works which also used cross-domain datasets. In

this experiment, we also refer to the reported re-

sults from their papers, except the baseline systems

BERT and BERT+LTL. We use the model trained

on PKU corpus and test the different domain test

datasets. The presented approach also gains better

performance on the “Literature" and “Medicine"

domain compared to other approaches but obtains

worse results than BERT+LTL on the domain of

“Finance".

4.3 Effect of Masked Count in MLM

As shown in Table 9, to explore the influences

of the value of mask_count for the quality of

MLM, we train MLM with different values of

mask_count. We find that the accuracy of

the predictor achieves the highest score when
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Figure 3: The effect of different values of the hyper-parameters S(x), α and λ in our model from single criterion

learning. (a) denotes the F1-score (%) with different size of S(x) (default value is 10); (b) and (c) also represent

the F1-score (%) with different values of α (default value is 0.5) and λ (default value is 0.1), respectively.

mask_count Accuracy (%)

2 33.60
3 21.93
4 22.12
5 22.19

Table 9: Comparison of the accuracy of predictor be-

tween different mask_count.

Corpora PTM P. R. F.

MSRA
× 97.06 97.61 97.34
√

98.18 98.06 98.12

AS
× 96.05 96.78 96.41
√

96.30 98.33 97.30

CTB
× 95.97 96.23 96.10
√

97.49 97.41 97.45

CNC
× 96.08 95.42 95.75
√

97.41 97.08 97.25

Table 10: The effect of the PTM on our model with sin-

gle criterion learning. “P., R. and F." denote the eval-

uation methods of precision, recall and F1-score (%).

“
√

" and “×" represent with or without PTM, respec-

tively.

mask_count = 2. Note that if mask_count = 1,

only one character can be masked. In this case,

masking any character is legal, regardless of the

segmentation result. Therefore, we analyze the

case where the mask_count is greater than or

equal to 2 and choose the mask_count number

that makes the accuracy of the MLM highest.

4.4 Ablation Study

Effect of Pre-Trained Model

As shown in Table 10, we explore the influences of

the PTM on the segmentation model with single cri-

terion training. We take BERT as PTM and explore

the effect of PTM to the quality of our word seg-

mentation model on different datasets (i.e, MSRA,

AS, CTB and CNC) with different segmentation

criteria. Intuitively, the performance of our seg-

mentation approach with PTM obtains remarkably

better results than without using PTM.

Effect of Hyper-Parameters

We regard improved MRT as a crucial part of our

self-supervised word segmentation architecture. To

choose the best values of the hyper-parameters, we

explore the different values of α, λ and the size of

S(x) on the datasets CTB, CNC and UDC with

single criterion training.

Effect of size of S(x) S(x) is a subset of all

word segmentation results Y (x) corresponding to

the sentence x, which is used to generate the dis-

tribution Q defined in Equation (3). As shown in

Figure 3(a), when the size of S(x) = 10, improved

MRT enhances the quality of segmentation model

remarkably better than other values on the different

corpora.

Effect of α α is used to control the sharpness of

the distribution Q defined in Equation (3). As de-

picted in Figure 3(b), when α = 0.5 improved

MRT increases the quality of our segmentation

model outstandingly on the different corpora.

Effect of λ λ is the regularization term for im-

proved MRT, which appears in Equation (5). As

illustrated in Figure 3(c), when λ = 0.1 our model
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achieves the best segmentation performance com-

pared to other values.

5 Conclusion and Future Work

In this work, we propose a self-supervised method

for CWS. We first generate masked sequences

based on the segmentation results and then use

revised MLM to evaluate the quality of segmen-

tation and enhance the segmentation by improved

MRT. Experimental results show that our approach

outperforms previous methods on both popular and

cross-domain CWS datasets, and has better robust-

ness on noised-labeled data. In the future, we can

also extend our work to tasks of morphological

word segmentation (e.g., morphological analysis).
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