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Abstract

Class imbalance is a common challenge in
many NLP tasks, and has clear connections to
bias, in that bias in training data often leads
to higher accuracy for majority groups at the
expense of minority groups. However there
has traditionally been a disconnect between re-
search on class-imbalanced learning and mit-
igating bias, and only recently have the two
been looked at through a common lens. In
this work we evaluate long-tail learning meth-
ods for tweet sentiment and occupation clas-
sification, and extend a margin-loss based ap-
proach with methods to enforce fairness. We
empirically show through controlled experi-
ments that the proposed approaches help miti-
gate both class imbalance and demographic bi-
ases.1

1 Introduction

Class imbalance is common in many NLP tasks, in-
cluding machine reading comprehension (Li et al.,
2020), authorship attribution (Caragea et al., 2019),
toxic language detection (Breitfeller et al., 2019),
and text classification (Tian et al., 2020). A
skewed class distribution hurts the performance
of deep learning models (Buda et al., 2018), and
approaches such as instance weighting (Lin et al.,
2017; Cui et al., 2019; Li et al., 2020), data aug-
mentation (Juuti et al., 2020; Wei and Zou, 2019),
and weighted max-margin (Cao et al., 2019) are
commonly used to alleviate the problem.

Bias in data often also manifests as skewed dis-
tributions, especially when considered in combi-
nation with class labels. This is often referred to
as “stereotyping” whereby one or more private at-
tributes are associated more frequently with cer-
tain target labels, for instance more men being
employed as surgeons than women. Prior work
has identified several classes of bias, including

1Code available at: https://github.com/
shivashankarrs/classimb_fairness

C

Figure 1: Example of a two-class problem where
grey and blue points denote majority and minority
classes, respectively, and circles and squares denote
two sub-groups. Imbalanced learning methods such as
LDAM (Cao et al., 2019) maximise the (soft-)margin
for minority classes and do not consider sub-groups
within each class.

bias towards demographic groups based on gen-
der, disability, race or religion (Caliskan et al.,
2017; May et al., 2019; Garimella et al., 2019;
Nangia et al., 2020), and bias towards individu-
als (Prabhakaran et al., 2019). Methods to mitigate
these biases include data augmentation (Badjatiya
et al., 2019), adversarial learning (Li et al., 2018),
instance weighting based on group membership
(Kamiran and Calders, 2011), regularization (Wick
et al., 2019; Kennedy et al., 2020), and explicit sub-
space removal (Bolukbasi et al., 2016; Ravfogel
et al., 2020).

This paper draws a connection between class-
imbalanced learning and stereotyping bias. Most
work has focused on class-imbalanced learning and
bias mitigation as separate problems, but the unfair-
ness caused by social biases is often aggravated by
the presence of class imbalance (Yan et al., 2020).
Class-imbalanced learning approaches improve the
performance of minority classes at some cost to
the performance of majority classes. A common
approach re-weights instances in the training ob-
jective to be proportional to the inverse frequency
of their class. Approaches such as FOCAL (Lin
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et al., 2017) and DICE (Li et al., 2020) extend
this approach by down-weighting “easy” instances.
Label-Distribution-Aware Margin Loss (“LDAM”:
Cao et al. (2019)) is an alternative approach, which
encourages a larger margin for the minority class,
but it does not consider sub-group proportions (see
Figure 1). On the other hand, debiasing approaches
do not typically focus on class imbalance explic-
itly. For instance, in toxicity classification, certain
sub-groups are often predicted more confidently
for toxicity (encouraging false negatives for the
majority sub-group), which tend to be close to the
margin for the non-toxic class (encouraging false
positives; Borkan et al. (2019)).

In this work, we modify the training objective
of LDAM as a state-of-the-art approach for imbal-
anced learning so that margins depend not just on
class-imbalance, but also on the subgroup distri-
bution within each class. Specifically, we extend
LDAM with popular debiasing strategies. We show
the effectiveness of our approach through several
controlled experiments on two text classification
data sets.

2 Proposed Approaches

Let (x, y, g) denote a training instance, comprising
an input, label, and group identifier, respectively.
LDAM (Cao et al., 2019) addresses class imbalance
by enforcing a larger margin for minority classes:

LLDAM(x, y; f) = − log
ezy−∆y

ezy−∆y +
∑

j 6=y e
zj

∆j =
C

n
1/4
j

for j ∈ {1, . . . , k}

where z = f(x) are the model outputs, k is the
number of classes, nj is the number of instances in
class j, and C is a hyperparameter. Smaller classes
are associated with a larger ∆y, which is subtracted
from the model output zy, thus enforcing a larger
margin.

We propose three extensions to LDAM, each of
which takes into account imbalance in the distribu-
tion of private attributes across classes:

LDAMiw adds instance re-weighting, based on
groups within each class:

LLDAMiw(x, y, g; f) = ωy,gLLDAM(x, y; f)

where g is the group of instance x; and ωy,g =
1−β

1−βNy,g
weights each class–group combination

based on its smoothed inverse frequency. β is a
constant set to 0.9999 (Cui et al., 2019) and Ny,g

is the number of instances belonging to class y
and group g. Mistakes on minority groups within
minority classes are penalised most.

LDAMadv adds an adversarial term, so that the
learnt representations are a poor predictor of group
membership (Li et al., 2018):

LLDAMadv
(x, y, g; f) =

LLDAM(x, y; f)− λadvCE(g, l(x))

where f shares the lower layers of the network with
the adversary l, CE denotes cross-entropy loss, and
λadv is a hyperparameter. This objective LLDAMadv

is jointly minimised wrt f and maximised wrt l.
The penalty results in hidden representations that
are informative for the main classification task (f ),
but uninformative for the adversarial group mem-
bership prediction task (l). The adversarial loss is
implemented using gradient reversal (Ganin and
Lempitsky, 2015).

LDAMreg adds a soft regularization term which
encourages fairness as equalised odds by reducing
maximum mean discrepancy (Gretton et al., 2012)
across groups. The probability of predicting some
class k for any individual group g should be close
to k’s probability over the whole data set:

LLDAMreg(X,y,g; f) = LLDAM(X,y; f)+

ρ
∑
g

∥∥∥∥∥∥ 1

Ng

∑
i:gi=g

f(xi)−
1

N

∑
i

f(xi)

∥∥∥∥∥∥
2

where we have moved from single instance loss
to the loss over the full training set, Ng denotes
the number of training instances in group g, and
hyper-parameter ρ controls the trade-off between
performance and fairness.

3 Experimental Results

We perform experiments on the two tasks of emoji
prediction and occupation classification, both of
which are binary classification tasks with binary
protected attributes.

Emoji prediction: We use the Twitter dataset
of Blodgett et al. (2016), where tweets are
associated with the private attribute race
(black/white), and sentiment labels are de-
rived from emoji usage (happy/sad) (Elazar
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and Goldberg, 2018). We experiment with dif-
ferent levels of class and stereotyping imbal-
ance in the Emoji dataset, including its origi-
nal distribution (see Section 3.1).

Occupation classification: This data set con-
sists of short biographies scraped from the
web, annotated for private attribute gender
(male/female) and target occupation labels
(De-Arteaga et al., 2019). We focus on two
occupations with well-documented gender
stereotypes – surgeon and nurse. The result-
ing dataset is mildly class-imbalanced (59%
surgeon: 41% nurse), with roughly symmetric
natural gender splits (90% male for surgeon
and 90% female for nurse).

For emoji prediction we follow Ravfogel et al.
(2020) and use the DeepMoji encoder, which was
trained on millions of tweets and is known to en-
code demographic information (Elazar and Gold-
berg, 2018). For occupation classification, we use
the BERT-base uncased model and classify via the
last hidden state of the CLS token (Devlin et al.,
2019). Both encoders are followed by a single
hidden layer MLP.

We evaluate classification performance based on
macro-averaged F-score (to account for class im-
balance), and evaluate fairness using performance
GAP: the average of the true positive rate (TPR)
and true negative rate (TNR) differences between
the two subgroups (De-Arteaga et al., 2019; Ravfo-
gel et al., 2020). Note that a wide variety of fairness
measures (both on the group- and individual levels)
have been proposed, which are impossible to satisfy
simultaneously (Garg et al., 2020). Often, a suit-
able measure is chosen based on the target applica-
tion. Here we use the popular equalised odds mea-
sure considering both TPR and TNR of classifiers,
in order to address scenarios where certain sub-
groups are predicted more often with some classes
(see Section 1). We report fairness as 1−GAP, such
that higher numbers are better, and a perfectly fair
model achieves 1−GAP = 1. We compare our
methods against the following benchmarks:

vanilla: unweighted cross-entropy loss.

FOCAL: re-weights easy examples during train-
ing (Lin et al., 2017).

CW: instance re-weighting based on the inverse
class proportion and cross-entropy.

IW: instance re-weighting based on the combina-
tion of inverse class and group proportions,
and cross-entropy (Kamiran and Calders,
2011).

INLP: Iterative null-space projection (Ravfogel
et al., 2020): in each iteration, we learn a
SVM classifier W using hidden representa-
tions (Xh) as the independent variables to
predict the protected attribute, where Xh is
projected onto the nullspace of W to remove
the protected information.

LDAM: the original LDAM model (Cao et al.,
2019).

LDAMcw: a variant of LDAM with instance re-
weighting by inverse class proportion (Cao
et al., 2019).

3.1 Model Comparison

We include simulated experimental settings with
the emoji dataset following Ravfogel et al. (2020)
where they keep the class proportions balanced, but
vary group proportions (stereotyping). In our work,
we systematically vary both class imbalance and
stereotyping, in order to assess the robustness of
the models wrt class imbalance and fairness indi-
vidually. We explore three settings: varying both
dimensions at the same time (Figure 2), controlling
for class imbalance and vary stereotyping (Table
1), and controlling for stereotyping while varying
class imbalance (Table 2).

We simultaneously vary stereotyping and class
imbalance in the emoji dataset, exploring several
settings:

• Original: the dataset is sampled based on the
natural class distribution (70% positive; Blod-
gett et al. (2016)), and within each class the
black:white ratio is set to 18:82, based on US
census estimates.

• 90/90: the class distribution is skewed (90%
positive), and black:white ratio is set to 90:10
for positive tweets and 10:90 for negative
tweets (i.e. “stereotyping” the classes).

• 95/95: as per the above, but with class skew
and stereotyping ratios set to 95:5.

For the occupation classification task, the original
data is used as is (Figure 3).
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Figure 2: F-score vs. fairness (1−GAP) across the (a) original, (b) 90/90 and (c) 95/95 setting on the emoji
prediction task. Models which balance fairness vs. performance through hyperparameters are shown as Pareto
frontiers, while the others are reported as single points.

F-score 1−GAP

Ratio vanilla INLP LDAMiw LDAMreg LDAMadv ADV vanilla INLP LDAMiw LDAMreg LDAMadv ADV

0.5 0.76 0.75 0.76 0.75 0.75 0.76 0.87 0.88 0.89 0.92 0.91 0.83
0.6 0.76 0.71 0.76 0.74 0.74 0.75 0.79 0.82 0.80 0.92 0.91 0.80
0.7 0.74 0.65 0.75 0.74 0.73 0.75 0.70 0.84 0.73 0.93 0.89 0.78
0.8 0.72 0.62 0.74 0.73 0.73 0.74 0.61 0.84 0.67 0.93 0.72 0.76

Table 1: Performance and Fairness on the Emoji data set with fixed balanced class-distribution, but varying the
stereotyping ratio (black:white) per class. The ratio column denotes the % of black instances relative to white. The
test-set is stereotype balanced (50:50).

F-score 1−GAP

Ratio vanilla INLP LDAMcw LDAMiw LDAMreg LDAMadv vanilla INLP LDAMcw LDAMiw LDAMreg LDAMadv

0.7 0.83 0.80 0.83 0.82 0.80 0.80 0.62 0.73 0.60 0.75 0.84 0.83
0.8 0.80 0.77 0.83 0.80 0.77 0.78 0.64 0.80 0.61 0.76 0.84 0.85
0.9 0.74 0.72 0.79 0.75 0.72 0.74 0.70 0.79 0.62 0.84 0.85 0.82

Table 2: Performance and Fairness on the Emoji data set, fixing the stereotyping ratio to 0.8:0.2 (black:white)
per class, and varying the class-balance ratio (proportion of positive class is shown). The test sets in each row
are different, and mimic the class-imbalance and stereotyping of the training data (i.e. results across rows are not
comparable).

Model Selection. For models with hyper-
parameters which trade off performance and fair-
ness, the optimal balance of F-score and fairness
is not clear, so we adopt the concept of Pareto
optimality (Godfrey et al., 2007) and present the
Pareto frontier in the graphs. In particular, for
LDAMreg and LDAMadv, we perform a hyper-
parameter search over C (10−2 to 30), ρ (10−4 to
102), and λ (10−4 to 102). In general, a higher C
prioritises F-score over fairness, and a higher ρ and
λ prioritise fairness. For INLP, we tune the number
of iterations as a hyper-parameter. The remaining
models don’t have trade-off hyper-parameters, so
we report a single-point best model: for LDAM
and LDAMcw we tune C by choosing the best-
performing model over the dev set. For LDAMiw,

we set β to 0.9999 following Cui et al. (2019), and
tune C to identify the fairest model on the dev set.

The results in Figure 2 (a)–(c) show that
LDAMreg is overall superior to the other ap-
proaches, especially for higher F-scores. For in-
creasingly extreme levels of class imbalance and
stereotyping (as we move to the right in the figure),
the advantage of LDAMreg over LDAMadv and
INLP decreases substantially. Across all the set-
tings, LDAMcw has the highest bias (is least fair).
With higher class imbalance and stereotyping, most
class-imbalanced learning methods—FOCAL, CW
and LDAMcw—exhibit high bias. In the stereotyp-
ing settings, LDAMiw reduces bias compared to
IW.

Analogous results on the occupation data (origi-
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Figure 3: F-score vs. 1−GAP on occupation classifi-
cation (original class balance and stereotyping) for the
same set of models as in Figure 1.

nal class proportions) are in Figure 3. Once again,
the proposed LDAM extensions perform the best
overall, with LDAMreg achieving the best trade-
off in performance. Class-imbalanced learning
approaches (FOCAL, LDAM, and LDAMcw) are
most biased on this dataset, with IW improving
fairness over vanilla cross-entropy training, and
LDAMiw providing large improvements in fairness.

3.2 Stereotyping-Class balance Trade-off

In addition to comparing models based on the trade-
off between performance and fairness in class-
imbalanced learning, we wish to disentangle the
effect of stereotyping from class imbalance. We do
so by: (a) fixing class balance to 50:50 and varying
stereotyping (Table 1); and (b) fixing stereotyping
to a symmetric 0.8 while varying class imbalance
(Table 2). A stereotyping level of symmetric 0.8
means 80:20 black:white for positive and 20:80
black:white for negative tweets. We perform model
selection by choosing the INLP model with best
harmonic mean of performance and fairness for
Table 2, and use the results from the original paper
for Table 1. We select all other models by first
selecting from models with F-score at least as high
as INLP, and then selecting the one with the low-
est GAP. We include a recent adversarial model in
the varying stereotyping experiments, which per-
formed strongly on the class-balanced emoji data
(ADV: Han et al. (2021)).

Our results on varying stereotyping levels in Ta-
ble 1 show that the vanilla baseline drops in perfor-
mance more sharply than most proposed models,
and results in the most unfair predictions by a large
margin. LDAMiw, LDAMadv, and ADV retain
high F-scores but drop in fairness with increas-
ing stereotyping, while INLP exhibits the opposite
pattern. LDAMreg achieves the best balance of

F-score and fairness. Table 2 presents results for
fixed stereotyping and varying class imbalance (0.7–
0.9 positive). We include LDAMcw for handling
class imbalance but exclude ADV, which does not
address class-imbalance directly. We observe that
LDAMcw has the highest F-score, but scores poorly
for fairness. LDAMiw achieves the best trade-off
with high class-imbalance, but shows large varia-
tion across settings. LDAMreg appears more stable,
exhibiting a good performance–fairness trade-off.

4 Conclusion and Future Work

We explored the interplay of class-imbalance and
stereotyping in two language classification data
sets. We showed that vanilla class-imbalanced
learning (IW, CW, FOCAL, LDAM and LDAMcw)
can exacerbate unfairness. We extended class-
imbalanced learning approaches to handle fairness
under stereotyping, and showed that our models
provide consistent gains in fairness without sacri-
ficing accuracy. Both LDAMreg which uses max-
imum mean discrepancy regularizer (Tzeng et al.,
2014) and LDAMadv with adversarial loss (Ganin
and Lempitsky, 2015) are different ways to make
the text representation independent of demographic
attributes. Consistent with previous work (Louizos
et al., 2016) we find that LDAMreg is robust and
performs best across several test scenarios, ex-
cept in extremely skewed (or stereotyped) settings
where the gains of LDAMreg over its adversar-
ial counterpart (LDAMadv) diminishes. In addi-
tion, LDAMadv introduces more parameters into
the model, and is in general hard to train, hence
LDAMreg is more preferable overall. In the future,
we plan to extend our methods to more complex
tasks and multiple private attributes (Subramanian
et al., 2021).
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