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Abstract

Distantly supervised relation extraction is

widely used in the construction of knowledge

bases due to its high efficiency. However, the

automatically obtained instances are of low

quality with numerous irrelevant words. In ad-

dition, the strong assumption of distant super-

vision leads to the existence of noisy sentences

in the sentence bags. In this paper, we pro-

pose a novel Multi-Layer Revision Network

(MLRN) which alleviates the effects of word-

level noise by emphasizing inner-sentence cor-

relations before extracting relevant informa-

tion within sentences. Then, we devise a bal-

anced and noise-resistant Confidence-based

Multi-Instance Learning (CMIL) method to fil-

ter out noisy sentences as well as assign proper

weights to relevant ones. Extensive experi-

ments on two New York Times (NYT) datasets

demonstrate that our approach achieves signif-

icant improvements over the baselines.

1 Introduction

Relation Extraction (RE), which aims to classify

the relations between a pair of entities in a sentence,

is crucial to various applications like question-

answering and construction of knowledge bases.

However, supervised relation extraction requires

large amounts of manually labeled training data,

which is hard to obtain. Therefore, Mintz et al.

(2009) proposed Distantly Supervised Relation Ex-

traction (DSRE) to automatically generate train-

ing data by aligning the knowledge base with text

corpus. However, DSRE is based on the strong

assumption that for an entity pair participating in a

relation in the knowledge base, all sentences men-

tioning this entity pair in the corpus express the

same relation. This brings a large number of noisy
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sentences into the generated data. The worst case is

the noisy bag problem where all the sentences in the

bag are mislabeled. On the other hand, low-quality

sentences in the corpus contain a large proportion

of irrelevant words, meaning even correctly labeled

sentences may be filled with inner-sentence noise.

To better present the impact of both sentence-level

noise and word-level noise (inner-sentence noise),

we select a sentence bag from New York Times

(NYT) corpus as shown in Figure 1. Among the

three sentences, only S2 expresses the label rela-

tion, meaning S1 and S3 are both noisy sentences.

What’s worse, in S2, the relation is indicated by a

single word co-founders and the rest of the words

can be regarded as noise.

Figure 1: An instance from NYT corpus along with its

corresponding entity pair and relation type. Relevant

words are underlined.

To tackle sentence-level noise, various multi-

instance learning (Riedel et al., 2010) methods are

proposed to reduce the effects of noisy sentences.

Some methods filter out noisy sentences and keep

the relevant ones (Zeng et al., 2015; Qin et al.,

2018; Feng et al., 2018), but they may filter out

relevant sentences as well. Some other methods

apply soft labels or weights to limit the impact of

noisy sentences (Lin et al., 2016; Liu et al., 2017;

Yuan et al., 2019a), yet still at risk of being influ-

enced by sentence-level noise because of the soft
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method. Therefore, a more balanced multi-instance

learning strategy should be designed to avoid noisy

sentences as well as fully exploit information in

relevant ones.

To address word-level noise, a robust encoder

is needed for capturing relevant information in a

noisy context. Most of the previous work uses en-

coders based on Recurrent Neural Network (RNN)

or Convolutional Neural Network (CNN) (Zeng

et al., 2015; Zhou et al., 2016). However, both

RNN and CNN models have shortcomings. In

RNN encoders, irrelevant words can easily spread

noise to its context since they are not isolated from

relevant ones. As for CNN encoders, they may lose

the salient information because of their pooling

layers. To sum up, previous methods are not able

to handle noisy words without information loss.

Based on the idea that noisy words have weaker

correlations with others, we try to fill this gap by

modeling the correlations within sentences using

attention mechanism.

We propose a novel Multi-Layer Revision

Network (MLRN) with Confidence-based Multi-

Instance Learning (CMIL) to tackle both word-

level and sentence-level noise. In MLRN, we em-

ploy the novel revision layers, which alleviate noise

by emphasizing inner-sentence correlations, to ex-

tract relevant information from the sentence. In

each revision layer, we first model the correlations

between words using self-attention, then emphasize

the correlations by revising the attention weights,

and finally apply a Translation Query (TRQ) for

information extraction. By stacking multiple revi-

sion layers, implicit correlations between words are

addressed. To alleviate sentence-level noise and

tackle the noisy bag problem, we devise a confi-

dence vector to measure the relevance of sentences

to the relation classes and further utilize it to guide

sentence filtering and weighting. Our contributions

can be summarized as follows:

• To our best knowledge, MLRN is the first

model to utilize implicit correlations be-

tween words and the first DSRE network

based solely on attention mechanism without

RNN/CNN encoder layer or extra linguistic

information.

• We propose a confidence-based multi-instance

learning strategy that is able to (1) conduct

sentence filtering independent of DS label to

address noisy sentences, and (2) assign proper

weights to relevant sentences based on their

relevance to the bag prediction.

• Extensive experiments show that our approach

achieves significant improvements over the

baselines.

2 Related Work

Distant supervision (DS) for relation extrac-

tion (Mintz et al., 2009) is proposed for efficient

knowledge base construction. However, DS brings

about the wrong labeling problem as well. Riedel

et al. (2010) proposes multi-instance learning for

DSRE to address this issue. Most of the current

work uses two types of MIL strategies: to remove

noisy sentences or to apply soft weights. Fol-

lowing the at-least-one assumption, Zeng et al.

(2015) selects the instance with the highest proba-

bility within the bag. Qin et al. (2018) and Feng

et al. (2018) employ reinforcement learning for in-

stance selection. For better information utilization,

Lin et al. (2016) applies selective attention on the

sentence level to dynamically adjust the attention

weights. Yuan et al. (2019a) calculates the simi-

larity between instances and the best sentence. DS

may create noisy bags where all the sentences are

mislabeled. Yuan et al. (2019b) and Ye and Ling

(2019) use bag-level attention to address this issue.

CNN-based (Zeng et al., 2015) and RNN-

based (Zhou et al., 2016) networks are widely used

for capturing information within the sentences. In

addition, Xu et al. (2015) and Liu et al. (2018) in-

tegrate extra linguistic information into the model

to address word-level noise. Since attention mech-

anism has been proved effective for modeling long-

range dependencies in the sequence (Vaswani et al.,

2017), attention-based models (Wang et al., 2018;

Du et al., 2018; Huang and Du, 2019; Zhang et al.,

2020) are also introduced into DSRE.

In our work, we further make use of atten-

tion mechanism to emphasize correlations between

words and devise a balanced confidence-based strat-

egy to address noisy sentences.

3 Methodology

The overall structure of our model is shown in

Figure 2. Our model can be divided into three

parts: embedding layer, revision network and multi-

instance learning layer. In this section, we intro-

duce them respectively.
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Figure 2: An overview of our MLRN+CMIL model. The revision network used for generating sentence represen-

tations is on the right, while confidence-based multi-instance learning is on the left.

3.1 Embedding Layer

Before being fed into the revision network, the in-

put instances are transformed into distributed repre-

sentations. The representation of each word token

consists of two parts: word embedding and position

embeddings.

Word Embeddings are distributed representa-

tions for word tokens. Formally, we define jth word

token in the ith sentence as wij , which is mapped

to a dw-dimensional word vector vij ∈ Rdw . The

same as previous studies, We adopt Skip-Gram

method to obtain the pre-trained word embedding

matrix.

Position Embeddings are distributed represen-

tations for the relative distances from each word

to the two entities, which are represented as low-

dimensional vectors pe1ij , p
e2
ij ∈ Rdp .

Finally, the input embedding xij is generated

by concatenating word embedding vij , position

embeddings pe1ij and pe2ij , which is formulated as

below:

xij = [vij ; p
e1
ij ; p

e2
ij ] (1)

where the dimension of xij is dh = dw + 2dp.

3.2 Revision Network

Formally, the revision network takes a sequence of

word representations Xi = {xi1, xi2, xi3, ..., xil}
with length l as the input, and outputs an d-

dimensional representation US
i ∈ Rd for the sen-

tence. The revision layer for word-level noise re-

duction includes two types of attention sub-layers:

self-attention layer and query-attention layer. By

applying self-attention on the input, the correla-

tions between each pair of tokens are calculated.

In order to emphasize the correlations, the atten-

tion weights are revised in a query-attention layer

before updating the representations. Afterwards,

we apply a Translation Query (TRQ) inspired by

TransE (Bordes et al., 2013) to extract relevant

information as the record for each layer. Finally,

these records are concatenated to form the sentence

representation used for multi-instance learning.

The compositions of revision network will be

discussed in detail in this section.

3.2.1 Input Layer

The input layer serves as an encoding layer which

calculates feature representations from input em-

beddings. The input is the embeddings of ith in-

stance, denoted as Xi. For convenience, the sub-

script i is omitted in the equations of this part.

Instead of using CNN or RNN input layers as in

most of the previous work, we apply an attention

layer to model the long-distance dependencies in

the sentence. The attention mechanism used can
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be formulated as follows:

Att(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where Q is the query, K is the key and V is the

value as Vaswani et al. (2017). dk is the dimension

of key as well as a scaling factor.

In order to explore various semantic spaces of

the sentence, we use Multi-Head Self-Attention

(MHSA) in the input layer, which is shown as fol-

lows:

MHSA(X) = σ([H1; ...;Hh]) (3)

Hi = Att(XWQ
i , XWK

i , XW V
i ) (4)

where σ is the sigmoid activation function,

WQ
i ,WK

i ,W V
i ∈ Rhdk×dk are weight matrices

for ith head and h is the number of heads. Note

that dh = hdk.

The input layer maps the input embedding onto

the feature space, and generates the feature of the

instance:

S = MHSA(X) (5)

The feature S of the instance is then passed to the

first revision layer.

3.2.2 Revision Layer
There are totally three steps in revision layer: Self-
Attention, Revision and Recording. Formally,

the ith input to the kth revision layer is the output

from last layer, denoted as Sk−1
i . The two enti-

ties’ representations in the sentence are presented

as Ei1 and Ei2 respectively. The ith output of kth
revision layer is denoted as Sk

i and the record of

the kth layer as Uk. For convenience, the super-

script k and subscript i are omitted in the following

equations except Eq. 10.

Self-Attention layer first calculates the inner-

sentence correlations from the input S using self-

attention, which is shown as follows:

QR = Att(S) (6)

where we omit repetition of S as we have identi-

cal query, key and value. Note that different from

the input layer, the self-attention layer does not in-

troduce extra weight matrices so that the operation

is on the same feature space.

Viewed in a word-level perspective, self-

attention layer updates the representation of a token

as the weighted sum of the representations of all

tokens in the sentence, where those similar to the

inspected token have larger weights. In the feature

space, closely correlated words tend to have similar

representations. Since noisy words have weaker

correlations with others, their attention weights

assigned by other tokens are smaller. Therefore,

noisy words are marginalized throughout the pro-

cess, making them unlikely to spread noise to the

rest of the sentence. However, since each token

always has the highest similarity with itself, the

weights assigned to other relevant words are rela-

tively small, which limits the modeling of inner-

sentence correlations. In other words, we need to

assign larger weights to relevant words for stronger

inner-sentence correlations.

To address this issue, Revision process is con-

ducted using a query-attention layer, which takes

QR, the output from the self-attention layer, as the

query and the layer input S as the key and value.

The calculation is formulated as follows:

O = Att(QR, S) (7)

where we also omit repetition of S since it serves

as both key and value. We use the output from

the self-attention layer as the query because it has

already partially modeled the inner-sentence cor-

relations, meaning that in the feature space, rele-

vant words become closer to each other. Therefore,

the revision query-attention layer assigns larger

weights to relevant words to emphasize the inner-

sentence correlations. At the same time, noisy

words are further marginalized in this process.

However, not all the words in the sentence are rel-

evant to the relation, as shown in Figure 1. Hence

we carry out Recording process to extract relevant

information from the sentence. In order to rep-

resent the relation feature, we employ the TRQ

inspired by TransE (Bordes et al., 2013) which

uses the difference of two entities’ representations

as the relation feature. Similar method has been

proved effective in Liu et al. (2020). Here, we use

multi-head attention to explore multiple semantic

sub-spaces, the process is formulated as follows:

U = σ([H1; ...;Hh]) (8)

Hi = Att((E1 − E2)W
Q
i , OWK

i , OW V
i ) (9)

where σ is the activation function, E1 and E2 are

representations of entity pair, WQ
i ,WK

i ,W V
i are

weight matrices for ith head and h is the number

of heads. The translation query E1 − E2 ∈ Rdh

and the updated representations O ∈ Rl×dh are
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first mapped onto the same vector space, then the

record U ∈ Rdh is calculated as the weighted sum

of the tokens’ representations according to their

relevance to the relation.

However, implicit correlations may not be con-

sidered within a single revision layer. As a simple

example, given the sentence "[Joe] is the father of
John, father of [Amy]", the model calculates the

correlation between Joe and John as well as the cor-

relation between John and Amy, but may be unable

to observe the correlation between Joe and Amy
in the first layer because they are not directly re-

lated. Therefore, we stack multiple revision layers

to capture more implicit correlations between the

words.

At the end of the revision network, all extracted

records are concatenated together to form the final

representation for the instance, which is formulated

as below:

US = [U1;U2; ...;UL] (10)

where L is the number of revision layers and

US ∈ RLdh is the final sentence representation.

For convenience, in the following sections, we use

d = Ldh to represent the dimension of sentence

representations.

3.3 Confidence-based Multi-Instance
Learning

After obtaining the representation for each sentence

in the bag, we generate the bag representation using

the CMIL strategy. First, we filter out noisy sen-

tences according to the prediction of the bag. Af-

terwards, we emphasize the sentences with higher

relevance according to the confidence vector. For-

mally, the input is a bag of sentence representations:

B = {US
1 , U

S
2 , ..., U

S
N} where N is the number of

sentences in the bag. The output of multi-instance

learning layer is the bag representation UB .

Firstly, as shown in Figure 2, the score of ith
sentence in the bag is calculated as follows:

Fi = WrU
S
i + br (11)

where Wr ∈ Rd×c and br ∈ Rc are weight matri-

ces and c is the number of relation classes. The

confidence vector Ci ∈ Rc measuring the rele-

vance to each of the relation classes is calculated

from the scores as follows:

Cij = W c
j Fij (12)

where W c ∈ Rc is a weight matrix that represents

the reliability of DS labels. In other words, it re-

flects the model’s confidence towards the DS labels.

Reliable DS labels have higher possibility to have

true positive sentences, therefore, the model be-

comes more confident towards these labels so they

have higher weights in W c. Afterwards, we obtain

the adjusted score, which is the sum of original

score and confidence vector, to generate the bag

prediction and select relevant instances into the new

bag as follows:

j∗ = argmaxj(Cij + Fij) 1 ≤ i ≤ N (13)

Bag = {US
i | argmaxj(Cij + Fij) = j∗} (14)

where Cij+Fij is the adjusted score which applies

different thresholds on different relation classes. As

shown above, the filtering process is guided by j∗,

which is the prediction made by the model. There-

fore, in our model, instance selection is guided by

the true relation class expressed in the bag instead

of being misled by the DS label as in most of the

previous methods. In this way, our model is able to

alleviate the noisy bag problem.

Finally, in order to obtain the bag representation,

we apply weighted sum on the instances in the new

bag according to their confidence values:

UB =
∑

i

αiU
S
i (15)

αi = softmax(Cij∗) (16)

where US
i is the representation of ith instance in

the new bag and UB is the final bag representation.

3.4 Optimization
Our goal is to maximize the conditional probability

for the target relation given the bag of sentences.

The probability p(y|UB, θ) is calculated from the

bag representation as below:

p(y|UB, θ) = softmax(WrU
B + br) (17)

where Wr and br are the same weight matrices as

Eq. 11. Then we employ a negative log-likelihood

loss function with L2 regularization to train the

model:

J(θ) = −1

c

c∑

k=1

yklog(pk) + β||θ||2 (18)

where β is a hyper-parameter to restrict the L2 term.

In our work, we use Adam (Kingma and Ba, 2014)

to optimize our model.
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4 Experiments

In this section, we first introduce the datasets and

evaluation metrics used in the experiments. Then,

we provide our experimental settings. Afterwards,

we compare our model with baselines using the

evaluation metrics. Finally, we discuss the effects

of the revision layer and the CMIL strategy.

4.1 Datasets and Evaluation Metrics

In order to evaluate the performance of our model,

we conduct experiments on widely used NYT-10

dataset (Riedel et al., 2010) and complex NYT-18

dataset (Zhang et al., 2020). NYT-10 is a stan-

dard dataset constructed by aligning relation facts

in Freebase (Bollacker et al., 2008) with the New

York Times corpus, where sentences from 2005 to

2006 are used for training and sentences from 2007

are used as the test set. NYT-18 is a larger dataset

containing NYT documents from 2008 to 2017.

Both datasets are labeled with Freebase and Stan-

ford Named Entity Recognizer (Finkel et al., 2005).

All the sentences are divided into five parts with

the same relation distribution for five-fold cross-

validation. The details of the datasets are shown in

Table 1.

Datasets Rel.
Training (k) Testing (k)

Ent. Sen. Ent. Sen.

NYT-10 53 281 523 97 172

NYT-18 503 1234 2446 394 611

Table 1: The details of datasets. Rel., Ent. and Sen. in-

dicate numbers of relations, entity pairs and sentences

respectively.

Following previous work (Mintz et al., 2009),

we evaluate our model in the held-out evaluation,

in which the relations extracted are automatically

compared with those in Freebase. PR curves, area

under curve (AUC) and Precision at top 100 pre-

dictions (P@100) are adopted as the evaluation

metrics in our experiments. We employ three test

settings which are One, Two and All.

• One: For each entity pair, we randomly select

one instance to express the relation.

• Two: For each entity pair, we randomly select

two instances to express the relation.

• All: In testing process, all instances mention-

ing the entity pair are selected.

Parameter Value

Batch size b 50

Word embedding size dw 50

Position embedding size dp 5

Sentence length l 70

Hidden size dh 60

Number of attention heads h 2

Number of revision layers L 6

Sentence representation size d 360

Learning rate lr 0.0001

Dropout probability pr 0.5

L2 penalty β 1e-04

Table 2: Parameter settings.

4.2 Experimental Settings

In the experiments, the word embeddings are pre-

trained using word2vec (Mikolov et al., 2013). In

Table 2, we list our parameters for the best model.

We use two attention heads because we have a pair

of mentioned entities in each sentence. The num-

ber of revision layers depends on the number of

entity pairs and sentences in the dataset, and the

difficulty of understanding them. In CMIL process,

if all sentences in the bag are filtered, the model

will assign average weights to them.

4.3 Evaluation on NYT-10

Figure 3: Precision-recall curves of models on NYT-

10.

To evaluate our approach, we select the follow-

ing methods as our baselines:

PCNN+MAX (Zeng et al., 2015) proposes a

piecewise CNN model which selects the instance

with the largest logit value.

PCNN+ATT (Lin et al., 2016) integrates PCNN
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with selective attention mechanism.

BGRU+WLA (Zhou et al., 2016) uses BGRU

with word-level attention.

PCNN+RL(Feng et al., 2018) presents a rein-

forcement learning method for instance selection.

BGRU+SET (Liu et al., 2018) devises a BGRU-

based approach to reduce inner-sentence noise.

PCNN+BATT (Ye and Ling, 2019) employs

both sentence-level and bag-level attention to em-

phasize correctly labeled sentences and bags.

QARE+MMIL (Zhang et al., 2020) presents a

QA-based relation extractor with transfer learning.

Methods
P@100

One Two All mean

PCNN+MAX 73.3 70.3 72.3 72.0

PCNN+ATT 78.0 75.0 82.0 78.3

BGRU+WLA 72.0 70.0 74.0 72.0

PCNN+RL 75.0 79.0 80.0 78.0

BGRU+SET 83.0 85.0 87.0 85.0

QARE+MMIL 87.0 88.0 91.0 88.7

PCNN+BATT 86.8 91.2 91.8 89.9

MLRN+CMIL 97.0 98.0 95.0 96.7

Ablations

PCNN+CMIL 86.0 93.0 92.0 90.3

OneLayer 93.0 93.0 85.0 90.3

SelfAtt+CMIL 88.0 93.0 87.0 89.3

MLRN+MAX 91.0 90.0 90.0 90.3

MLRN+ATT 94.0 97.0 87.0 92.7

MLRN+NIID 95.0 97.0 86.0 92.7

Table 3: P@100 values of the models on NYT-10.

Bold numbers indicate the best results among all meth-

ods. Underlined numbers indicate the best results for

CNN/RNN-based models.

Methods
AUC

NYT-10 NYT-18

PCNN+MAX 0.216 0.492

PCNN+ATT 0.258 0.511

BGRU+WLA 0.344 0.596

BGRU+SET 0.392 0.290

PCNN+BATT 0.423 0.617

QARE+MMIL 0.428 0.645

MLRN+CMIL 0.498 0.690

Table 4: AUC of the models on both datasets. Bold
numbers indicates the best results among all methods.

As shown in Figure 3, MLRN+CMIL out-

performs all the baselines significantly without

any additional information(e.g. entity types in

BGRU+SET). The P@100 values and AUC are

shown in Table 3 and Table 4 respectively. Our

model improves the AUC to 0.498, which outper-

forms the best baseline by 16.4%. Moreover, our

model achieves the highest P@100 values in all

three settings. The results demonstrate that our

model can effectively alleviate the influence of both

word-level and sentence-level noise.

Figure 4: Precision-recall curves of models on NYT-

18.

4.4 Evaluation on NYT-18
As presented in Table 4 and Fig 4, our model also

significantly outperforms all the baselines on com-

plex NYT-18 dataset. BGRU+SET fails in NYT-18

because the complex instances are difficult to be

parsed precisely using the conventional parser. The

results prove the robustness of MLRN+CMIL in

handling complex instances with inner-sentence

noise.

Figure 5: Precision-recall curves of MLRN with vari-

ous MIL strategies.
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Figure 6: A bag of instances from test data. The numbers indicate the weights assigned in MIL process.

4.5 Ablation Study
In order to evaluate the effects of our approach, we

devise the following variations for comparison:

• PCNN+CMIL: PCNN network with CMIL.

• SelfAtt+CMIL: Removing revision query-

attention layer (revision mechanism disabled).

• OneLayer: Using only one revision layer.

• MLRN+MAX: MLRN which selects the in-

stance with the largest logit value.

• MLRN+ATT: MLRN with selective atten-

tion.

• MLRN+NIID: MLRN with NIID relevance

embedding (Yuan et al., 2019a).

As shown in Table 3, MLRN models achieve sig-

nificant improvements over PCNN models when

using the same multi-instance learning strategies

(MAX,ATT and CMIL). The complete model out-

performs SelfAtt+CMIL significantly, showing that

the revision mechanism is crucial for modeling

inner-sentence correlations. OneLayer suffers from

a dramatic drop in performance because of its

incapability in modeling implicit correlations be-

tween the words. These results demonstrate that

by strengthening correlations in revision process

and modeling implicit correlations with multiple

revision layers, MLRN becomes more robust and

effective in DSRE.

Without bag-level operations in PCNN+BATT,

PCNN+CMIL still achieves the highest P@100

mean value among all the PCNN-based mod-

els, showing that CMIL can effectively alleviate

sentence-level noise and utilize information in the

sentence bag. We also test multiple multi-instance

learning strategies on MLRN model (MAX, ATT

and NIID), and the results in Table 3 and Figure 5

show that CMIL outperforms all of them.

5 Case Study

In Figure 6, we select a bag of instances from test

set and present their assigned weights in different

models . Among the four sentences, S1, S2 and

S4 are all relevant to the relation. But in S4, the

relation is indicated in an implicit way by the word

"israeli". S3 is an irrelevant sentence that does not

mention the nationality of the entity david_ben-
gurion.

As the example shows, all the three methods are

able to correctly handle the irrelevant sentence S3.

Although SelfAtt+CMIL works fine when S1 uses

the phrase "israel ’s first leader", it wrongly filters

out S4 when encountered with the phrase "israeli

leaders". It is because that SelfAtt+CMIL is un-

able to detect the relevance between "israel" and

"israeli" in S4. The selective attention method is

designed to exploit relevant sentences, but in an

attempt to avoid sentence-level noise, it may also

down-weight the relevant sentences it has less con-

fidence in, such as S1 and S4. Our complete model

(MLRN+CMIL) successfully detects the relevance

between "israel" and "israeli", therefore regards S4
as a relevant sentence. Moreover, MLRN+CMIL

assigns more balanced weights to relevant sen-

tences comparing with other methods.

This example verifies MLRN’s ability to capture

implicit correlations between sentences. It also

proves that CMIL not only alleviates sentence-level

noise, but also makes further progress in informa-

tion utilization.
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6 Conclusion and Future Work

In this paper, we propose a novel MLRN+CMIL

model for distantly supervised relation extraction.

The MLRN structure is able to alleviate noise by

modeling inner-sentence correlations and extract

relevant information. The CMIL strategy is a bal-

anced and robust way to avoid noisy sentences

as well as assign proper weights to relevant ones.

The experimental results show that our approach

achieves significant improvements over the base-

lines and is effective in handling both word-level

and sentence-level noise.

In the future, we will try to extend our

confidence-based method to bag-level, and experi-

ment with the novel revision network on other tasks

to further prove its effectiveness.
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