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Abstract

Zero-shot cross-lingual information extraction
(IE) describes the construction of an IE model
for some target language, given existing an-
notations exclusively in some other language,
typically English. While the advance of pre-
trained multilingual encoders suggests an easy
optimism of "train on English, run on any
language", we find through a thorough ex-
ploration and extension of techniques that a
combination of approaches, both new and old,
leads to better performance than any one cross-
lingual strategy in particular. We explore
techniques including data projection and self-
training, and how different pretrained encoders
impact them. We use English-to-Arabic IE as
our initial example, demonstrating strong per-
formance in this setting for event extraction,
named entity recognition, part-of-speech tag-
ging, and dependency parsing. We then apply
data projection and self-training to three tasks
across eight target languages. Because no sin-
gle set of techniques performs the best across
all tasks, we encourage practitioners to explore
various configurations of the techniques de-
scribed in this work when seeking to improve
on zero-shot training.

1 Introduction

We consider zero-shot cross-lingual information
extraction (IE), in which training data exists in
a source language but not in a target language.
Massively multilingual encoders like Multilingual
BERT (mBERT; Devlin et al., 2019) and XLM-
RoBERTa (XLM-R; Conneau et al., 2020a) allow
for a strategy of training only on the source lan-
guage data, trusting entirely in a shared underly-
ing feature representation across languages (Wu
and Dredze, 2019; Conneau et al., 2020b). How-
ever, in meta-benchmarks like XTREME (Hu et al.,
2020), such cross-lingual performance on struc-
tured prediction tasks is far behind that on sentence-
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level or retrieval tasks (Ruder et al., 2021): perfor-
mance in the target language is often far below
that of the source language. Before multilingual
encoders, cross-lingual IE was approached largely
as a data projection problem: one either translated
and aligned the source training data to the target
language, or at test time one translated target lan-
guage inputs to the source language for prediction
(Yarowsky and Ngai, 2001).

We show that by augmenting the source lan-
guage training data with data in the target
language—either via projection of the source data
to the target language (so-called “silver” data) or
via self-training with translated text—zero-shot per-
formance can be improved. Further improvements
might come from using better pretrained encoders
or improving on a projection strategy through bet-
ter automatic translation models or better align-
ment models. In this paper, we explore all the
options above, finding that everything is all it takes
to achieve our best experimental results, suggesting
that a silver bullet strategy does not currently exist.

Specifically, we evaluate: cross-lingual data pro-
jection techniques with different machine transla-
tion and word alignment components, the impact of
bilingual and multilingual contextualized encoders
on each data projection component, and the use
of different encoders in task-specific models. We
also offer suggestions for practitioners operating
under different computation budgets on four tasks:
event extraction, named entity recognition, part-of-
speech tagging, and dependency parsing, follow-
ing recent work that uses English-to-Arabic tasks
as a test bed (Lan et al., 2020). We then apply
data projection and self-training to three structured
prediction tasks—named entity recognition, part-
of-speech tagging, and dependency parsing—in
multiple target languages. Additionally, we use
self-training as a control against data projection
to determine in which situations data projection
improves performance.
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Figure 1: Process for creating projected “silver” data from source “gold” data (left). Downstream models are
trained on a combination of gold and silver data (right). Components in boxes have learned parameters.

Our contributions include the following:

• examination of the impact of statistical and
neural word aligners and publicly available
and custom machine translation (MT) models
on annotation projection,

• examination of the impact of publicly avail-
able and custom multilingual and bilingual
encoders of different model sizes, both as the
basis of models for downstream tasks and as
components of word aligners and MT models,

• use of self-training on translated text as a way
to automatically create labeled target language
data and as a controlled comparison to analyze
when data projection helps, and

• extensive experiments demonstrating improve-
ments over zero-shot transfer and analysis
showing that the best setup is task dependent.

We also make available models and tools that en-
abled our analysis.

2 Universal Encoders

While massively multilingual encoders like
mBERT and XLM-R enable strong zero-shot cross-
lingual performance (Wu and Dredze, 2019; Con-
neau et al., 2020a), they suffer from the curse
of multilinguality (Conneau et al., 2020a): cross-
lingual effectiveness suffers as the number of sup-
ported languages increases for a fixed model size.
We would therefore expect that when restricted to
only the source and target languages, a bilingual
model should perform better than (or at least on
par with) a multilingual model of the same size, as-
suming both languages have sufficient corpora (Wu
and Dredze, 2020a). If a practitioner is interested
in only a small subset of the supported languages,
is the multilingual model still the best option?

To answer this question, we use English and
Arabic as a test bed. In Table 1, we summarize ex-
isting publicly available encoders that support both

English and Arabic.1 Base models are 12-layer
Transformers (d_model = 768), and large mod-
els are 24-layer Transformers (d_model = 1024)
(Vaswani et al., 2017). As there is no publicly avail-
able large English–Arabic bilingual encoder, we
train two encoders from scratch, named L64K and
L128K, with vocabulary sizes of 64K and 128K,
respectively.2 With these encoders, we can deter-
mine the impacts of model size and the number of
supported languages.

3 Data Projection

We create silver versions of the data by automati-
cally projecting annotations from source English
gold data to their corresponding machine transla-
tions in the target language.3 Data projection trans-
fers word-level annotations in a source language
to a target language via word-to-word alignments
(Yarowsky et al., 2001). The technique has been
used to create cross-lingual datasets for a variety
of structured natural language processing tasks, in-
cluding named entity recognition (Stengel-Eskin
et al., 2019) and semantic role labeling (Akbik
et al., 2015; Aminian et al., 2017; Fei et al., 2020).

To create silver data, as shown in Figure 1, we:
(1) translate the source text to the target language
using the MT system described in Section 5.2, (2)
obtain word alignments between the original and
translated parallel text using a word alignment tool,
and (3) project the annotations along the word
alignments. We then combine silver target data
with gold source data to augment the training set
for the structured prediction task.

For step (1), we rely on a variety of source-to-

1We do not include multilingual T5 (Xue et al., 2021) as
it is still an open question on how to best utilize text-to-text
models for structured prediction tasks (Ruder et al., 2021).

2L128K available at https://huggingface.co/
jhu-clsp/roberta-large-eng-ara-128k

3Code available at https://github.com/
shijie-wu/crosslingual-nlp

https://huggingface.co/jhu-clsp/roberta-large-eng-ara-128k
https://huggingface.co/jhu-clsp/roberta-large-eng-ara-128k
https://github.com/shijie-wu/crosslingual-nlp
https://github.com/shijie-wu/crosslingual-nlp
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Base Large

Multilingual mBERT XLM-R
(Devlin et al.) (Conneau et al.)

Bilingual GBv4 L64K & L128K
(Lan et al.) (Ours)

Table 1: Encoders supporting English and Arabic.

target MT systems. To potentially leverage mono-
lingual data, as well as contextualized cross-lingual
information from pretrained encoders, we feed the
outputs of the final layer of frozen pretrained en-
coders as the inputs to the MT encoders. We con-
sider machine translation systems: (i) whose param-
eters are randomly initialized, (ii) that incorporate
information from massively multilingual encoders,
and (iii) that incorporate information from bilin-
gual encoders that have been trained on only the
source and target languages.

After translating source sentences to the target
language, in step (2) we obtain a mapping of the
source words to the target words using publicly
available automatic word alignment tools. Simi-
larly to our MT systems, we incorporate contextual
encoders in the word aligner. We hypothesize that
better word alignment yields better silver data, and
better information extraction consequently.

For step (3), we apply direct projection to trans-
fer labels from source sentences to target sentences
according to the word alignments. Each target to-
ken receives the label of the source token aligned to
it (token-based projection). For multi-token spans,
the target span is a contiguous span containing all
aligned tokens from the same source span (span-
based projection), potentially including tokens not
aligned to the source span in the middle. Three
of the IE tasks we consider—ACE, named entity
recognition, and BETTER—use span-based projec-
tion, and we filter out projected target spans that are
five times longer than the source spans. Two syntac-
tic tasks—POS tagging and dependency parsing—
use token-based projection. For dependency pars-
ing, following Tiedemann et al. (2014), we adapt
the disambiguation of many-to-one mappings by
choosing as the head the node that is highest up in
the dependency tree. In the case of a non-aligned
dependency head, we choose the closest aligned
ancestor as the head.

To address issues like translation shift, filtered
projection (Akbik et al., 2015; Aminian et al., 2017)
has been proposed to obtain higher precision but
lower recall projected data. To maintain the same
amount of silver data as gold data, in this study

we do not use any task-specific filtered projection
methods to remove any sentence.

4 Tasks

We employ our silver dataset creation approach
on a variety of tasks.4 For English–Arabic exper-
iments, we consider ACE, BETTER, NER, POS
tagging, and dependency parsing. For multilin-
gual experiments, we consider NER, POS tagging,
and dependency parsing. We use English as the
source language and 8 typologically diverse tar-
get languages: Arabic, German, Spanish, French,
Hindi, Russian, Vietnamese, and Chinese. Because
of the high variance of cross-lingual transfer (Wu
and Dredze, 2020b), we report the average test per-
formance of three runs with different predefined
random seeds (except for ACE).5 For model selec-
tion and development, we use the English dev set
in the zero-shot scenario and the combined English
dev and silver dev sets in the silver data scenario.

4.1 ACE

Automatic Content Extraction (ACE) 2005 (Walker
et al., 2006) provides named entity, relation, and
event annotations for English, Chinese, and Ara-
bic. We conduct experiments on English as the
source language and Arabic as the target language.
We use the OneIE framework (Lin et al., 2020),
a joint neural model for information extraction,
which has shown state-of-the-art results on all sub-
tasks. We use the same hyperparameters as in Lin
et al. (2020) for all of our experiments. We use
the OneIE scoring tool to evaluate the prediction of
entities, relations, event triggers, event arguments,
and argument roles. For English, we use the same
English document splits as (Lin et al., 2020). That
work does not consider Arabic, so for Arabic we
use the document splits from (Lan et al., 2020).

4.2 Named Entity Recognition

We use WikiAnn (Pan et al., 2017) for English–
Arabic and multilingual experiments. The labeling
scheme is BIO with 3 types of named entities: PER,
LOC, and ORG. On top of the encoder, we use a
linear classification layer with softmax to obtain
word-level predictions. The labeling is word-level
while the encoders operate at subword-level, thus,
we mask the prediction of all subwords except for

4See Appendix A for dataset statistics and fine-tuning hy-
perparameters for each task.

5We report one run for ACE due to long fine-tuning time.
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the first one. We evaluate NER performance by F1
score of the predicted entity.

4.3 Part-of-speech Tagging
We use the Universal Dependencies (UD) Treebank
(v2.7; Zeman et al., 2020).6 Similar to NER, we
use a word-level linear classifier on top of the en-
coder, and evaluate performance by the accuracy
of predicted POS tags.

4.4 Dependency Parsing
We use the same treebanks as the POS tagging
task. For the task-specific layer, we use the graph-
based parser of Dozat and Manning (2016), but
replace their LSTM encoder with our encoders of
interest. We follow the same policy as that in NER
for masking non-first subwords. We predict only
the universal dependency labels, and we evaluate
performance by labeled attachment score (LAS).

4.5 BETTER
The Better Extraction from Text Towards Enhanced
Retrieval (BETTER) Program7 develops methods
for extracting increasingly fine-grained semantic
information in a target language, given gold anno-
tations only in English. We focus on the coarsest
“Abstract” level, where the goal is to identify events
and their agents and patients. The documents come
from the news-specific portion of Common Crawl.
We report the program-defined “combined F1” met-
ric, which is the product of “event match F1” and
“argument match F1”, which are based on an align-
ment of predicted and reference event structures.

To find all events in a sentence and their corre-
sponding arguments, we model the structure of the
events as a tree, where event triggers are children of
the “virtual root” of the sentence and arguments are
children of event triggers (Cai et al., 2018). Each
node is associated with a span in the text and is
labeled with an event or argument type label.

We use a model for event structure prediction
that has three major components: a contextualized
encoder, tagger, and typer (Xia et al., 2021).8 The
tagger is a BiLSTM-CRF BIO tagger (Panchen-
drarajan and Amaresan, 2018) trained to predict
child spans conditioned on parent spans and labels.

6We use the following treebanks: Arabic-PADT, German-
GSD, English-EWT, Spanish-GSD, French-GSD, Hindi-
HDTB, Russian-GSD, Vietnamese-VTB, and Chinese-GSD.

7https://www.iarpa.gov/index.php/
research-programs/better

8Code available at https://github.com/
hiaoxui/span-finder

The typer is a feedforward network whose inputs
are a parent span representation, parent label em-
bedding, and child span representation. The tree is
produced level-wise at inference time, first predict-
ing event triggers, typing them, and then predicting
arguments conditioned on the typed triggers.

5 Experiments

5.1 Universal Encoders
We train two English–Arabic bilingual en-
coders.9 Both of them are 24-layer Transformers
(d_model = 1024), the same size as XLM-R
large. We use the same Common Crawl corpus
as XLM-R for pretraining. Additionally, we also
use English and Arabic Wikipedia, Arabic Giga-
word (Parker et al., 2011), Arabic OSCAR (Or-
tiz Suárez et al., 2020), Arabic News Corpus (El-
Khair, 2016), and Arabic OSIAN (Zeroual et al.,
2019). In total, we train with 9.2B words of Ara-
bic text and 26.8B words of English text, more
than either XLM-R (2.9B words/23.6B words) or
GBv4 (4.3B words/6.1B words).10 We build two
English–Arabic joint vocabularies using Senten-
cePiece (Kudo and Richardson, 2018), resulting
in two encoders: L64K and L128K. For the lat-
ter, we additionally enforce coverage of all Arabic
characters after normalization.

5.2 Machine Translation
For all of our MT experiments, we use a dataset of
2M sentences from publicly available data includ-
ing the UN corpus, Global Voices, wikimatrix, and
newscommentary11 (Ziemski et al., 2016; Proko-
pidis et al., 2016; Schwenk et al., 2021; Callison-
Burch et al., 2011). We pre-filtered the data using
LASER scores to ensure high quality translations
are used for our bitext (Schwenk and Douze, 2017;
Thompson and Post, 2020).

All of our systems are based on the Transformer
architecture (Vaswani et al., 2017).11 Our baseline
system uses a joint English–Arabic vocabulary with
32k BPE operations (Sennrich et al., 2016). The
public system is a publicly released model that has
been demonstrated to perform well (Tiedemann,
2020).12 The other systems use contextualized em-
beddings from frozen pretrained language models

9Details of pretraining can be found in Appendix B.
10We measure word count with wc -w.
11See Appendix C for a full list of hyperparameters.
12The public MT model is available at

https://huggingface.co/Helsinki-NLP/
opus-mt-en-ar

https://www.iarpa.gov/index.php/research-programs/better
https://www.iarpa.gov/index.php/research-programs/better
https://github.com/hiaoxui/span-finder
https://github.com/hiaoxui/span-finder
https://huggingface.co/Helsinki-NLP/opus-mt-en-ar
https://huggingface.co/Helsinki-NLP/opus-mt-en-ar
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as inputs to the encoder. For the decoder vocab-
ulary, these systems all use the GBv4 vocabulary
regardless of which pretrained language model was
used to augment the encoder.

Incorporating Pretrained LMs In order to
make use of the pretrained language models, we
use the output of the last layer of the encoder. A
traditional NMT system uses a prespecified, fixed
size vocabulary with randomly initialized param-
eters for the source embedding layer. To incorpo-
rate a pretrained language model, we instead use
the exact vocabulary of that model. A sentence is
fed into the encoder and the resultant vectors from
the output layer are used instead of the randomly
initialized embedding layer. We freeze these pre-
trained language models so that no gradient updates
are applied to them during MT training, whereas
the randomly initialized baselines are updated. A
preliminary experiment in Zhu et al. (2020) uses
a related system that leverages the last layer of
BERT. However, that experiment was monolingual,
and our hypothesis is that the shared embedding
space of a multilingual encoder will aid in training
a translation system.

Denormalization System Generating text in
Arabic is a notoriously difficult problem due to
data sparsity problems arising from the morpho-
logical richness of the language, frequently neces-
sitating destructive normalization schemes during
training that must be heuristically undone in post-
processing to ensure well-formed text (Sajjad et al.,
2013). All of the most common multilingual pre-
trained encoders use a form of destructive normal-
ization which removes diacritics, which causes MT
systems to translate into normalized Arabic text.
To generate valid Arabic text, we train a sequence-
to-sequence model that transduces normalized text
into unnormalized text using the Arabic side of
our bitext, before and after normalization. Our
transducer uses the same architecture and hyper-
parameters as our baseline MT system, but with
1k BPE operations instead of 32k. On an internal
held-out test set, we get a BLEU score of 96.9 with
a unigram score of 98.6, implying few errors will
propagate due to the denormalization process.13

Intrinsic Evaluation Table 2 shows the denor-
malized and detokenized BLEU scores for English–
Arabic MT systems with different encoders on the

13Denormalization code available at https://github.
com/KentonMurray/ArabicDetokenizer

Encoder BLEU

Public 12.7

None 14.9

mBERT 15.7
GBv4 15.7

XLM-R 16.0
L64K 16.2
L128K 15.8

Table 2: BLEU scores of MT systems with different
pre-trained encoders on English–Arabic IWSLT’17.

IWLST’17 test set using sacreBLEU (Post, 2018).
The use of contextualized embeddings from pre-
trained encoders results in better performance than
using a standard randomly initialized MT model
regardless of which encoder is used. The best per-
forming system uses our bilingual L64K encoder,
but all pretrained encoder-based systems perform
well and within 0.5 BLEU points of each other. We
hypothesize that the MT systems are able to lever-
age the shared embedding spaces of the pretrained
language models in order to assist with translation.

5.3 Word Alignment

Until recently, alignments have typically been ob-
tained using unsupervised statistical models such as
GIZA++ (Och and Ney, 2003) and fast-align (Dyer
et al., 2013). Recent work has focused on using the
similarities between contextualized embeddings to
obtain alignments (Jalili Sabet et al., 2020; Daza
and Frank, 2020; Dou and Neubig, 2021), achiev-
ing state-of-the-art performance.

We use two automatic word alignment tools:
fast-align, a widely used statistical alignment tool
based on IBM models (Brown et al., 1993); and
Awesome-align (Dou and Neubig, 2021), a con-
textualized embedding-based word aligner that ex-
tracts word alignments based on similarities of
the tokens’ contextualized embeddings. Awesome-
align achieves state-of-the-art performance on five
language pairs. Optionally, Awesome-align can be
fine-tuned on parallel text with objectives suitable
for word alignment and on gold alignment data.

We benchmark the word aligners on the gold
standard alignments in the GALE Arabic–English
Parallel Aligned Treebank (Li et al., 2012). We use
the same data splits as Stengel-Eskin et al. (2019),
containing 1687, 299, and 315 sentence pairs in the
train, dev, and test splits, respectively. To obtain
alignments using fast-align, we append the test

https://github.com/KentonMurray/ArabicDetokenizer
https://github.com/KentonMurray/ArabicDetokenizer
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Model Layer† AER P R F

fast-align* n/a 47.4 53.9 51.4 52.6

Awesome-align w/o FT

mBERT 8 35.6 78.5 54.5 64.4
GBv4 8 32.7 85.6 55.4 67.3

XLM-R 16 40.1 78.6 48.4 59.9
L64K 17 34.0 81.5 55.5 66.0
L128K 17 35.1 80.0 54.5 64.9

Awesome-align w/ FT

mBERTft 8 30.0 81.9 61.2 70.0
GBv4ft 8 29.3 86.9 59.7 70.7

XLM-Rft 18 27.8 90.3 60.2 72.2
L64Kft 17 29.1 84.9 60.9 70.9
L128Kft 16 32.2 80.3 58.7 67.8

Awesome-align w/ FT & supervision

XLM-Rft.s 16 23.3 92.5 65.6 76.7
L128Kft.s 17 23.5 93.7 64.6 76.5

Table 3: Alignment performance on GALE EN–AR.
*Trained on MT bitext. †We report the best layer of
each encoder based on dev alignment error rate (AER).

data to the MT training bitext and run the tool from
scratch. Awesome-align extracts the alignments
for the test set based on pretrained contextualized
embeddings. These encoders can be fine-tuned
using the parallel text in the train and dev sets.
Additionally, the encoders can be further fine-tuned
using supervision from gold word alignments.

Intrinsic Evaluation Table 3 shows the perfor-
mance of word alignment methods on the GALE
English–Arabic alignment dataset. Awesome-
align outperforms fast-align, and fine-tuned
Awesome-align (ft) outperforms models that were
not fine-tuned. Incorporating supervision from the
gold alignments (s) leads to the best performance.

6 Cross-lingual Transfer Results

One might optimistically consider that the latest
multilingual encoder (in this case XLM-R) in the
zero-shot setting would achieve the best possible
performance. However, in our extensive experi-
ments in Table 4 and Table 5, we find that the zero-
shot approach can usually be improved with data
projection. In this section, we explore the impact
of each factor within the data projection process.

6.1 English–Arabic Experiments

In Table 4, we present the Arabic test performance
of five tasks under all combinations considered.

The “MT” and “Align” columns indicate the mod-
els used for the translation and word alignment
components of the data projection process. For
ACE, we report results on the average of six met-
rics.14 For a large bilingual encoder, we use L128K
instead of L64K due to its slightly better perfor-
mance on English ACE (Appendix E).

Impact of Data Projection By comparing any
group against group Z, we observe adding silver
data yields better or equal performance to zero-shot
in at least some setup in the IE tasks (ACE, NER,
and BETTER). For syntax-related tasks, we ob-
serve similar trends, with the exception of XLM-R.
We hypothesize that XLM-R provides better syntac-
tic cues than those obtainable from the alignment,
which we discuss later in relation to self-training.

Impact of Word Aligner By comparing groups
A, B, and C of the same encoder, we observe that
Awesome-align performs overall better than sta-
tistical MT-based fast-align (FA). Additional fine-
tuning (ft) on MT training bitext further improves
its performance. As a result, we use fine-tuned
aligners for further experiments. Moreover, incor-
porating supervised signals from gold alignments
in the word alignment component (ft.s) often helps
performance of the task. In terms of computation
budget, these three groups use a publicly available
MT system (“public”; Tiedemann, 2020) and re-
quire only fine-tuning the encoder for alignment,
which requires small additional computation.

Impact of Encoder Size Large bilingual or mul-
tilingual encoders tend to perform better than base
encoders in the zero-shot scenario, with the excep-
tion of the bilingual encoders on ACE and BET-
TER. While we observe base size encoders ben-
efit from reducing the number of supported lan-
guages (from 100 to 2), for large size encoders
trained much longer, the zero-shot performance
of the bilingual model is worse than that of the
multilingual model. After adding silver data from
group C based on the public MT model and the
fine-tuned aligner, the performance gap between
base and large models tends to shrink, with the ex-
ception of both bilingual and multilingual encoders
on NER. In terms of computation budget, training
a bilingual encoder requires significant additional
computation.

14Six metrics include entity, relation, trigger identification
and classification, and argument identification and classifica-
tion accuracies. See Appendix D for a breakdown of metrics.
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MT Align ACE NER POS Parsing BET. ACE NER POS Parsing BET.

mBERT (base, multilingual) XLM-R (large, multilingual)

(Z) - - 27.0 41.6 59.7 29.2 39.9 45.1 46.4 73.3 48.0 50.8

(A) public FA +2.5 -3.8 +8.5 +7.3 +2.6 -7.5 -0.1 -7.7 -9.5 -1.6

(B) public mBERT +6.5 +0.2 +8.5 +7.6 +2.3 -4.4 +6.9 -6.1 -8.4 -2.6
(B) public XLM-R +0.9 -2.9 +9.5 +9.0 -1.2 -10.0 +0.0 -5.9 -8.8 -6.3

(C) public mBERTft +7.8 +5.6 +7.7 +10.0 +4.1 -0.6 +7.4 -8.0 -6.8 +0.3
(C) public XLM-Rft +7.7 +4.9 +6.2 +9.3 +4.5 -2.6 +7.0 -9.0 -7.6 +1.0
(C) public XLM-Rft.s +7.3 +1.5 +10.1 +12.4 +4.8 -3.0 +9.1 -3.8 -3.7 +2.3

(D) public GBv4ft +8.5 +4.3 +5.9 +8.9 +5.0 -1.5 +7.7 -9.4 -9.1 -0.1
(D) public L128Kft +6.4 +3.1 +6.5 +8.2 +1.6 -1.6 +6.1 -9.0 -9.4 -3.6
(D) public L128Kft.s +7.0 +3.7 +10.3 +11.8 +5.4 -0.3 +5.2 -4.4 -4.6 +2.1

(E) GBv4 mBERTft +8.4 +3.2 +7.7 +9.9 +4.7 -1.5 +3.2 -7.1 -6.7 +0.7
(E) GBv4 XLM-Rft +9.6 +1.8 +7.0 +9.5 +5.2 -0.4 +1.4 -8.3 -7.7 +1.4
(E) L128K mBERTft +12.1 +3.3 +7.9 +9.9 +4.7 -1.4 +7.2 -8.1 -6.7 +1.3
(E) L128K XLM-Rft +10.2 -1.9 +6.1 +9.4 +4.8 -0.5 +4.6 -9.8 -7.5 +2.0

(S) public ST - +5.5 +0.1 -20.3 +0.3 - +10.0 +1.8 -29.6 +1.2

GBv4 (base, bilingual) L128K (large, bilingual)

(Z) - - 46.0 45.4 64.7 33.2 41.7 42.7 46.3 67.9 36.7 40.9

(C) public mBERTft +0.6 +3.7 +2.6 +6.9 +7.5 +2.7 +8.2 -0.9 +4.9 +11.7
(C) public XLM-Rft -1.4 +4.5 +1.8 +6.0 +8.4 +1.2 +9.0 -2.5 +3.9 +10.5
(C) public XLM-Rft.s -0.1 +3.4 +5.1 +9.2 +8.0 +2.7 +7.0 +1.2 +7.2 +12.1

(E) GBv4 mBERTft -0.1 +0.1 +3.3 +7.2 +8.1 +4.2 -0.5 -0.1 +5.1 +11.2
(E) GBv4 XLM-Rft +0.1 +0.4 +1.5 +6.0 +9.7 +2.4 +0.0 -1.3 +4.2 +10.8
(E) L128K mBERTft -0.6 +1.0 +2.6 +6.1 +7.4 +5.5 +0.8 -0.7 +4.7 +10.6
(E) L128K XLM-Rft +0.9 -2.1 +1.1 +5.5 +7.8 +4.4 -3.6 -2.2 +4.1 +11.3

(F) GBv4 GBv4ft +0.0 -1.9 +1.6 +4.5 +9.1 +2.0 -0.3 -1.7 +3.2 +10.9
(F) GBv4 L128Kft -0.9 -1.4 +1.5 +4.1 +5.7 +2.3 -1.7 -2.4 +2.6 +8.3
(F) L128K GBv4ft -4.3 -1.0 +0.4 +4.1 +7.4 +4.1 -3.6 -2.1 +2.3 +11.4
(F) L128K L128Kft -3.5 -1.1 +0.3 +3.8 + 4.5 +2.9 +0.1 -2.9 +2.0 +6.7
(F) L128K L128Kft.s +1.9 +0.2 +3.3 +7.4 +7.2 +2.8 -1.8 +0.8 +6.0 +11.8

(S) public ST - -2.5 -1.3 -18.6 +1.9 - +7.1 +1.5 -21.7 +8.1

Table 4: Performance of Arabic on 5 tasks under various setups. Cells are colored by performance difference over
zero-shot baseline: +5 or more , +1 to +5 , -1 to -5 , -5 or more . Highlights indicate the best setting for each
task (best viewed in color). The best setting for each task and encoder combination is bolded. We order four
encoders along two axes, similar to Table 1.

Impact of Encoder on Word Aligner By com-
paring groups C and D (in multilingual encoders)
or groups E and F (in bilingual encoders), we ob-
serve bilingual encoders tend to perform slightly
worse than multilingual encoders for word align-
ment. If bilingual encoders exist, using them in
aligners requires little additional computation.

Impact of Encoder on MT By comparing
groups C and E, we observe the performance differ-
ence between the bilingual encoder based MT and
the public MT depends on the task and encoder, and
neither MT system clearly outperforms the other in
all settings, despite the bilingual encoder having a
better BLEU score. The results suggest that both

options should be explored if one’s budget allows.
In terms of computation budget, using pretrained
encoders in a custom MT system requires medium
additional computation.

Impact of Label Source To assess the quality of
the projected annotations in the silver data, we con-
sider a different way to automatically label trans-
lated sentences: self-training (ST; Yarowsky, 1995).
For self-training, we translate the source data to the
target language, label the translated data using a
zero-shot model trained on source data, and com-
bine the labeled translations with the source data to
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Encoder Data ar de en es fr hi ru vi zh Average

NER (F1)

mBERT Zero-shot 41.6 78.8 83.9 73.1 79.5 66.2 63.4 70.8 51.8 67.7
+ Self +7.7 -0.5 +0.4 +4.8 +2.4 -2.5 +2.7 +1.2 +1.4 +2.0
+ Proj -5.8 -0.6 +0.3 +3.6 +0.2 +0.4 -1.7 -2.0 +2.3 -0.4
+ Proj (Bi) +0.3 -0.7 +0.1 +5.2 -0.6 -2.1 -1.1 +0.3 +0.0 +0.2

XLM-R Zero-shot 46.4 79.5 83.9 76.1 80.0 70.9 70.5 77.0 40.2 69.4
+ Self +11.2 +0.9 +0.6 +1.0 +0.5 +2.1 -1.5 +1.7 +2.3 +2.1
+ Proj +1.7 -0.7 -0.1 -3.9 -1.2 +1.2 -4.8 -9.1 +14.2 -0.3
+ Proj (Bi) +6.9 +0.4 -0.2 -4.3 -1.5 +3.2 -3.3 -5.2 +15.1 +1.2

POS (ACC)

mBERT Zero-shot 59.7 89.6 96.9 87.5 88.7 69.5 81.9 62.6 66.6 78.1
+ Self +0.3 +0.5 +0.0 +0.4 +0.4 -0.3 +0.5 +0.4 +1.7 +0.4
+ Proj +6.9 -3.2 +0.0 -3.8 -3.9 +1.3 -6.6 -7.4 -4.1 -2.3
+ Proj (Bi) +8.5 -2.6 -0.1 -3.2 -3.0 +1.6 -5.7 -6.9 -3.9 -1.7

XLM-R Zero-shot 73.3 91.5 98.0 89.3 90.0 78.6 86.8 65.2 53.6 80.7
+ Self +1.6 -0.3 +0.0 +0.0 +0.0 +2.0 +0.1 -0.4 +11.7 +1.6
+ Proj -7.1 -5.4 -0.5 -6.3 -5.9 -6.0 -10.5 -8.9 +9.7 -4.6
+ Proj (Bi) -6.1 -4.6 -0.1 -4.9 -4.6 -5.5 -10.4 -8.7 +9.4 -4.0

Parsing (LAS)

mBERT Zero-shot 29.2 67.7 79.7 68.9 73.2 31.2 60.6 33.6 29.4 52.6
+ Self -20.6 -34.2 +0.1 -41.6 -41.1 -15.3 -35.2 -17.8 -14.5 -24.5
+ Proj +9.1 -2.1 +1.1 -4.9 -5.8 +6.0 -5.6 -7.2 -2.1 -1.3
+ Proj (Bi) +7.6 -1.6 +0.5 -3.8 -4.5 +5.7 -4.8 -7.2 -2.5 -1.2

XLM-R Zero-shot 48.0 69.6 82.6 73.6 76.1 43.1 70.3 38.4 15.0 57.4
+ Self -30.4 -29.4 +0.1 -39.9 -40.0 -18.3 -33.9 -16.1 -9.7 -24.2
+ Proj -8.5 -4.3 +0.0 -10.3 -10.1 -5.7 -14.8 -11.1 +14.5 -5.6
+ Proj (Bi) -8.4 -1.6 +0.1 -7.7 -7.4 -3.1 -12.7 -9.8 +15.1 -3.9

Table 5: Performance of NER, POS, and parsing for eight target languages. We use the same color code as Table 4.

train a new model.15 Compared to the silver data,
the self-training data has the same underlying text
but a different label source.

We first observe that self-training for parsing
leads to significantly worse performance due to the
low quality of the predicted trees. By comparing
groups S and C, which use the same underlying
text, we observe that data projection tends to per-
form better than self-training, with the exceptions
of POS tagging with a large encoder and NER with
a large multilingual encoder. These results sug-
gest that the external knowledge16 in the silver data
complements the knowledge obtainable when the
model is trained with source language data alone,
but when the zero-shot model is already quite good
(like for POS tagging) data projection can harm per-
formance compared to self-training. Future direc-

15This setup differs from traditional zero-shot self-training
in cross-lingual transfer, as the traditional setup assumes un-
labeled corpora in the target language(s) (Eisenschlos et al.,
2019) instead of translations of the source language data.

16“External knowledge” refers to knowledge introduced
into the downstream model as a consequence of the particular
decisions made by the aligner (and subsequent projection).

tions could include developing task-specific projec-
tion and alignment heuristics to improve projected
annotation quality for POS tagging or parsing, and
combining data projection and self-training.

6.2 Multilingual Experiments

In Table 5, we present the test performance of three
tasks for eight target languages. We use the public
MT system (Tiedemann, 2020) and non-fine-tuned
Awesome-align with mBERT as the word aligner
for data projection—a setup with the smallest com-
putation budget—due to computation constraints.
We consider both data projection (+Proj) and self
training (+Self). We use silver data in addition to
English gold data for training. We use multilin-
gual training with +Self and +Proj, and bilingual
training with +Proj (Bi).

We observe that data projection (+Proj (Bi))
sometimes benefits languages with the lowest zero-
shot performance (Arabic, Hindi, and Chinese),
with the notable exception of XLM-R on syntax-
based tasks (excluding Chinese). For languages
closely related to English, data projection tends to
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hurt performance. We observe that for data projec-
tion, training multiple bilingual models (+Proj (Bi))
outperforms joint multilingual training (+Proj).
This could be the result of noise from alignments
of various quality mutually interfering. In fact, self-
training with the same translated text (+Self) out-
performs data projection and zero-shot scenarios,
again with the exception of parsing. As data projec-
tion and self-training use the same translated text
and differ only by label source, the results indicate
that the external knowledge from frozen mBERT-
based alignment is worse than what the model
learns from source language data alone. Thus, fur-
ther performance improvement could be achieved
with an improved aligner.

7 Related Work

Although projected data may be of lower quality
than the original source data due to errors in trans-
lation or alignment, it is useful for tasks such as
semantic role labeling (Akbik et al., 2015; Aminian
et al., 2019), information extraction (Riloff et al.,
2002), POS tagging (Yarowsky and Ngai, 2001),
and dependency parsing (Ozaki et al., 2021). The
intuition is that although the projected data may be
noisy, training on it gives a model useful informa-
tion about the statistics of the target language.

Akbik et al. (2015) and Aminian et al. (2017) use
bootstrapping algorithms to iteratively construct
projected datasets for semantic role labeling. Ak-
bik et al. (2015) additionally use manually defined
filters to maintain high data quality, which results
in a projected dataset that has low recall with re-
spect to the source corpus. Fei et al. (2020) and
Daza and Frank (2020) find that a non-bootstrapped
approach works well for cross-lingual SRL. Ad-
vances in translation and alignment quality allow
us to avoid bootstrapping while still constructing
projected data that is useful for downstream tasks.

Fei et al. (2020) and Daza and Frank (2020)
also find improvements when training on a mixture
of gold source language data and projected silver
target language data. Ideas from domain adaptation
can be used to make more effective use of gold and
silver data to mitigate the effects of language shift
(Xu et al., 2021).

Improvements to task-specific models for zero-
shot transfer are orthogonal to our work. For ex-
ample, language-specific information can be incor-
porated using language indicators or embeddings
(Johnson et al., 2017), contextual parameter genera-

tors (Platanios et al., 2018), or language-specific se-
mantic spaces (Luo et al., 2021). Conversely, adver-
sarial training (Ganin et al., 2016) has been used to
discourage models from learning language-specific
information (Chen et al., 2018; Keung et al., 2019;
Ahmad et al., 2019).

8 Conclusion

In this paper, we explore data projection and the
use of silver data in zero-shot cross-lingual IE, fa-
cilitated by neural machine translation and word
alignment. Recent advances in pretrained encoders
have improved machine translation systems and
word aligners in terms of intrinsic evaluation. We
conduct an extensive extrinsic evaluation and study
how the encoders themselves—and components
containing them—impact performance on a range
of downstream tasks and languages.

With a test bed of English–Arabic IE tasks, we
find that adding projected silver training data over-
all yields improvements over zero-shot learning.
Comparisons of how each factor in the data projec-
tion process impacts performance show that while
one might hope for the existence of a silver bullet
strategy, the best setup is usually task dependent.

In multilingual experiments, we find that silver
data tends to help languages with the weakest zero-
shot performance, and that it is best used separately
for each desired language pair instead of in joint
multilingual training.

We also examine self-training with translated
text to assess when data projection helps cross-
lingual transfer, and find it to be another viable
option for obtaining labels for some tasks. In future
work, we will explore how to improve alignment
quality and how to combine data projection and
self-training techniques.
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A Fine-tuning Hyperparameters

A.1 ACE

We used the OneIE v0.4.8 codebase17 with the fol-
lowing hyperparameters: Adam optimizer (Kingma
and Ba, 2014) for 60 epochs with a learning rate
of 5e-5 and weight decay of 1e-5 for the encoder,
and a learning rate of 1e-3 and weight decay of
1e-3 for other parameters. Two-layer feed-forward
network with a dropout rate of 0.4 for task-specific
classifiers, 150 hidden units for entity and relation
extraction, and 600 hidden units for event extrac-
tion. βv and βe set to 2 and θ set to 10 for global
features. Data statistics can be found in Table 6.

Train (en/ar*) Dev (en/ar*) Test (en/ar)

Sent. 19,216/1,710 901/256 676/216
Evt. trig. 4,419/1,825 468/211 424/234
Evt. arg. 6,607/3,255 759/412 689/451
Entity 47,554/25,889 3,423/3,554 3,673/2,977
Relation 7,159/3,704 728/527 802/478
Rel. arg. 14,318/7,408 1,456/1,054 1,604/956

Table 6: ACE dataset statistics. *Arabic train and dev
sets are not used in our experiments.

Train (en) Dev (en) Test (ar)

Sent. 3,629 453 129
Evt. trig. 12,390 1,527 517
Evt. arg. 20,314 2,522 857

Table 7: BETTER dataset statistics.

A.2 BETTER

The codebase for event structure prediction uses
AllenNLP (Gardner et al., 2018). The contextual
encoder produces representations for the tagger and
typer modules. Span representations are formed by
concatenating the output of a self-attention layer
over the span’s token embeddings with the embed-
dings of the first and last tokens of the span. The
BiLSTM-CRF tagger has 2 layers, both with hid-
den size of 2048. We use a dropout rate of 0.3 and
maximum sequence length of 512. Child span pre-
diction is conditioned on parent spans and labels,
so we represent parent labels with an embedding
of size 128. We use Adam optimizer to fine-tune
the encoder with a learning rate of 2e-5, and we
use a learning rate of 1e-3 for other components.
The tagger loss is negative log likelihood and the

17http://blender.cs.illinois.edu/software/oneie/

typer loss is cross entropy. We equally weight both
losses and train against their sum. The contextual
encoder is not frozen. Data statistics can be found
in Table 7.

A.3 NER, POS Tagging, and Parsing
We use the Adam optimizer with a learning rate of
2e-5 with linear warmup for the first 10% of total
steps and linear decay afterwards, and train for 5
epochs with a batch size of 32. To obtain valid BIO
sequences, we rewrite standalone I-X into B-X
and B-X I-Y I-Z into B-Z I-Z I-Z, follow-
ing the final entity type. For parsing, we ignore
punctuations (PUNCT) and symbols (SYM) when
calculating LAS.

We set the maximum sequence length to 128
during fine-tuning. For NER and POS tagging,
we additionally use a sliding window of context
to include subwords beyond the first 128. At test
time, we use the same maximum sequence length
except for parsing. At test time for parsing, we
use only the first 128 words of a sentence. As
the supervision for Chinese NER is character-level,
we segment the characters into words using the
Stanford Word Segmenter and realign the label.

The datasets we used are publicly available:
NER,18 POS tagging, and dependency parsing.19

Data statistics can be found in Table 8.

NER POS tagging
Parsing

en-train 20,000 12,543
en-dev 10,000 2,002
en-test 10,000 2,077

ar-test 10,000 680
de-test 10,000 977
es-test 10,000 426
fr-test 10,000 416
hi-test 1,000 1,684
ru-test 10,000 601
vi-test 10,000 800
zh-test 10,000 500

Table 8: Number of examples.

B Encoder Pretraining
Hyperparameters

We pretrain each encoder with a batch size of 2048
sequences and 512 sequence length for 250K steps

18https://www.amazon.
com/clouddrive/share/
d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN

19https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3424

https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN
https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN
https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3424
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3424
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from scratch,20 roughly 1/24 the amount of pre-
training compute of XLM-R. Training takes 8 RTX
6000 GPUs roughly three weeks. We follow the
pretraining recipe of RoBERTa (Liu et al., 2019)
and XLM-R. We omit the next sentence prediction
task and use a learning rate of 2e-4, Adam opti-
mizer, and linear warmup of 10K steps then decay
linearly to 0, multilingual sampling alpha of 0.3,
and the fairseq (Ott et al., 2019) implementation.

C Machine Translation
Hyperparameters

All of our machine translation systems are based
upon the Transformer architecture: a six-layer en-
coder, six-layer decoder model with 2048 FFN di-
mension and 8 attention heads. We use 4 Nvidia
V100 GPUs, with a batch size of 2048 tokens per
GPU. We accumulate the gradient 10 times be-
fore updating model parameters. The initial learn-
ing rate is 1e-3. The optimizer is Adam with an
inverse_sqrt learning rate scheduler. In the
inference step, the width of beam search is 4 with
a length penalty of 0.6.

D ACE Arabic Full Metrics

The full metrics of Arabic ACE can be found in
Table 9 and Table 10.

E ACE English Full Metrics

The full metrics of English ACE can be found in
Table 11.

20While we use XLM-R as the initialization of the Trans-
former, due to vocabulary differences, the learning curve is
similar to that of pretraining from scratch.
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MT Align Entity Relation Trig-I Trig-C Arg-I Arg-C AVG

mBERT (base, multilingual)

(Z) - - 59.3 25.7 23.8 22.2 17.2 13.8 27.0

(A) public FA -2.2 -13.9 +6.5 +2.5 +10.7 +11.5 +2.5

(B) public mBERT -6.2 -5.1 +16.0 +10.6 +11.5 +12.1 +6.5
(B) public XLM-R -12.7 -17.9 +11.1 +8.0 +8.5 +8.1 +0.9

(C) public mBERTft -1.1 +0.9 +12.8 +9.8 +10.9 +13.6 +7.8
(C) public XLM-Rft -0.1 -4.2 +16.0 +11.9 +11.2 +11.3 +7.7
(C) public XLM-Rft.s -0.2 -1.6 +13.4 +11.5 +9.0 +11.7 +7.3

(D) public GBv4ft -1.9 +2.8 +14.3 +9.9 +12.7 +13.3 +8.5
(D) public L128Kft -1.7 +0.6 +11.6 +8.3 +10.7 +9.0 +6.4
(D) public L128Kft.s -1.3 +3.6 +12.7 +8.4 +8.3 +10.3 +7.0

(E) GBv4 mBERTft +1.0 +4.7 +13.6 +10.3 +9.3 +11.3 +8.4
(E) GBv4 XLM-Rft -0.5 +5.5 +12.6 +10.8 +15.1 +14.4 +9.6
(E) L128K mBERTft +2.6 +5.2 +12.9 +13.4 +18.8 +19.6 +12.1
(E) L128K XLM-Rft +2.5 +6.3 +11.2 +5.1 +17.1 +19.2 +10.2

XLM-R (large, multilingual)

(Z) - - 70.0 38.7 44.0 40.8 39.5 37.8 45.1

(A) public FA -7.2 -9.5 -9.3 -8.2 -4.8 -6.0 -7.5

(B) public mBERT -8.5 -10.2 -2.2 -0.1 -2.0 -3.4 -4.4
(B) public XLM-R -14.7 -12.1 -8.9 -7.8 -8.1 -8.3 -10.0

(C) public mBERTft -2.5 +3.5 -2.3 -4.3 +1.8 +0.2 -0.6
(C) public XLM-Rft -3.8 -0.5 -3.6 -4.5 -0.5 -2.8 -2.6
(C) public XLM-Rft.s -2.4 +1 -3.6 -7.5 -2.1 -3.2 -3.0

(D) public GBv4ft -4.4 +0.8 +0.8 -2.3 -1.1 -2.8 -1.5
(D) public L128Kft -2.1 -1.4 +0.6 -2.2 -2.0 -3.0 -1.6
(D) public L128Kft.s -0.9 +2.2 -1.6 -4.4 +1.8 +0.8 -0.3

(E) GBv4 mBERTft -2.5 +1.4 -3.2 -4.1 +0.3 -0.9 -1.5
(E) GBv4 XLM-Rft -2.2 +2.3 -2.2 -3.0 +2.9 -0.3 -0.4
(E) L128K mBERTft +0.1 -1.1 -2.2 -3.0 -0.9 -1.3 -1.4
(E) L128K XLM-Rft +0.1 +4.2 -4.4 -6.3 +1.8 +1.3 -0.5

GBv4 (base, bilingual)

(Z) - - 71.9 29.6 49.8 46.8 41.1 36.8 46.0

(C) public mBERTft -0.1 +9.3 -5.8 -5.8 +3.0 +3.0 +0.6
(C) public XLM-Rft -0.8 +10.4 -8.0 -9.0 -1.5 +0.6 -1.4
(C) public XLM-Rft.s +0.0 +9.7 -8.0 -7.0 +1.7 +2.9 -0.1

(E) GBv4 mBERT_FT -2.0 +7.6 -4.9 -5.8 +1.8 +2.5 -0.1
(E) GBv4 XLMR_FT -1.1 +9.8 -8.5 -7.7 +3.8 +4.2 +0.1
(E) L128K mBERT_FT -3.0 +8.1 -4.9 -3.9 -0.8 +0.9 -0.6
(E) L128K XLMR_FT -0.4 +11.6 -5.8 -4.9 +1.4 +3.4 +0.9

(F) GBv4 GBv4ft -1.9 +8.1 -4.7 -4.6 +1.7 +1.7 +0.0
(F) GBv4 L128Kft -0.5 +5.4 -5.1 -5.2 -0.6 +0.6 -0.9
(F) L128K GBv4ft -0.6 +7.6 -4.5 -5.4 -0.2 +0.3 -4.3
(F) L128K L128Kft -1.1 +8.6 -6.6 -4.7 +4.2 +5.8 -3.5
(F) L128K L128Kft.s +0.0 +10.5 -4.6 -5.6 +4.9 +6.0 +1.9

Table 9: Detailed performance of bilingual English–Arabic ACE. Cells are colored following Table 4.



1967

MT Align Entity Relation Trig-I Trig-C Arg-I Arg-C AVG

L128K (large, bilingual)

(Z) - - 66.0 30.7 44.0 43.0 37.4 35.4 42.7

(C) public mBERTft +2.1 +7.8 +1.8 -0.6 +3.1 +1.6 +2.7
(C) public XLM-Rft +2.6 +5.2 -1.7 -4.2 +3.2 +1.9 +1.2
(C) public XLM-Rft.s +5.7 +8.9 -2.6 -4.2 +4.6 +4.0 +2.7

(E) GBv4 mBERT_FT +3.8 +12.7 +2.4 -0.1 +3.6 +2.3 +4.2
(E) GBv4 XLMR_FT +2.6 +11.9 -2.6 -5.1 +3.7 +3.4 +2.4
(E) L128K mBERT_FT +3.8 +8.3 +2.2 +0.6 +8.9 +9.0 +5.5
(E) L128K XLMR_FT +2.8 +9.6 +3.5 +0.8 +4.8 +4.8 +4.4

(F) GBv4 GBv4ft +1.9 +6.7 +1.3 -1.5 +2.0 +1.6 +2.0
(F) GBv4 L128Kft +2.7 +7.1 -1.1 -3.5 +4.9 +3.1 +2.3
(F) L128K GBv4ft +2.2 +8.9 +2.3 -0.2 +6.7 +4.1 +4.1
(F) L128K L128Kft +3.5 +7.0 -0.3 -2.1 +4.9 +3.9 +2.9
(F) L128K L128Kft.s +3.6 +11.7 -1.1 -3.7 +3.3 +2.9 +2.8

Table 10: Detailed performance of bilingual English–Arabic ACE. Cells are colored following Table 4.

Model Train Test Entity Relation Trig-I Trig-C Arg-I Arg-C AVG

Lin et al. (2020) en en 89.6 58.6 75.6 72.8 57.3 54.8 68.1
BERTlarge en en 90.2 64.0 75.7 73.2 59.5 57.4 70.0

mBERT en en 89.5 56.7 72.4 69.2 53.3 50.5 65.3
GBv4 en en 90.2 63.0 73.8 71.4 57.7 55.4 68.6
XLM-R en en 90.9 64.4 75.3 72.2 58.4 55.5 69.4
L64K en en 91.30 64.0 75.45 73.0 59.4 57.4 70.1
L128K en en 91.32 64.1 75.39 73.5 59.6 57.7 70.3

Table 11: ACE results with different encoders. All models are trained and tested on gold English data.


