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Abstract

Unsupervised relation extraction works by
clustering entity pairs that have the same re-
lations in the text. Some existing variational
autoencoder (VAE)-based approaches train the
relation extraction model as an encoder that
generates relation classifications. A decoder
is trained along with the encoder to recon-
struct the encoder input based on the encoder-
generated relation classifications. These clas-
sifications are a latent variable so they are re-
quired to follow a pre-defined prior distribu-
tion which results in unstable training. We pro-
pose a VAE-based unsupervised relation ex-
traction technique that overcomes this limita-
tion by using the classifications as an inter-
mediate variable instead of a latent variable.
Specifically, classifications are conditioned on
sentence input, while the latent variable is con-
ditioned on both the classifications and the sen-
tence input. This allows our model to connect
the decoder with the encoder without putting
restrictions on the classification distribution;
which improves training stability. Our ap-
proach is evaluated on the NYT dataset and
outperforms state-of-the-art methods.

1 Introduction

Relation Extraction (RE) methods aim to classify
relations of entity pairs in a given sentence. RE
is the basis of many NLP tasks, such as Informa-
tion Extraction (Niklaus et al., 2018), Knowledge
Graph Construction (Bosselut et al., 2019) and In-
formation Retrieval (Liu et al., 2014). Conven-
tional RE models classify relations based on pre-
set rules (Zhou et al., 2005; Etzioni et al., 2008).
These rules include syntactic patterns such as de-
pendency structures and part of speech (POS). Al-
though these rule-based methods achieve high ac-
curacy, the rules can only be applied to limited
types of sentences, which leads to application limi-
tations (Wu et al., 2017). Recently, with the rise of
deep learning, some work introduced deep neural

networks, such as Piece-wise Convolutional Neural
Network (PCNN) (Zeng et al., 2015), Graph Con-
volutional Networks (Guo et al., 2019), and Graph
LSTM (Peng et al., 2017). These approaches per-
form well. However, they use supervised model
training which requires large-scale labeled data
which is not always available.

To reduce the reliance on labeled data, some
work propose unsupervised relation extraction
methods. Traditional unsupervised RE approaches
compose vectors based on extracted sentence fea-
tures. These feature vectors represent the relation
information of sentences (Lin and Pantel, 2001;
Yao et al., 2012). These methods then cluster sen-
tences according to these feature vectors to classify
sentences into relations. Even though these ap-
proaches achieve state-of-the-art performance, they
heavily rely on hand-craft features and make many
simplifying assumptions as mentioned in previous
work (Marcheggiani and Titov, 2016). Other un-
supervised RE techniques follow a discriminative
approach to train more expressive models. These
techniques can provide a sufficient learning signal
to train deep neural networks as relation classifiers.
For example, some work achieved a discriminative
approach using a variational autoencoder (VAE)-
based method (Marcheggiani and Titov, 2016). The
main idea of this approach is to train an encoder as
a relation classifier, which converts input sentences
into relation classifications. A decoder then re-
constructs entity pairs (head_entity, tail_entity)
of input sentences according to the classifications.
The decoder’s reconstruction loss provides the en-
coder with a supervision signal so the encoder can
be implemented as a deep neural network.

While this approach trains the relation classi-
fier with supervision, the model has been shown to
be unstable when tested on the New York Times-
Freebase (NYT-FB) dataset (Riedel et al., 2010).
Specifically, the model always results in one of two
training results depending on the hyper-parameter
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setting: the model either predicts the same relation
for all input sentences, or the prediction probability
of each relation is always the same (Simon et al.,
2019). To improve model stability, recent work
proposed adding two regularization losses to the
original objective function (Simon et al., 2019).
Adding these two extra losses skews the predic-
tion probability distribution of the relation of one
sentence while pushing the relation distribution of
a set of sentences to be uniform. However, dur-
ing our experimental implementation of this model,
we note that even with adding the regularization
terms, there is still an unresolved problem that may
negatively impact performance.

The key problem of this VAE-based model is that
the relation classification result r is a latent vari-
able. This leads to the following two limitations.
1) The decoder can not follow the traditional VAE
training process of directly sampling from 7 as it
would result in interrupting the gradient passing.
Therefore, the decoder is not directly connected
to the encoder and can not update it in a timely
manner. 2) The additional regularization loss terms
serve the role of the KL divergence term in the
VAE loss function. This requires the classification
to follow a pre-defined prior distribution, namely,
a uniform distribution. These two limitations may
lead to unbalanced VAE training of the relation ex-
traction encoder model and decoder. Consequently,
the VAE loss converges, while the relation classifi-
cation accuracy is not relatively high.

We propose a Variational Autoencoder-based
Unsupervised Relation Extraction model (UREVA)
which overcomes the aforementioned limitations.
In particular, our proposed approach treats the rela-
tion classification r as an intermediate variable con-
ditioned on the input sentence z, while the latent
variable z is conditioned on the joint distribution of
x and r. The decoder uses r and data sampled from
z to reconstruct entity pair in the input sentence.
Through the sampling process, the decoder and the
latent space establish a connection. This addresses
limitation 1 mentioned above. In addition, since
r is no longer a latent variable, fitting the latent
variable to any prior distribution does not affect the
classification results. This overcomes limitation 2.

We run experiments on the NYT-FB (Riedel
et al., 2010) and SemEval (Hendrickx et al., 2010)
datasets to compare the performance of our pro-
posed method against other state-of-the-art meth-
ods. Experimental results show that our model

generates more accurate classification results than
state-of-the-art methods on both datasets. Our key
contributions can be summarized as follows:

* We propose UREVA; a VAE-based unsuper-
vised relation extractor that connects decoder
with encoder without putting restrictions on
the distribution of relation classification.

* We show that compared with previous works,
UREVA learns the relation classification in-
stead of predicting uniform classification re-
sults.

* We show that UREVA outperforms state-of-
the-art methods on the NYT-FB dataset. We
also demonstrate UREVA’s performance on
a new dataset, SemEval, which has not been
explored by previous work.

2 Variational Autoencoder Background

In this section, we review the variational autoen-
coder (VAE) architecture and its objective function.
VAE is a probabilistic generative model that de-
scribes an observation in latent space. The goal
of the VAE is to train a decoder via the joint dis-
tribution pg(x, 2) = py(2)pe(x|2), Where py(z)
is a prior distribution of latent variable z and the
posterior distribution py(x|2) is the decoder that
generates x given z. In general, since computing
the true posterior distribution py(z|x) is intractable,
an encoder gy (z|z) is used to approximate it. The
objective of the VAE is to minimize the KL di-
vergence of the encoder gy(z|x) and the decoder
pg(z|z) such that the two distributions are similar.
Expanding py(x), it can be expressed as follows:

1og(py(x)) = Eqg, (21a)[l0g (e ())]
= K L(gp(2|2)||ps(2|2)) + L(0, ¢; )

We have the following inequality since K L(-) > 0:

log(pg(x)) = L(0, ¢;2)
= Ey, (2j0) [log(ps(|2)) — log(qe(z|2))]
= Eg, (210 [log (po (2]2))] — K L(go(z[x)lIps(2))
(2)
3 Proposed UREVA Method

The goal of our model is to extract a relation be-
tween an entity pair in a given sentence. The open
question is how to train a relation extraction model
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Figure 1: Proposed model architecture. FEN: two-layer
feed-forward network.

without labeled data. In order to provide a supervi-
sion signal to the relation extractor, the initial idea
is to use an encoder-decoder architecture. In this
architecture, the relation extractor is an encoder
that outputs relation classifications. In addition, a
decoder reconstructs the encoder input, i.e., the sen-
tence, given the classifications. The two models are
jointly trained and the only way to reduce recon-
struction loss is to let the encoder compress all the
relation information to the classification results. In
this way, the classifications become the bottleneck
of the whole architecture.

In practice, we choose VAE instead of a general
autoencoder to implement this because classifica-
tions are probabilistic. Specifically, as shown in
Fig 1, we divide the encoder network into two parts:
the relation classifier, and the encoding layer. The
relation classifier calculates the probability gg(r|z)
that a given input sentence z is classified into re-
lation r. We let the latent variable z (representing
sentence and relation information) be conditioned
on x and r, which can be written as gg(z|x,r).
We use the encoding layer to model the relation
probability gg(z|x, ). The decoder network then
reconstructs the probability py (z|r, ) of input sen-
tence x given samples of z and relations 7. Finally,
as shown in Eq. 3, our model has the following
mathematical property:

ao(z,r|x) = qo(r|x)qe(z|z, ) 3)

Note that the relation extractor is not used as the
entire encoder. We explain this design choice in
Sec 3.5.

3.1 VAE-based Objective Function

Based on the proposed idea, the objective function
of our model can be derived from the original VAE
objective function by substituting r as follows:

log(pe(z,1)) >

]qu(z,r|a:) [lOg(p¢(l‘|T, Z))] - KL(QG(Za T‘ZL’)Hqu(Z))
4)

The goal of our proposed model is to optimize the
lower bound of logp(z, ), which is similar to the
goal of the original VAE. To optimize this lower
bound, we treat the term on the right hand side of
Eq. 4 as the objective function. We then substitute
Eq. 3 into the objective function. This enables us
to rewrite the objective function as shown in Eq. 5:

L = Egy (rle) [Eqgy (z1e,r) [l0gPe (|1, 2)]+
KL(qo(z|z,7)||ps(2))]+

S ao(elr o) Has ()

where 7 (-) represents the entropy function.

3.2 Approximation of Objective Function

In this section, we discuss that it is not possible to
compute the exact objective function and present
two methods to approximate the objective function.

3.2.1 Decoding Approximation

As seen in Eq. 5, the goal of the decoder is to
reconstruct the input sentence given relation clas-
sification r and latent variable z and compute the
probability logpe (|7, z). A key challenge is that
computing this probability makes it harder to train
the model. This is because generating sentences
using sampled data is very unstable. To overcome
this challenge, instead of reconstructing the input
sentence, the decoder is required to reconstruct the
entity pair in the input sentence and compute the
probability logpe (enead; €tait|T, 2). This entity pair
probability can be computed via Eq. 6 as follows:

¢(ehead> €tail |’I", Z)

>, olei e, 2)
i,jEEi#£]
(6)

where ¢(-) is the score function modeled by the
decoder and E is the set of all entities.

Do (Chead; €tail|Ts 2) =

However, the calculation of the denominator of
Eq. 6 is computationally intensive. Following (Si-
mon et al., 2019), we apply negative sampling to
approximate pg(€epead, €tqil|T, 2). Specifically, we
randomly sample some entities as the input of the
decoder. Then the decoder should give high scores
to the correct entity pairs and low scores to the ran-
domly formed entity pairs. Formally, as shown in
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Eq. 7, pg(€nead, €tqil|T, 2) is equivalent to:

p¢(€head7 €tail |7”, Z) X

—log(o(P(€enead; €tail] T 2)))
— ZEeieE[ZOg(U(—Qb(eheadaei|rv z)))] (7)
k

— Z Ee,cellog(o(—¢(ej, etqit] T, 2)))]
k

where o is the sigmoid function and & is the sam-
pling times. e; and e; are sampled entities based
on empirical entity distribution.

3.2.2 Encoding Approximation

To enable VAE to pass the gradient during random
sampling, a common method is to use reparameteri-
zation to simulate gg(z|r, ) (Kingma and Welling,
2013). This method lets the encoder generate the
mean p and variance o vectors. The result of sam-
pling can then be defined as Z = p + eo, where
random variable € follows N ~ (0, 1).

By utilizing this trick, we can calculate
the KL divergence term in Eq. 5. However,
qo(z|r, x)H(go(r|x)) is not tractable since the
probability gg(z|r, z) is unknown. In practice, we
replace gg(z|r, x) with a small constant c¢. This
approach is equivalent to changing the weights of
the entropy of different ’s into a constant.

3.3 Encoder Architecture

According to previous work, entity types are the
most significant features that represent relation in-
formation of sentences (Tran et al., 2020). We fol-
low this work and apply two different feed-forward
networks to encode entity types as the relation clas-
sifier and encoding layer.

Specifically, given a sentence x, we extract the
entity types of the head and tail entities in z, de-
noted as t;, and ¢;. We use a one-hot vector to
represent the combination of two entity types tt;.
That is, if there are n different entity types in the
dataset, then the length of the one-hot vector is n?.
Finally, the relation classifier and encoding layer
are represented by the following equation:

r=WZ(tyty) + by

& =W/ (tate) + be
2=WL(E®T) + ben
zZ = RT(z,€)

®)

where Z is the sampled data and & & r is the con-
catenation of & and r. Note that z is a vector of u
and o and RT'(-) represents reparameterization.

3.4 Decoder Architecture
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Figure 2: The decoder architecture

we use a CNN to reconstruct the entity pair. Note
that previous work used RESCAL, which is a three-
way tensor decomposition method and builds a
three-dimensional matrix to represent the relation
embedding (Nickel et al., 2011). However, our
decoder needs to sample from the gy (z|r, x) distri-
bution to establish a connection with the encoder.
And the dimension of the sampling result of z is
much smaller than the dimension of a three-way
matrix, so forcibly mapping the sampling result to
this matrix will cause the matrix to be sparse.

In order to apply CNN, We first concatenate sam-
pled Z and r and map the result to h,, € R™4. This
process models the py(z|r, z), since the decoder
should take both r and z into account when recon-
structing the entity pair according to that term. As
shown in Fig 2, then we concatenate epeqq, Prs €144
as Cin = €head D hr ® €rqi € R3*™ where €pe0d
and e;;; are the embeddings of head entity and tail
entity. Decoder should learn this embedding matrix
along with CNN parameters. CNN uses n filters,
each of kernel size R?*"4, to extract features from
cin- Then average pooling is applied to process
the results. The flattened average pooling output
cout € R™ is mapped to a real number, i.e., the
score ¢(+) in Eq. 7, via a linear layer.

3.5 Key Insights

If we directly use encoder as the relation classi-
fier as previous work did and let the classifier out-
put a relation classification r (Marcheggiani and
Titov, 2016), then the encoder can be expressed as
qo(r|x). We keep other parts unchanged, i.e., the
decoder reconstructs the encoder input based on 7.
Finally, the loss function can be defined via Eq. 9

L =Eqy(rfs) [logps (|r)] + K L(ga(r|2)[Ips (r))

©)
Previous work approximates Eq. 9 by applying
Eq. 10 as follows:

L = By riayllogpe(eile—i, )] + H(go(r]z))
(10)
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where e; is the predicted entity and e_; is the given
entity and H(-) is the entropy function. The model
reconstructs the entity pair of the input sentence by
predicting the missing entity. Comparing Eq. 10
with the VAE loss in Eq.2, 7 in Eq. 10 is the latent
variable z in the VAE loss. In addition, the defined
entropy of r is equivalent to the KL divergence of
the prior probability p,(r|2) with uniform distribu-
tion. This leads to two outcomes: (1) The decoder
cannot sample from the latent space r because the
sampling process interrupts the gradient passing
process. In addition, the same reparameterization
trick in Sec 3.2.2 cannot be applied to solve this
problem (i.e., sampling the decoder from ) be-
cause r is not a Gaussian distribution. Therefore,
the decoder is not directly connected to the encoder
and can not update it in a timely manner. (2) As the
general VAE methods predefine 2 as a normal distri-
bution, the entropy of r pushes the prior probability
Pg(r|z) to a uniform prior distribution. These two
outcomes may lead to unbalanced training of the
encoder and decoder. That is, after many training
iterations, the reconstruction loss converges, which
implies that the decoder is well-trained, while the
encoder outputs a uniform distribution for sentence
x (the probability of classifying = as any relation
is the same). This answers the instability question
raised in previous work (Simon et al., 2019).

We incorporate the relation classifier as a com-
ponent of the encoder instead of using it as the
encoder to avoid these two limitations. Unlike pre-
vious works, we regard r as an intermediate vari-
able instead of a latent variable and r is conditioned
on the input sentence x. Our proposed model is
therefore guaranteed to be more stable. Next, we
list two guarantees of model stability. 1) According
to Eq. 3, if the encoder can map the input z to the la-
tent space z, it must learn a good classifier py(r|x),
because this is an essential step for the mapping
process. 2) Our decoder g4 (z|z, ) reconstructs en-
tity pairs based on the sampled z and r, while the
decoder of the previous model does not receive any
information from the encoder. This ensures that the
proposed decoder utilizes the information from the
sampled data. Therefore, the relation classifier can
receive the gradients to update.

4 Experiments

4.1 Dataset and Evaluation Metrics

Data: Following previous work (Tran et al., 2020),
we use NYT-FB dataset to evaluate our model.

NYT-FB dataset is obtained by using Freebase to
label the corpus of the New York Times. That is,
if the entity pair that appears in a sentence also
appears in Freebase (Bollacker et al., 2008), then
this sentence is automatically labeled as the rela-
tion stored by Freebase. After filtering out some
sentences using syntactic patterns, there are 2 mil-
lion sentences in the dataset, of which 41,000 are
labeled with meaningful relations'. Of the 41,000
tagged sentences, 20% are used as validation set,
and 80% are used as test set.

As mentioned in previous work (Tran et al.,
2020), NYT-FB dataset may not be a perfect dataset
to evaluate models since the relation is a long tail
distribution in this dataset. This allows a model to
achieve high performance by predicting each sen-
tence into a unique relation, which is unexpected.
Therefore, we also conduct experiments on the
other dataset, SemEval dataset (Hendrickx et al.,
2010). We use SemEval 2010 Task 8, which is
Relation Extraction task between pairs of nominals.
There are 8,000 sentences in the training set, the
entities of each sentence are manually labeled and
the relations of these entities are also manually an-
notated. This dataset has a total of 10 relations,
including “Others” that represents no normal rela-
tion detected in the sentence. We use 20% of these
sentences as the test set.

Evaluation Metrics: B-cube (B3) (Bagga
and Baldwin, 1998), V-measure (Rosenberg and
Hirschberg, 2007) and Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) are used as eval-
uation metrics. B? is the harmonic mean score
of recall and precision of clustering result. Simi-
larly, V-measure is the harmonic mean between ho-
mogeneity and completeness, while ARI is anther
general way to evaluate clustering performance.

4.2 Models
4.2.1 UREVA Hyperparameter Settings

The hyperparameters are set based on experiments
on the development set with manual tuning. The
output dimension of the encoding layer is 64, and
the sample size of z is also 64. The entity embed-
ding dimension of decoder is set to 10, which is the
same as the output dimension of the sampled result
mapping layer of the decoder. The constant c is set
to 0.01 and the number of CNN filters is 40. We
use Adam with 0.005 learning rate to optimize the

!The detailed preprocessing steps are described in previous
work (Marcheggiani and Titov, 2016).
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#r  model B3  V-measure ARI
RelLDA 29.1 30.1 13.2
March(Lsg) 38.7 37.5 26.1

10  Simon 32.6 30.5 23.8
EType+ 41.9 40.6 30.7
UREVA 43.1 42.0 31.6
RelLDA 27.8 294 12.2
March(Lsy) 36.9 374 28.1

16  Simon 30.7 29.8 23.6
EType+ 41.5 41.3 30.5
UREVA 43.4 42.3 31.5
RelLDA 25.1 27.9 9.7
March(L,;) 35.1 26.2 17.1

100  Simon 29.6 27.3 16.8
EType+ 35.8 354 27.3
UREVA 41.9 43.2 29.7

Table 1: The evaluation results of UREVA and baseline
methods on NYT-FB dataset. Note that # r indicates
that how many clusters in each model.

proposed model. The batch size is set to 100.

4.2.2 Baselines

In order to compare the proposed approach with
other state-of-the-art methods, we use following
four models as the baselines. 1: Rel-LDA (Yao
etal., 2011) is designed for relation discovery task
based on LDA model (Blei et al., 2003). The
topic distribution is replaced by relation distribu-
tion, modeled by Dirichlet prior distribution. 2:
March (Marcheggiani and Titov, 2016) is a VAE-
like model, which encodes relation classification
and train a decoder to reconstruct the entity pair of
given sentence. Note that in later work, this model
was boosted by adding regularization terms. There-
fore, we compare our method with this improved
model, March(Lg4). 3: Simon (Simon et al., 2019)
proposed using PCNN as the encoder and boosted
previous work by adding regularisation loss terms.
4: EType+ is a straightforward model that takes
combination of entity types in each sentence as the
input. These combinations are then mapped to the
relation classification results through feed-forward
networks. Note that for 3 and 4 baseline models,
we choose the re-implemented version, which is
publicly available (Tran et al., 2020).

4.3 Experimental Results

4.3.1 Clustering Results

Performance on NYT-FB: Table 1 shows the
average results across three-runs of each model.
We follow previous work that set the number of
relation clusters as r = 10,16, 100 (Tran et al.,
2020). The performance of UREVA on NYT-FB
dataset is better than that of state-of-the-art models.
In general, considering three evaluation metrics
and three different number of relation clusters
settings, the performance ranking of the model is
UREVA>EType+>Simon>March(L;)>RelLDA.
Another thing to note is that the performance of all
baselines drops significantly when » = 100, while
the performance of UREVA remains roughly the
same as = 10, 16. For example, the V-measure
score of EType+ is 41.3 when » = 16, while
the V-measure score is 35.4 when » = 100. The
V-measure score of EType+ drops 14%, while that
of UREVA increases. This is expected because the
more relation clusters predicted by the model, the
more likely it is to fit the true relation distribution.

#r Model B?  V-measure ARI

5 Simon 22.3 11.2 9.7
UREVA 24.5 13.8 11.7

9 Simon 21.6 11.5 10.6
UREVA 25.1 14.4 12.1

Table 2: The evaluation results of UREVA and baseline
methods on SemEval dataset. Note that # r indicates
that how many clusters in each model.

Performance on SemEval: We also report the
performance of UREVA and Simon models on the
SemEval dataset in Table 2. Note that in experi-
ments, we found that most of the entities labeled in
the SemEval dataset are not named entities. And
the way this dataset annotates entities can leak rela-
tion information to the models. That is, all models
based on pre-defined features, such as entity types
and dependency path, cannot be evaluated on this
dataset. However, We argue that it is good enough
to use this dataset to compare the performance of
UREVA with only the Simon model because Simon
is the state-of-the-art among VAE-based models
and the goal of our proposed model is to improve
the performance of the VAE-based model.

Recall that the encoder of our model is also
based on entity types, therefore, in order to com-
pare with Simon’s model on this dataset, we re-
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placed the encoder architecture with PCNN, which
is the same used in the Simon model. In addition,
since there are only 10 different relations in the
SemEval dataset, including “Others”, we set the
number of clusters of the models to 5 and 9.

Both Simon and UREVA’s evaluation values on
this dataset have dropped significantly, which is
reasonable however. The possible reason is that
the number of relations in SemEval is far less than
the number of relations in NYT-FB. The reduction
in the number of relations will cause any wrong
classification to have a great impact on the eval-
uation value. For example, the V-measure score
of random classification is about 15 in NYT-FB
dataset. For comparison, the V-measure score of
that on SemEval dataset is only 0.4. Compared
to the V-measure score of random classification
on SemEval dataset, the gain of UREVA and Si-
mon’s V-measure score are 33.5, 27, respectively.
The gain of UREVA and Simon’s V-measure score
are 1.8, 1.03 on the NYT-FB dataset, respectively.
Therefore, the classification accuracy of the two
models did not decrease significantly. Moreover,
compared with Simon, UREVA can maintain a rel-
atively high classification accuracy on SemEval.

4.3.2 Analysis of Classification Accuracy

As indicated in Section 4.3.1, we found that even
if the model keeps predicting the input sentences
into the same relation, the B? score of the model
still remains around 22 on NYT-FB dataset. Simi-
larly, if we randomly classify the input sentences,
the V-measure score of the classification result also
exceeds 15. We note that this is a key observation.
Based on this observation, it is not clear whether
the three evaluation metrics used in previous works
(B3, V-measure, ARI) present a true measure of
model performance (Simon et al., 2019; Tran et al.,
2020). Therefore, in order to answer this question,
we next analyze each relation clustering predicted
by the model to ensure that the relation classifica-
tion is indeed accurate.

As shown in Figure 3, in the NYT-FB test set, the
relation distribution is similar to a long-tailed dis-
tribution. A small number of relations have a high
frequency and most of the relations appear with
very low frequency in the dataset. For example,
the first three relations with the most occurrences
account for nearly 50% of the total relations. The
result of the relation distribution predicted by our
model is similar to this fact. As shown in Figure 4,
we list the relation distribution output by the model

0.25

02

0.15

0.1

0.05

Figure 3: The real relation groups. The ordinate repre-
sents the percentage of the number of sentences in each
relation group to the number of sentences in the dataset.
The x-axis is the relations sorted according to the num-
ber of sentences contained. For ease of observation, the
x-axis label is omitted
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Figure 4: Predicted relation groups. rel; is i-th pre-
dicted relation group. Labell, Label2, Label3 are the
real relation that appears the top, second, and third most
frequently in a relation group, respectively. The ordi-
nate represents the number of sentences classified into
each relation group.

on the test set and the number of different rela-
tions output by the model is set to 16. The relation
distribution predicted by the model has a similar
long-tailed distribution shape to the actual relation
distribution. We also list the top three real relations
in each predicted relation group, and label them as
labell, label2 and label3. For example, supposing
50 sentences in the test set are predicted to be rela-
tion r,0. Among these 50 sentences, 16 sentences
are labeled as actual relation 7.1, 15 sentences are
labeled as r-2, 14 sentences are labeled as .3, and
5 sentences are labeled as 7,.4. Then r,.1, .2 and
ry3 are labell, label2 and label3, respectively. If
the first three labels account for a high proportion
of each predicted relation group, it means that the
model does not randomly classify sentences into
different relations. The reason is that random clas-
sification will give a uniform distribution to each
predicted relation group.

Next, we provide a qualitative analysis, which
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shows that the different relation classes predicted
by UREVA have different meanings. As shown in
Table 3, we randomly select two of the predicted re-
lation groups, relation 5 and relation 9, and find the
top 9 real relations that appear most frequently in
each of these two relation groups. By analyzing the
semantics of these real relations, it is not difficult
to find that relation 5 mainly describes the sub-
ordination relationship between people or objects.
Conversely, relation 9 describes the relationship be-
tween people or objects and a geographic location.
This shows that different relation groups predicted
by UREVA represent different relation information
semantically.

Relation 5 Relation 9
founders placeLived
directedBy nationality
authorEeditor containedby
writtenBy placeOfBirth
child company
owner’s placeOfDeath
containedby placeOfPublication
majorShareholders placeOfBurial
worksWritten country

Table 3: Example of meanings of top-frequency real
relations of each predicted relation group.

5 Related Work

Unsupervised RE uses unlabeled data to train a
model that clusters sentences with the same rela-
tion information together. Initially, some work pro-
posed using some linguistic patterns extracted from
sentences as the contexts of entity pairs (Hasegawa
et al.,, 2004). Once these contexts are vector-
ized, the model can cluster sentences with sim-
ilar contexts. Follow-up work improved model
performance by reducing the frequency of noisy
words (Chen et al., 2005). Inspired by this ap-
proach, some work combined linguistic patterns
and surface context to design a two-step clustering
algorithm (Yan et al., 2009).

Some methods deal with unsupervised RE from
the perspective of probabilistic generative models.
Rel-LDA introduced the Latent Dirichlet Alloca-
tion (LDA) approach to unsupervised RE (Yao
et al., 2011; Blei et al., 2003). In this method,
the topic distribution is replaced by the relation dis-
tribution and Expectation Maximization algorithm

is applied to cluster similar relations. Some work
extended this model for general domain knowl-
edge (De Lacalle and Lapata, 2013). They applied
First Order Logic rules to extract patterns from
knowledge base such that the model can be en-
hanced by using patterns as the prior knowledge.

Some work used the idea of autoencoder to pro-
vide supervised signal to RE. The CURE used an
encoder to extract relation information from sen-
tences (Yuan et al., 2020). The decoder recon-
structs the dependency path between the entity
pairs based on the relation information. After train-
ing, the relation information output by the encoder
is used to cluster sentences with similar relations.

However, some work proposed to let the encoder
output the classification result instead of an infor-
mation vector (Marcheggiani and Titov, 2016). In
this method, the decoder reconstructs the entity pair
in the input sentence according to the probability
of the encoder output. In order to allow the encoder
output a variety of relations, an entropy-based regu-
larization function is added to the original objective
function. More recently, some work considered
that this model is not stable (Simon et al., 2019).
This is because the model only predicts one same
relation for all input sentences, or the predicted re-
lations probability distribution for each instance is
similar. This recent work proposed that in addition
to the original entropy-based regularization, disper-
sion loss needs to be added. This loss term requires
that all relation classification results of the model
conform to the uniform distribution. The PCNN
architecture in this model is then replaced by entity
type feature, since entity type was considered as
the most important feature (Tran et al., 2020).

6 Conclusion

In this paper, we present UREVA, a variational
autoencoder-based unsupervised relation extrac-
tion model. We consider relation classification as
an intermediate variable to solve the model train-
ing instability problem that appeared in previous
works. In UREVA, the classification is conditioned
on the input sentence, and the latent variable is
conditioned on the the joint distribution of the
classification and the input sentence. Then the
decoder reconstructs the entity pair in the input
sentence by sampling from the latent space and the
relation classification. Experiments on two public
datasets show that UREVA outperforms state-of-
the-art models.
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