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Abstract

Communicating with humans is challenging
for AIs because it requires a shared under-
standing of the world, complex semantics (e.g.,
metaphors or analogies), and at times multi-
modal gestures (e.g., pointing with a finger, or
an arrow in a diagram). We investigate these
challenges in the context of Iconary, a collab-
orative game of drawing and guessing based
on Pictionary, that poses a novel challenge for
the research community. In Iconary, a Guesser
tries to identify a phrase that a Drawer is draw-
ing by composing icons, and the Drawer itera-
tively revises the drawing to help the Guesser
in response. This back-and-forth often uses
canonical scenes, visual metaphor, or icon
compositions to express challenging words,
making it an ideal test for mixing language and
visual/symbolic communication in AI. We pro-
pose models to play Iconary and train them
on over 55,000 games between human play-
ers. Our models are skillful players and are
able to employ world knowledge in language
models to play with words unseen during train-
ing. Elite human players outperform our mod-
els, particularly at the drawing task, leaving
an important gap for future research to ad-
dress. We release our dataset, code, and evalu-
ation setup as a challenge to the community at
github.com/allenai/iconary.

1 Introduction

Communicating with humans is a long-standing
goal in AI, and has been studied in the context
of natural language for decades. Many of the key
challenges in this task, such as using a shared un-
derstanding of the world, commonsense reasoning,
and metaphor are, however, not language-specific,
but are instead general-purpose tools that humans
use when communicating through other modalities
as well. For example, understanding what means
in a text conversation requires grasping metaphor
(it is unlikely to be literally suggesting one should
put on a party hat), or understanding a sign with a

truck swerving requires common-sense reasoning
(the intent is to show slippery conditions, not to sug-
gest drivers ought to begin swerving themselves).
Humans can easily adapt to these different modal-
ities, as well as use visual/symbolic tools (e.g.,
pointing with a finger, or an arrow in a diagram)
that cannot be used in a text-only context. To build
and test AIs for this skill, we introduce the first task
and large-scale dataset for multimodal communi-
cation by creating Iconary, a game of drawing and
guessing based on Pictionary, along with a dataset
of games with human players, proposing automatic
and online game playing metrics, and constructing
proficient Iconary AIs.

In Iconary, one player (the Drawer) draws an
image for a phrase by arranging icons (including
the ability to rotate or change the sizes of icons) on
a canvas, and a second player (the Guesser) guesses
what phrase the drawing represents. We use icons
so we can focus on the high-level semantics of
the drawings, and to make the game easier to play
online. The Guesser then makes a series of attempts
to guess the phrase using only the drawing. If the
Guesser is unsuccessful, the Drawer can revise the
drawing, and the cycle repeats until time runs out
or the Guesser is successful. Figure 1 shows an
example of an Iconary game, played between a
human player and our AI player.

Iconary combines several key comprehension
challenges. First, non-literal imagery, since most
words in our dataset do not have directly corre-
sponding icons so players will often use visual
metaphor (e.g., a school bus and book for ‘text-
book’) or reference canonical examples (e.g., lit
and unlit light for ‘turning off’) to convey words.
Second, visual similarity, since icons can also be
composed to draw objects, such as using concen-
tric circles to draw a dartboard. Third, annota-
tions, because Drawers often use arrows, circles, or
crosses to indicate motion or to guide the interpre-
tation of the image. Fourth, state tracking, because

mailto:chrisc@allenai.org
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apprentice cook weighing food

child cook weighing food
adult cook weighing food

chief cook weighing food

male cook weighing food
young cook weighing food

chef cook weighing food

man in kitchen chopping
person cooking with knives

hand placing origami on a table

Intermediate Drawing Final DrawingFirst Drawing

Rounds of Gameplay

apprentice cook weighing food

hand placing sushi on a table

hand setting food on a table
hand placing rolls on a table

hand placing folds on a table

hand placing something on a table
hand placing rolls on a table

hand placing origami on a table

hand placing paper on a table
hand placing document on a table

Figure 1: Examples of gameplay between human players and our models. Snapshots show the progression (left to
right) of two games, with the human player guessing in the top row and drawing in the bottom. Guesses in each
round are shown beneath the drawing for that round, and are color-coded (cyan=correctly, magenta=incorrectly
guessed word). The first game shows TDRAWER drawing ‘origami’ with a sushi icon (presumably to indicate
Japan), a turning icon and finally a paper icon once the human has guessed ‘folds’. The second game shows
TGUESSER correctly guessing ‘apprentice’ by interpreting the icons for baby, adult and knife. The words ‘origami’
and ‘apprentice’ do not appear in the training data for either model. See the appendix for more qualitative results.

players need to remember what drawings/guesses
have been already done (e.g., Drawers will often re-
draw/augment scenes they could tell confused the
Guesser, or use annotations to guide the Guesser’s
attention towards missed elements). Fifth, world
knowledge, since models are tested on words not
seen during training.

We present a large dataset for Iconary by having
human players play with each other – a collection
of 56k games in train, in-domain (IND) dev and
test sets with 5k games, and out-of-domain (OOD)
dev and test sets with 1k and 3k games respectively
that contain words not seen during training.

Our proposed models, TDRAWER and
TGUESSER, leverage world knowledge in the
T5 (Raffel et al., 2020) pre-trained language model
and have been carefully adapted to draw and
guess words not observed during training. We
measure performance using automated metrics,
but our main results are shown by having our AIs
play games with human players. TDRAWER and
TGUESSER perform remarkably well on the IND

sets (68.3% and 96.0% win rates), but are also

able to play impressively with human players
on the OOD sets (41.7% and 62.9% win rates),
demonstrating their ability to extract and integrate
world knowledge for unseen game-play words
from language models. Figure 1 shows some
interesting games played by our models with
human partners on the OOD set.

While our models are capable players, skilled
human players outperform them on the OOD sets (a
smaller margin of 4.6% at guessing but a sizeable
margin of 21.0% at drawing). An error analysis
shows that most errors occur for unseen words, par-
ticularly verbs, compound words, and examples
with complex drawings, such as those requiring
fine-grained positional information. Our quantita-
tive and qualitative analysis suggests ample room
for future research in this new, rich and complex
domain.

2 The Iconary Game and Dataset

2.1 Playing Iconary

Iconary is played using a web user interface (UI).
First, the Drawer is shown a short phrase and cre-
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Annotations 18.5%, 22.0%
A noun is drawn by composing multiple 
icons, such as drawing ‘sprinkler’ with a 
spray bottle, drop, and fountain icons. 

Composition 47.5%, 64.0%
Arrows, crosses, checkmarks, or circles guide 
interpretation, such as an arrow to indicate a 
part or crosses to specify incorrect options. 

Repurposing 22.5%, 32.0%
An icon is used to represent an object different 
than its intended meaning, such as a scarf for 

‘scabbard’, or box + ring for ‘boxing ring’. 

Verb Scene 25.0%, 44.5%
Multiple icons are arranged in a scene to 

indicate the verb. 

Verb Icon 41.0%, 25.5%
A single icon is used to indicate the verb, such 
as hammer for ‘building’ or eyes for ‘reading’. 

Verb Arrows 22.0%, 25.5%
The verb is indicated by using arrows to show 

motion. 

sprinkler 
spraying 
water

children 
skipping 
jump rope

child 
pulling a 
sword from 
a sheath

ball 
bouncing 
on the floor

reading a 
book at 
church

judging a 
lamb in a 
competition

Figure 2: Examples of different drawing strategies found in our dataset. The proportion of games that use these
methods in a sample from the IND and OOD dev sets are shown on the top right of each panel.

ates a drawing by selecting icons from a library
and arranging them on a canvas. We include 1,205
icons from the Noun Project1 that were chosen to
cover a variety of common entities that would be
difficult to draw using other icons. Icons can be
resized, rotated, and flipped as desired. Once fin-
ished, the Drawer passes the turn to the Guesser.

The Guesser is shown the drawing and the phrase
with the non-stop words replaced by blanks, and
submits a series of guesses to the UI which indi-
cates which words were correct after each guess to
allow incremental progress. If the Guesser gives
up, control is passed back to the Drawer who can
modify their drawing in response to the guesses
made so far. This cycle repeats until the phrase
is guessed or a 4-minute timeout is reached. The
game UI is provided in the appendix.

2.2 Phrases

We collect phrases from two sources (see the ap-
pendix for more details). First, we have crowdwork-
ers turn image summaries from Imsitu (Yatskar
et al., 2016) into short phrases. These summaries
are derived from FrameNet (Baker et al., 1998) and
consist of an action with the addition of one or more
agents (e.g., people, animals), places (e.g., park,
office), or artifacts (e.g., computer, car) filling a va-
riety of verb-specific roles. We base our phrases on
these summaries since they contain words that can
be depicted visually, i.e., they avoid abstract words

1https://thenounproject.com

magnets doorway honking
swerving nun floss
roasting skidding beverages

dreaming dormitory librarian
charcoal cornfield piloting

rioter stationary winery
bookmarks sampling fireworks

lumber photocopy shipping
unwrapping freezer recycling
motorcylist tidying waiter
receptionist pharmacist stylus

skewers enchilada graduating
diet guitarist lunchroom

cufflinks padlocks soaking
diploma gunpowder completing

Table 1: A random sample of 45 OOV words that are
present in the OOD dev set, words like ‘graduating’ or
‘bookmarks’ require creativity to draw with icons.

like “believing" or “determination" that would be
difficult to draw. We collect 41k phrases with 250
unique verbs, 2k other non-stop words, and an av-
erage of 5.4 words.

Second, we build out-of-domain (OOD) test
phrases that have out-of-vocabulary (OOV) words.
To maintain the vocabulary size of our training data,
we build these phrases by having in-house annota-
tors modify phrases in the IND test set rather than
holding out phrases with particular words from the
Imsitu phrases. First, we collect a list of candidate
OOV words by gathering unused words from Im-
situ and a few other sources, and then manually fil-
tering out words that could not plausibly be drawn.
The new OOV words are complex and diverse, see
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Dataset Games Phrases Win Off-by-One

Train 56k 34k 71.1 83.9
IND Valid 5.1k 3.1k 75.1 87.5
IND Test 4.7k 2.9k 76.8 88.3
OOD Valid 1.0k 0.8k 54.4 75.8
OOD Test 3.0k 2.3k 54.1 75.5

Table 2: Dataset statistics. Off-by-one means the
Guesser was within one word of the target phrase.

Table 1 for a random sample. Second, annotators
were given a test phrase and asked to write a new
phrase that used one of the new words, at least one
of the non-stop words from the original phrase, and
otherwise preserve as much of the original phrase
as possible. We build 2.8k new OOD phrases with
1.3k new words. Examples of drawings with these
words can be found in the appendix.

The Imsitu phrases are divided into train, dev
and test sets. Additional filtering was done on dev
and test to remove ambiguous words, unusual de-
scriptions and grammatical errors (removing about
15%). The OOD phrases were divided into dev and
test sets, see Table 2 for statistics.

2.3 Collecting Iconary Games

We gather Iconary games for these phrases by pair-
ing crowdworkers together to play on our UI. Over
900 players played almost 60,000 games (we al-
lowed multiple games to be played for a phrase).
Workers qualify by winning a game with another
player, and we disqualify workers that have very
low win rates during data collection. We also
heuristically filter out poor-quality games, such as
removing games with no guesses. Since the OOD
games are our main target, we additionally filter
out games with players who had played less than
15 practice games, or that included a small number
of players who had win rates far lower than the
average, to ensure high quality.

Table 2 shows statistics for our 5 datasets. Hu-
mans have a high success rate for the IND sets.
The OOD phrases prove more challenging, likely
because they often use more advanced words that
require more skill to draw and guess.

2.4 Analysis

To better understand our dataset, we perform two
analyses. First, we manually label occurrences of
six non-exclusive drawing strategies in a sample of
200 games from the IND and OOD dev sets. The
results are shown in Figure 2. We observe that

Split Rounds Drawing Strategy
>= 2 >= 3 >= 4 Edit Add Redraw

IND 33.3 9.4 1.9 31.5 45.0 23.5
OOD 65.6 23.8 4.5 25.5 38.5 36.0

Table 3: Statistics for multi-drawing games in the IND
and OOD dev sets. The left three numeric columns
show the percent of games with different numbers of
drawings, the right three show the usage of different
re-drawing strategies.

most games use complex strategies to represent
the phrase; such as composing multiple icons to
represent nouns, drawing small scenes for verbs,
using annotations, or creatively re-purposing icons.
The OOD dataset tends to include less common
nouns and verbs, and drawers adapt to this by using
more complex strategies for those phrases.

Second, we study how Drawers revise their draw-
ings when the Guesser is unsuccessful. We label
drawing revisions as either edit: re-arranging, re-
moving, or re-sizing icons, or adding arrows or
other annotations, add: adding new icons to offer
alternative visualizations or to hint at connections
the Drawer missed, redraw: deleting and redraw-
ing parts of a scene that confused the guesser. We
make these labels exclusive by placing games into
the latter-most category that applies across all draw-
ing revisions in a game.

The results, and statistics for the use of multi-
ple drawings, are shown in Table 3. We see that
Drawers generally use a balanced mix of our iden-
tified strategies and that the more challenging OOD

games tend to have more drawings.

3 Models

We propose TGUESSER and TDRAWER to play
Iconary. Both models condition on the cur-
rent game state, meaning the previous drawings,
guesses and, for TDRAWER, the game phrase, and
then generate either text to guess the phrase (for
TGUESSER), or a sequence of special tokens that
encode a drawing (for TDRAWER).

Although this involves a visual modality, we pro-
pose to use language models for this task because
(1) the icon names can be used to understand the
drawing and (2) Iconary often requires using word
knowledge (e.g., mapping person and thumb icons
to ‘hitchhiking’ or milk and ice cream icons to
‘milkshake’) that is known to be captured by these
models (Roberts et al., 2020). To do this, we en-
code the game state as text and apply the T5 (Raffel
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Drawing Phrase
meteor destroying an observatory

Previous Guesses

telescope watching an asteroid
comet destroying an estate

Game State

drawing: huge comet, 2 smoke, telescope, huge dome. 
phrase: _ destroying an _.

meteor destroying an observatory.

Phrase Encoding

Fill-in-the-Blank Encoding
drawing: huge comet, 2 smoke, telescope, huge dome. 
phrase: <extra_id_0> destroying a <extra_id_1>

<extra_id_0> meteor <extra_id_1> observatory.

Drawer Encoding
meteor destroying* an* observatory.

[ICON1058] [X10] [Y5] [SCALE5] [ROT0] 
[MIRROR1] [ICON65] [X13] [Y10]…….

Figure 3: Game state encoding for our models. For
each encoding method, the upper text is the input and
the lower text is the target output.

et al., 2020) language model by treating the task
as a text-to-text conditional generation task. Inter-
estingly, we find vision-and-language (V+L) mod-
els (Tan and Bansal, 2019; Chen et al., 2020) to be
less effective, which might be because current V+L
models have inferior language-related abilities (Iki
and Aizawa, 2021), or because models trained on
photographic images are not well-suited to under-
stand the non-literal imagery found in Iconary.

3.1 Guesser

To encode the game state for the Guesser, we first
construct a text description of the most recent draw-
ing. A description of each icon is built by incor-
porating the icon name, possibly the prefix ‘huge’,
‘large’, ‘small’ and ‘tiny’ based on the icon’s size
relative to the other icons, the prefix ‘rotated’ if the
icon is rotated, and the prefix ‘flipped’ if the icon
is reflected. We handle straight arrows as a spe-
cial case by encoding them as ‘[left/right/up/down]
arrow’ depending on their orientation. The text
description is then a list of these icons sorted from
left to right. To keep the result compact for com-
plex scenes, such as a forest drawn with many tree
icons, if multiple icons have the same text descrip-
tion we only produce that description once and add
a number prefix to show the count. We use this
simplified encoding scheme because preliminary

experiments found encoding positional information
more precisely, or encoding earlier drawings if they
exist, did not improve performance when using T5.

Next, we append the text ‘phrase:’ and, for each
word in the target phrase, either an underscore or
the correct word if it is known (see Figure 3, top).
We experimented with encoding previous incorrect
guesses but found it unnecessary as long as models
are prevented from repeating those guesses during
generation.

The target output is the game phrase. During
generation, we constrain models to ensure the out-
put contains the right number of words, includes
words that are known to be correct from previous
guesses, and exclude words that are known to be
incorrect. This is non-trivial for wordpiece models,
but we leave details in the appendix.

3.2 Handling OOV Words

We observe that naively trained models often gen-
erate words seen in the training data even when
they do not match the drawing. To combat this, we
propose several extensions to TGUESSER:

Rare Word Boosting: Based on a method from
controlled language generation (Ma et al., 2020;
Ghosh et al., 2017), we boost the logit score of
wordpieces not seen during training. In particular,
we add a fixed value (chosen as a hyperparmeter),
to the log-probabilities of those wordpieces and
then re-apply the softmax operator to get updated
word-piece probabilities during generation.

Fill-in-the-Blank Encoding: Following the T5
pre-training format (Raffel et al., 2020), we encode
the phrase using ‘extra_id’ tokens for sequences of
unknown words instead of underscores and train
the model to only predict the text that ought to re-
place those tokens. Figure 3 contains an example.
We expect this will better enable the model to lever-
age pre-trained knowledge of unseen words; and
this does provide improvements (See Table 6).

Early Stopping: We find training for only one
epoch beneficial on the OOD sets, possibly be-
cause more training causes the model to forget
about words learned during pre-training, but are
still needed in the OOD test sets, due to catastrophic
forgetting (French, 1999).

Embed Freezing: The word-piece embeddings are
frozen to help ensure the model can effectively use
wordpieces that were not in the training data.
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3.3 Drawer

The Drawer’s input is the game phrase, marked
with asterisks to show which words have already
been guessed. The output encodes icons with six
special tokens, each drawn from a set of new to-
kens added to T5’s vocabulary and initialized with
random embeddings, one indicating the icon name,
and five indicating the quantized x coordinate, y
coordinate, scale, rotation and reflection (quantized
with 32, 16, 11, 8 and 2 buckets respectively). The
full output is a sequence of such icons (see Fig-
ure 3). Icons are generated in the order used by
the human player (we experimented with other or-
derings, and found them to be less or equally ef-
fective), and we mask the output logits to ensure a
valid drawing is produced during generation. We
propose two additions to help models adapt to this
output format:

Special Token Initialization: Icon tokens are ini-
tialized by averaging the embeddings of the word-
pieces of their names, and quantized tokens are
initialized with the embedding of numbers (the first
x-coordinate special token is initialized with the
embedding for ‘1’, the second for ‘2’, etc.). This
gives the model some prior knowledge of what
the icons are, and a sense of ordering among the
quantized tokens (Wallace et al., 2019).

Constrained Training: The output masking used
during generation is applied during training so the
model does not need to learn the output format.

4 Experimental Setup

In this section, we specify our metrics and base-
lines. We use T5-3B for TGUESSER, but T5-Large
for TDRAWER since it generates longer sequences
and therefore uses more memory. Other hyperpa-
rameters and training details are in the appendix.

4.1 Human/AI Metrics

The best test of Iconary models is playing with hu-
man players. When playing with human players, AI
Guessers make up to 5 guesses a drawing since that
is typical for human Guessers. To ensure diverse
Drawings from AI Drawers, we sample a drawing
from the model’s conditional distribution instead of
using beam search if beam search yields a drawing
with the same icons as a previous drawing (if the
sample is still similar to a previous drawing, we
use it anyway). Human players use the same UI
and are not told whether they are playing a human

or an AI.
Evaluation is complicated by the fact AIs can

make more guesses/drawings than human players
since they play faster. To control for this, we mea-
sure performance after a fixed number of guesses
(for Guessers) and a fixed number of drawings (for
Drawers). We measure the Win Rate, meaning
whether the Guesser correctly guesses the game
phrase. We also measure the Soft Win Rate, com-
puted as whether the guesser guesses the exact
phrase for phrases of length 2 or less, misses one
word or less for phrases of length 3-5, and misses
two words or less for phrases with 6 or more words.
For OOD games, the game is only considered a soft
win if at least one of the unseen words is guessed
since that is the focus of our evaluation (denoted as
Soft Win∗ in tables).

We do not do AI/AI evaluations since we find
AI players can often win with drawings that would
not be understandable to human players.

4.2 Automatic Evaluation Metrics

Gathering human/AI games is challenging since
it requires human players with experience playing
Iconary. To facilitate automatic evaluation, we pro-
pose two metrics for both the Guesser and Drawer
that can be computed using human/human games.

Win: Whether the Guesser can win from game
states in human/human games. The Guesser gener-
ates five guesses for each drawing in a game where
it is allowed to see the previous drawings, previ-
ous guesses made for those drawings by the human
player, and its own previous guesses. Any word
the model generates that does not appear in guesses
for previous drawings is considered guessed. The
game is won if all words are guessed. Note this
is a pessimistic metric because models do not get
second chances to guess words after they are identi-
fied by the human Guesser, but we expect it to be a
reasonable proxy for success in human/AI games.

Soft Win: As above, except we evaluate the
Guesser’s guessed words on the same soft win met-
ric we use for human/AI games.

Icon F1: Treating drawings as bags of icons, we
measure the F1 overlap score between human and
computer drawings. We only use the initial draw-
ings for each phrase, and we take the maximum
F1 over all human drawings if there are multiple
human games for a phrase.

Drawing Perplexity: For models that use the same
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Model IND OOD
Win Soft Win Soft∗

TGUESSER 84.25 97.62 37.39 44.06
TGUESSER-IND 85.91 98.55 22.67 27.24
TGUESSER-Large 79.34 97.09 33.30 40.61
BART Guesser 78.84 96.69 27.07 34.48
Transformer 79.89 93.64 0.00 0.00

Table 4: Automatic evaluation metrics on the test sets
for TGUESSER and our baselines.

method of encoding the drawing, we compare
the perplexity of each human drawing, averaged
over all drawings per game, then averaged over all
games in the corpus.

4.3 Baselines
We use the following baselines:

TGuesser-Large/T5Drawer-Base: Identical
models but with smaller versions of T5.

BART Guesser/Bart Drawer: Identical models
with the BART language model (Lewis et al., 2020).
For BART Guesser, we adapt the fill-in-the-blank
encoding scheme to generate a copy of the input
with the mask tokens replaced, instead of only gen-
erating the masked-out tokens, to match BART’s
pre-training format.

Transformer Guesser/Transformer Drawer:
We train a transformer-based model (Vaswani et al.,
2017) on this task that does not use a pre-trained
language model. This model also encodes the
drawings as a sequence of special tokens during
both decoding and encoding, in which case we
find it important to apply a data-augmentation
strategy to help the model learn mappings between
icons and words they might be used for. See the
appendix for details.

TGuesser-IND: TGUESSER without the OOD

adaptations specified in Section 3.2.

5 Results

5.1 Human/AI Results
Our models and two baselines played 300 games of
Iconary with the same crowdworkers used to build
our dataset. We evaluate performance on win rate
and soft win rate (see Section 4.1). We compare
against human/human games, and games with elite
human players where either the Guesser (if compar-
ing against an AI Guesser) or Drawer (if comparing

2Due to output format incompatibility, we do not report
drawing perplexity for the Transformer baseline.

Model IND OOD
Icon F1 Per. Icon F1 Per.

TDRAWER 58.04 3.84 40.34 4.89
TDRAWER-Base 58.06 3.95 39.18 5.05
BART Drawer 55.07 3.67 36.64 4.67
Transformer 58.19 - 35.78 -

Table 5: Automatic evaluation metrics on the test sets
for TDRAWER and our baselines2.

against an AI Drawer) is a human player in the top
quartile of win rates in human/human games. We
ran experiments on all four models simultaneously,
assigning workers to models randomly, and using
the same set of 300 phrases randomly selected from
the OOD test set for each model.

Results are shown in Figure 4 (see appendix
for tables). We cut off games at 20 guesses for
Guessers, and 4 drawings for Drawers, since that is
the most human players can typically accomplish in
a game (<1% of human/human games are longer).
At 20 guesses TGUESSER has a win rate of 62.9%,
which impressively out-performs the average hu-
man player by 9 points, but is still 5 points behind
elite human players. The gap is larger when using
the soft win metric, primarily because that metric
requires guessing the OOV word, which is unsur-
prisingly more challenging. There is a large gap be-
tween TGUESSER and TGUESSER-IND, showing
our OOV improvements were critical for success.

Drawing is more challenging than guessing. At 4
drawings TDRAWER wins 41.7% of games, which
is significant given the need to draw OOV words. It
also outperforms the Transformer baseline suggest-
ing that using T5 did help for OOV words. Human
players, particularly elite players, perform much
better, indicating a sizeable opportunity for future
research.

We run the same experiment on 300 IND test
phrases using the same pool of annotators, details
are in the appendix. We find our models do much
better, TGUESSER has a win rate of 96.0% and
TDRAWER has a win rate of 68.3% at 20 guesses
and 4 drawings. Human teams on our IND test and
dev sets get 75.9% for both drawing and guess-
ing. These numbers are not directly comparable
since our human/human games used different an-
notators, but they still make it clear TGUESSER is
better than human players, and TDRAWER is more
comparable to human players, on the IND phrases.
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Figure 4: Win rates of our models (TGUESSER on the left and TDRAWER on the right) when playing Iconary with
human players on phrases from the OOD test set, as more guesses or drawings are used. Graphs with dashed lines
show the soft win rate.

5.2 Error Analysis

We manually annotate 100 unsuccessful games for
both TDRAWER and TGUESSER (qualitative ex-
amples are in the appendix). For TGUESSER, we
find 35% of errors were on relatively simple scenes
where the model guessed related words, but misses
the key association. Other errors occur with scenes
that used visual similarity (15%), relied on fine-
grained positional information (13%), had com-
pound words drawn one part at a time (8%), and
other complex scenes (17%). Only 3% of cases did
not involve the OOV words, and 8% were clearly
deficient drawings.

We find TDRAWER fails to draw anything for
OOV words in 32% of cases, particularly for verbs,
possibly because it has learned some verbs do not
need cues beyond the related nouns (e.g., ‘driving’
in ‘person driving a car’). Half the time it draws
something related to the OOV words, but that is not
sufficient for it to be identified (e.g., ‘money’ for
hiring, but without anything to distinguish it from
‘buy’ or ‘sell’). Only 12% of unsuccessful games
had non-OOV word drawing errors, and 6% were
reasonable drawings.

5.3 Automatic Evaluation Metrics Results

We also evaluate our models with automatic met-
rics on the test sets. Table 4 shows the Guesser
results. We find that using T5-3B (compared to T5-
Large) is quite important. Also, consistent with our
human/AI results the OOD optimizations result in
a full 15 point gain in performance. The Trans-
former baseline falls behind the IND optimized
model, and both models on the soft win metric.
Its performance is still reasonable, likely because

Model IND OOD
Win Soft Win Soft∗

TGUESSER-Large 78.96 95.92 32.00 39.28
TGUESSER-Base 70.72 93.03 26.36 34.05
3 Epochs 82.05 96.61 29.85 34.97
No Boost 83.14 96.67 26.05 29.64
No Fill-in-the-Blank 82.17 96.89 29.64 34.46
No Modifiers 76.77 95.06 31.49 38.67
Names Only 74.45 94.48 29.74 35.90

Table 6: Guesser ablations on the dev sets. Ab-
lations use T5-Base instead of T5-Large, train for
3 epochs instead of 1, remove OOV boosting, re-
move fill-in-the-blank encoding, remove modifiers like
large/small/rotated from icon names, or use icons
names in a randomized order to encode the drawing.

the large training set provides enough examples
of humans drawing for it to memorize common
drawing strategies or the IND words. However, the
model is unable to learn to predict OOD words (ap-
plying OOV boosting for this model only resulted
in incoherent output).

Table 5 shows the Drawer results. We find
TDRAWER benefits somewhat from using a large
language model, and that the Transformer baseline
is again effective on IND data but poor on OOD

data. BART Drawer shows better perplexity but
significantly worse icon overlap.

5.4 Ablations

We ablate our design choices in more detail using
automatic metrics on the dev sets. Table 6 shows
the Guesser ablations, we use TGUESSER-Large
to reduce computational expense. Our improve-
ments are impactful with up to 10 points gained
through OOV boosting. Icon modifiers help IND
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Model IND OOD
Icon F1 Per. Icon F1 Per.

TDRAWER 57.37 3.89 39.96 4.83
TDRAWER-Base 57.46 4.01 39.01 4.98
No Icon Init 47.33 4.77 31.81 5.96
No Num. Init 57.04 4.09 38.58 5.05
No Icon/Num. Init 44.85 4.84 28.49 5.99
No Train Const. 56.06 4.12 39.17 5.20

Table 7: Drawer ablations on the dev sets. Ablations
use T5-Base instead of T5-Large, remove icon, quan-
tized token, or both initializations, or remove training-
time formatting constraints (see Section 3.3).

but not OOD, which suggests the model struggles
to make use of modifiers for unseen words, how-
ever just treating the drawing as a set of icon names
clearly harms performance. Fill-in-the-blank en-
coding is also impactful, suggesting using an en-
coding scheme similar to the pre-training one is
effective for OOD generalization. Unsurprisingly,
many of these optimizations reduce IND perfor-
mance because they increase the usage OOV words,
which never appear in the IND dev sets. Table 7
shows the Drawer ablations. Our initialization strat-
egy proves to be critical, which suggests it is what
allows TDRAWER to leverage the T5 parameter ini-
tialization even though it does not output natural
language. We also get a modest boost by training
with the formatting constraints.

6 Related Work

There is a long history of using games as a testbed
for AI. Traditionally these have been adversarial
strategy games like Chess (Silver et al., 2018),
Go (Silver et al., 2016), and many others (Moravcík
et al., 2017; Vinyals et al., 2017; Mnih et al., 2013)
A few cooperative games have been studied, like
Codenames (Kim et al., 2019) or Hanabi (Walton-
Rivers et al., 2019), that are similar to Iconary in
that they require players to communicate in order
to achieve a shared goal. However, those games
severely limit means of communication, whereas
Iconary allows a rich variety of communication
strategies through the use of drawings, and con-
tains language beyond single words.

Relating text to visual imagery has also been
studied in many forms (Antol et al., 2015; Suhr
et al., 2019). Generating text that describes visual
input, as done in Iconary, has been studied in visual
dialog (Das et al., 2017), image captioning (Chen
et al., 2015; Young et al., 2014), and describing
videos (Aafaq et al., 2019). Training models to

produce images from text has been studied for cap-
tions (Cho et al., 2020), image specifications (Reed
et al., 2016), and dialogue (Sharma et al., 2018).
Unlike in these works, the drawings in Iconary are
not photographic and constructed to communicate
a phrase. As a result, they can be non-literal and
deictic, which makes understanding them a signifi-
cantly different challenge.

Using a pre-trained language model to under-
stand mixed language and visual input has been
considered by Marasović et al. (2020), who use fea-
tures produced by object detectors or other visual
understanding systems as input to GPT-2 (Radford
et al., 2019) to generate natural language rationales.
Scialom et al. (2020) also show BERT (Devlin
et al., 2019) can be trained for Visual Question
Generation (Mostafazadeh et al., 2016). We also
find combining high-level visual features with a
pre-trained language model is an effective way to
generate visually relevant text, although again our
focus is on drawings rather than photographs.

Figurative text is well studied (Leong et al.,
2018; Veale et al., 2016; Shutova et al., 2016), but
non-literal imagery has mostly only been explored
in the context of parsing charts or diagrams. This
includes food webs (Mitra et al., 2018), science
diagrams (Kembhavi et al., 2016), charts (Kafle
et al., 2018) or for geometry problems (Seo et al.,
2014). While this can involve related skills like
understanding arrows or using icons to represent
concepts, diagrams are usually used to convey tech-
nical information and therefore are unlikely to use
things like visual metaphor, scenes, or icon compo-
sitions to signal words.

The back-and-forth of Iconary follows a dia-
logue structure where the Guesser is seeking infor-
mation from the Drawer. A similar format can be
found in dialogue QA datasets (Reddy et al., 2019;
Choi et al., 2018; Aliannejadi et al., 2019), and
task-oriented dialogue in general similarly requires
understanding the intent of a human communica-
tor (Young et al., 2013; Chen et al., 2017). Iconary,
however, makes this a multimodal process.

7 Conclusion

We have presented the game Iconary, a large dataset
of human/human games, and our proposed Iconary
models. This represents the first test for complex
multimodal communication between humans and
AIs, and is left as an open challenge to the commu-
nity.
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Appendix -
Iconary: A Pictionary-based Game for Testing Multimodal Communication with Drawings and Text

The appendix includes the following sections:

• Sec A - Qualitative Results

• Sec B - Training Data Characteristics

• Sec C - Out of Vocabulary Words

• Sec D - Iconary UI

• Sec E - Constructing iconary phrases

• Sec F - Constraining the Guesser Output

• Sec G - Training Details

• Sec H - Table of Human/AI Results

• Sec I - Baseline Transformer Models

A Qualitative Results

Here we present more qualitative results for hu-
man/AI games. Figure 1 shows games where the
human player guessed the phrase that was drawn
by TDRAWER. Figure 2 shows games where the
human player drew the icon compositions which
were then sent to TGUESSER to guess.

B Training Data Characteristics

Figure 3 shows visualizations and statistics for
the training dataset used to train TDRAWER and
TGUESSER. This includes the training word cloud,
icon set visualization and activity statistics.

C Games with Out of Vocabulary Words

Figure 4 shows the first drawings within games
between human players for phrases in the OOD set
that contain an OOV word in Table 1. As seen,
the drawings for these phrases are rich and often
require a creative usage of icons to refer to the
OOV words.

D Iconary UI

Figure 5 shows the UI for playing Iconary.

E Constructing Iconary Phrases

In this section, we describe how we build Iconary
game phrases in more detail.

E.1 In-Domain Phrases

Our primary source of game phrases is de-
rived from the image summaries from the Imsitu
dataset (Yatskar et al., 2016). For each summary,
we present crowd workers with the verb, one or
more of the associated entities, and ask them to
produce a short phrase using those elements. The
UI for this task is shown in Figure 6. We use this
process to construct about 41k phrases from 23k
frames (a frame can produce multiple phrases de-
pending on the subset of entities used). Phrases
are on average 5.4 words in length and contain 250
unique verbs and 2,000 other non-stop words.

We hold out 3.5k of these phrases for the IND

test and validation set, ensuring phrases derived
from the same Imsitu frame are always in the same
set. An author of this paper did an additional
round of filtering on the test and validation phrases
to remove any that contained potentially ambigu-
ous words, described unusual scenes, or contained
grammatical errors, leaving 3k phrases for both
datasets. The remaining 33k phrases were used for
the train set.

E.2 Collecting Out-of-Domain Phrases

We also construct a set of out-of-domain (OOD)
test phrases that challenge models to play Iconary
with out-of-vocabulary (OOV) words. The Imsitu
data has a limited vocabulary, and building this
set by holding out phrases with particular words
from the Imsitu phrases would further restrict that
vocabulary. Instead, we build phrases by having
in-house annotators modify phrases in the IND test
set. We consider two kinds of modifications, verb
substitutions, and noun substitutions.

Verb Substitution: We collect a list of verbs from
a variety of sources, including the list of visual
verbs from Zellers and Choi (2017), any verbs in
Imsitu not already used in the training phrases,
and the 1000 most frequent verbs that occur in the
Google Books corpus (Michel et al., 2011). This
list was manually filtered to a list of 660 verbs that
could plausibly be drawn and do not occur in the
original phrase set. Annotators were then given a
test phrase and asked to write a new phrase that
used one of the new verbs, at least one of the nouns
from the original phrase, and otherwise preserve as
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much of the original phrase as possible.

Noun Substitution: We collect a list of nouns
by gathering nouns used in the Imsitu corpus
that had not yet been used in the training data,
and a small number of additional nouns from
WordNet (Fellbaum, 2010) that were not already
present, and again manually filter them to ensure
they are visually representable. In total, we
get 4.6k new nouns. Annotators were asked to
modify a test phrase by re-using the original verb,
substituting in one of the new nouns, and otherwise
preserving as much of the original phrases as
possible.

In both cases, we make this task easier by build-
ing a recommender system that uses the fasttext
word vectors (Grave et al., 2018) to suggest new
noun/verbs that are related to the given phrase. Al-
together, we gather 1.5k new noun phrases and 1.5k
new verb phrases that use 1.3k new OOV words.
We reserve a portion of these (0.4k noun and 0.4k
verb phrases) for the OOD dev set.

F Constraining the Guesser Output

In this section we explain in more detail how we
constrain our Guesser wordpiece models to (1) gen-
erate the right number of words, (2) always gen-
erate known words, and (3) never generate words
that are known to be incorrect. The challenge to do-
ing this stems from the fact that these world-level
constraints can apply across multiple wordpieces.
We implement 1 and 2 by masking tokens during
each generation step, specifically:

• If the model is generating a known word, we
mask out wordpeices that do not exist in that
word and don’t start a new word.

• If the next word is a known word, we mask
out any wordpieces that start new words other
than that next known word.

• If the word is the last word, we mask out to-
kens that start a new word, but allow EOS. In
other cases, we mask out EOS.

This is sufficient to enforce 1 and mostly enforce
2. It is technically possible for the model to only
partly generate a known word, or generate some of
its wordpeices out-of-order, but models rarely do
so in practice because the output would usually be
nonsense.

For 3, we mask out tokens that would start a new
word if the word that has just been generated is
known to be incorrect. This ensures the model can
still generate the wordpieces ‘run’, ‘er’ even if it
has already generated ‘run’ as an incorrect guess.
This will sometimes mask out all high-probability
continuation (e.g., it is unlikely there will be high-
probability wordpieces that do not start a new word
after generating the word pieces for ‘runners’ if
‘runners’ was an incorrect guess), which can force
the model to enter very low-probability generations.
To handle this we use a reasonably large number of
beams (20), so other beams can be used when this
occurs.

Empirically, we find >99.7% of guess gener-
ations from game states in the OOD dev set for
TGUESSER follow these three constraints.

G Training Details

We train our models with Adafactor (Shazeer and
Stern, 2018) with fixed learning rates of 5e-5 for
TGUESSER and 3e-4 for TDRAWER. TGUESSER

is trained for one epoch as specified in Section 3.2
and TDRAWER is trained for two epochs.

BART Guesser and Drawer are trained with
Adam (Kingma and Ba, 2015) with a linearly de-
creasing learning rates. We train the Guesser for 2
epochs with a learning rate 1e-4, and the Drawer
for 3 epochs with a learning rate of 3e-5. Both
models linearly warmup the learning from zero for
10% of the training steps.

In all cases, we use a batch size of 32. The
scale of the OOV boosting was chosen between
0 and 4.0 with increments of 0.5 on the OOD dev
set, we use 0.0 for the TGUESSER-IND, 3.5 for
BART-Guesser, and 2.0 in all other cases. For
generation, we use size 20 beam search with the
AllenNLP (Gardner et al., 2017) implementation.

H Table of Human/AI Results

In this section, we show Human/AI results in tabu-
lar form, as well as the performance of these mod-
els when the number of guesses or drawings is
unlimited, and our results from the IND human/AI
experiment.

Table 1 shows results for the Guessers, and Ta-
ble 2 shows results for the Drawers from Figure 4.
The AI players show more improvement if allowed
to make more than 20 guesses or 4 drawings than
human players, but as stated that is primarily be-
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cause humans players almost always time-out be-
fore reaching that point.

Table 3 shows results for the Guessers, and Ta-
ble 4 shows results for the Drawers on our IND

phrases. Note that human performance for these
tables is derived from data in the IND test and dev
sets, which used different annotators than the OOD

games and our other human/AI experiments, and is
therefore not directly comparable. Nevertheless, it
is clear TGUESSER outperforms humans on these
phrases with a win rate close to 100%, showing that
the primary challenge for the Guesser is handling
unseen words. TGUESSER-IND does slightly bet-
ter, which is not surprising since it was optimized
for IND performance.

TDRAWER is only slightly behind humans on
the IND phrases, and the Transformer drawer is
comparable to humans. The performance improve-
ment is most likely due to the fact models can
memorize drawing strategies for different words
on the training data, and recompose them for new
phrases that reuse those words. It is likely the
Transformer Drawer is better able to do this be-
cause it was trained on the training data for longer,
and the data augmentation strategy in appendix I.3
further guided it towards this approach.

I Transformer Models

In the section, we describe our Transformer base-
lines, which use GloVe (Pennington et al., 2014)
word embeddings but are otherwise trained from
scratch on our training data. Both models use a
data augmentation strategy that leverages an icon
to word mapping derived from the training data.
Both models use 300-dimensional embeddings and
128-dimensional hidden layers, and all hyperpa-
rameters were tuned on the IND dev set.

I.1 Drawer

The Transformer Drawer works by encoding the
game state and then decoding a drawing in a similar
format to TDRAWER. For this model, the last two
drawings are converted into the same special tokens
used as the output for TDRAWER, which are then
embedded with learned embeddings. The game
phrase, and the previous guess made by the Guesser
if there is one, are also embedded with GloVe word-
vectors (Pennington et al., 2014). These elements
are concatenated as a sequence and encoded using
learned positional embeddings and a 3-layer trans-
former (Vaswani et al., 2017). The decoder is an-

other transformer that cross-attends to the encoded
input while generating the output drawing. The
network is optimized with Adam, using a learning
rate of 10−3 for 30 epochs.

Unlike TDRAWER, the icon ordering for the in-
put and target output is determined by the word-to-
icon mapping described in Section I.3, in particular,
icons are ordered in the order of the words they cor-
respond to, and then in the order in which they
were drawn. As a result, we are not able to show
a comparable perplexity number to TDRAWER in
Table 5.

I.2 Guesser

The Transformer Guesser is also a conditional gen-
eration model. The current drawing, and previous
drawing if it exists, are embedded as a sequence us-
ing the same quantized format as before. A single
transformer then encodes these drawings.

The decoder is a transformer that cross attends
to the encoded drawings. We also allow the self-
attention layer to attend to future slots in the game
phrase, which are filled with the embeddings of
the previous guess (or underscores and stopwords
if no such guess exists) if those slots occur after
the token currently being generated. We use a two-
layer multi-layer perceptron with 256 hidden states
and ReLU activations to predict the output word.

We again constrain the model to make sure it gen-
erates the right number of words, and any known
words, during beam search, and select the high-
est probability beam that did not produce a word
known to be incorrect from previous guesses as out-
put. This model was trained using Adam (Kingma
and Ba, 2015) with a learning rate of 10−3 for ten
epochs, and then with a learning rate for 10−5 for
an additional five epochs.

I.3 Data Augmentation

We use data augmentation to boost the performance
of both these models (this method did not benefit
TGUESSER or TDRAWER). First, we derive an
icon-to-word mapping from the training data using
icon/word co-occurrences by learning icon/word
embeddings that are similar for drawings and game
phrases found in our data, but dissimilar for draw-
ings paired with random game phrases. Then, for
each game, we match icons in drawings for that
game to the words in the game phrase that best
align with those icons. Finally, we build a pseudo-
example by removing some words or constituents
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Guesser n 5 10 15 20 ∞
Win Soft∗ Win Soft∗ Win Soft∗ Win Soft∗ Win Soft∗

Elite Human Players 888 39.19 48.99 60.92 67.79 66.22 71.40 67.45 71.85 67.57 71.85
Human Players 3930 28.80 39.95 47.84 56.51 52.72 60.03 53.84 60.64 54.15 60.71
TGuesser 299 38.13 43.14 53.18 57.53 61.87 64.88 62.88 65.55 66.56 68.90
TGuesser IND 300 23.33 29.00 42.00 46.00 50.67 54.33 54.00 57.33 60.67 63.33

Table 1: Guesser performance from Figure 4, left, in tabular form. The top column headers show the number of
guesses made, the final column shows performance with an unlimited number of guesses, and the second column
shows the number of games we have in each category. One game from TGUESSER was removed because a Drawer
timed-out without creating a Drawing.

Drawer n 1 2 3 4 ∞
Win Soft∗ Win Soft∗ Win Soft∗ Win Soft∗ Win Soft∗

Elite Human Players 939 30.99 39.94 55.91 63.58 61.66 67.63 62.73 68.16 62.73 68.16
Human Players 3930 28.65 38.70 48.58 56.49 53.18 60.15 54.05 60.64 54.05 60.74
TDrawer 300 19.67 24.67 32.33 36.67 37.67 41.67 41.67 45.67 45.00 48.33
Transformer 300 12.33 15.33 21.33 25.33 28.00 31.33 31.00 34.33 35.00 38.33

Table 2: Drawer performance from Figure 4, right, in tabular form.

Guesser n 5 10 15 20 ∞
Win Soft Win Soft Win Soft Win Soft Win Soft

Human Players 9825 51.60 81.41 72.10 88.71 75.58 89.37 75.94 89.38 75.94 89.38
TGuesser 298 83.22 98.32 93.62 98.99 95.64 98.99 95.97 98.99 95.97 98.99
TGuesser-IND 300 88.00 98.67 95.33 99.33 97.67 99.67 97.67 99.67 97.67 99.67

Table 3: Guesser performance when playing with humans on IND test phrases.

Drawer n 1 2 3 4 ∞
Win Soft Win Soft Win Soft∗ Win Soft Win Soft

Human Players 9825 51.58 80.64 71.62 88.41 75.48 89.33 75.90 89.33 75.90 89.33
TDrawer 300 39.67 75.33 59.33 88.67 66.00 88.67 68.33 88.67 69.00 88.67
Transformer 299 45.15 74.92 62.88 87.63 68.56 89.97 71.91 91.97 73.24 91.97

Table 4: Drawer performance when playing with humans on IND test phrases.
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from the game phrase and removing the correspond-
ing icons from the drawings. These examples are
used as additional training data and are intended
to help the models internalize the icon to word
co-occurrences that occur in the training data.
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Intermediate Drawing Final DrawingFirst Drawing

Rounds of Gameplay

fainting on the floor

sleeping on the floor

person on the floor
slipping on the floor

hurt on the floor

scared on the floor
surprised on the floor

fainting on the floor

spill on the floor
faint on the floor

astronaut walking in space

astronaut walking in space

astronaut riding a treadmill
astronaut on space walk

astronaut twirling in space

astronaut floating in space
astronaut circling in space astronaut exercising in space

woman reading a diploma in the office

woman reading a diploma in the office

woman reading a medal in the office
woman reading a degree in the office

woman using a monitor sees the letter

woman eyeing a letter on the desktop
woman looking a paper with the desk

woman reading a manual in the office

woman reading a page in the office
woman reading a book in the office

Figure 1: TDRAWER qualitative results. Examples of gameplay between human guessers and TDRAWER. Snap-
shots show the progression (left to right) of three games. Guesses in each round are shown beneath the drawing
for that round and are color-coded (cyan=correctly, magenta=incorrectly guessed word). The first game shows
TDRAWER focused on conveying the word ’fainting’, a concept not encountered during training. Its first attempt
is a literal representing of the phrase, but a subsequent drawing uses a frightened face to convey a possible cause
of fainting. The second game shows TDRAWER attempting to draw the unseen word ’astronaut’ by using a space
shuttle and a ringed planet, which the guesser immediately recognizes. In the final game TDRAWER must commu-
nicate ’reading a diploma in an office’ without having seen the difficult concept of ’diploma’ during training. The
words ‘fainting’, ’astronaut’ and ‘diploma’ do not appear in the training data for TDRAWER.
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sand castle floating on the beach

castle standing alone on the beach
coast guard station on the beach

sand castle crumbling on the beach

sand castle construction on the beach

sand castle built on the beach
sand castle constructed on the beach sand castle crumbling on the beach

shouting at a listener from a stage

shouting at a man at a table
shouting at a student in a classroom

shouting at a moderator during a debate

shouting at a candidate during a debate

shouting at a host during a debate
shouting at a participant during a debate shouting at a moderator during a debate

Intermediate Drawing Final DrawingFirst Drawing

Rounds of Gameplay

airplane turning in the air

airplane landing on the runway
airplane flaying over the city

airplane circling at the airport

airplane twisting at the airport

airplane flipping at the airport
airplane tipping at the airport

airplane circling at the airport

airplane looping at the airport
airplane turned at the airport

Figure 2: TGUESSER qualitative results. Examples of gameplay between TGUESSER and human drawers. Snap-
shots show the progression (left to right) of three games. Guesses in each round are shown beneath the drawing for
that round and are color-coded (cyan=correctly, magenta=incorrectly guessed word). In the first game TGUESSER
quickly gets the action of ’shouting’ and the setting of a ’debate’, but struggles with the unseen concept of ’mod-
erator’ until the human drawer adds a television to their scene. In the second game, the initial drawing is able to
convey everything except the unseen verb ’crumbling’. The human drawer is able to use clouds of smoke and a
trash can, symbols commonly used for demolition, to get it across. In the last game, the system is unable to guess
the unseen verb ’circling’ until the human drawer emphasizes the circle icon with an arrow. The words ‘moderator’,
’crumbling’ and ‘circling’ do not appear in the training data for TGUESSER.
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Figure 3: Iconary Training Dataset characteristics. a, Word cloud showing the 500 most frequent words appear-
ing in Iconary phrases, sized by the square root of their relative frequency. b, Cloud of icons available to Iconary
players, sized by the square root of their relative frequency. The distributions of words and icons have long tails
that contain a rich diversity of concepts. This sparsity forces models to learn concepts and icon usage from a
small number of examples. c, Player activity within training set games quantified by the number of guesses and
icon placements made by players. A nontrivial number of actions on the part of both players are required for a
successful game. d, Breakdown of games by the number of complete rounds of drawing and guessing completed.
Nearly half of all games require at least one round of feedback from the drawer, and a significant fraction require
multiple rounds.
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male child counting magnets on the floor

counting beverages

motorcycle honking at a car

car swerving on a race track nun walking through the crowd putting floss on a shelf

person roasting a potato in an oven airplane skidding on a runway

person painting the doorway

dreaming in a bed people sitting in a dormitory librarian helping a student

woman juggling charcoal dog resting in a cornfield piloting a plane over the ocean

Figure 4: The first drawing for some human-human Iconary games. These phrases belong to the OOD dev set. The
word in red represents the OOV word, not observed in the training set.
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Figure 5: Our UI for playing Iconary. Top shows the Guesser for their first turn of guessing, where they see
previous guesses made in the left chatbox, color-coded by whether those guesses were incorrect, correct, or close
(judged by word vector similarity). Above that, they see the game time and to the left, the drawing created by the
Drawer. At the bottom, the Guesser can enter new guesses by filling in blanks for each word in the phrase. Bottom
shows the Drawer on the second turn of drawing. The left panel shows the guesses made by the Guesser and the
middle shows the drawing as before. When it is their turn, the Drawer can click on icons to move, resize, rotate,
duplicate, delete or reflect them. The Drawer can search for icons using text search in the right panel.
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Figure 6: Our UI for authoring Iconary phrases based on the Imsitu corpus.


