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Abstract

We introduce EfficientCL, a memory-efficient
continual pretraining method that applies con-
trastive learning with novel data augmentation
and curriculum learning. For data augmen-
tation, we stack two types of operation se-
quentially: cutoff and PCA jittering. While
pretraining steps proceed, we apply curricu-
lum learning by incrementing the augmenta-
tion degree for each difficulty step. After data
augmentation, we apply contrastive learning
on projected embeddings of original and aug-
mented examples. When fine-tuned on GLUE
benchmark, our model outperforms baseline
models, especially for sentence-level tasks.
Additionally, this improvement is achieved
with only 70% of computational memory com-
pared to the baseline model. 1

1 Introduction

Many state-of-the-art language models involve the
paradigm of unsupervised pretraining followed by
fine-tuning on downstream tasks (Devlin et al.,
2019; Liu et al., 2019; Brown et al., 2020). How-
ever, pretraining a language model from scratch
with a huge corpus has high computational costs.
One way to cut down the cost is to use continual
training of a pretrained model which could improve
the language model with less computation (Giorgi
et al., 2021).

Contrastive learning is effective for self-
supervised learning for image classification (Chen
et al., 2020b,c), and it works by allowing the model
to put similar examples close and different exam-
ples far from one another. Often in contrastive
learning, data augmentation is used to make the
positive pairs. Recent papers describe how to apply
contrastive learning to the language domain (Meng
et al., 2021; Gunel et al., 2020; Qu et al., 2020; Wu
et al., 2020), and even a combination of contrastive

1Our code is publicly available at https://github.
com/vano1205/EfficientCL

learning with continual pretraining (Giorgi et al.,
2021). However, because of the sequential nature
of language, it is difficult to apply data augmenta-
tion methods used in images directly to language
modeling.

Additionally, curriculum learning is a powerful
training technique for deep networks (Hacohen and
Weinshall, 2019; Cai et al., 2018). By training
easy to hard examples in order, it facilitates faster
convergence, leading to better performance. Other
studies show that it is also effective for language
modeling (Xu et al., 2020; Wei et al., 2021; Press
et al., 2021; Li et al., 2021).

We propose an efficient yet powerful continual
pretraining method using contrastive learning and
curriculum learning. The contribution of this paper
is as follows:

• We suggest a novel data augmentation method
for contrastive learning: first cutoff, then PCA
jittering. This leads to robustness to sentence-
level noise, resulting in a better sentence-level
representation.

• We apply curriculum learning by increasing
the noise degree of augmentation for each
level of difficulty. This leads to faster con-
vergence at the pretraining stage.

• In addition to outperforming baseline models
on the GLUE benchmark, our model is mem-
ory efficient and applicable to a wider range
of corpora.

2 Method

The overall learning process of EfficientCL is illus-
trated in Figure 1.

2.1 Sampling Anchor from Text

We modify the method from Giorgi et al. (2021)
which samples anchors and positive instances. For
each document from the pretraining corpus, a se-
quence of 512 tokens is randomly sampled, re-
ferred to as an anchor. The anchor goes through

https://github.com/vano1205/EfficientCL
https://github.com/vano1205/EfficientCL
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Figure 1: For continual pretraining, we sample a fixed-length sequence from each document and obtain the anchor
embedding. We obtain the positive embedding from the augmentation embedder with cutoff and PCA jittering.
While training, we increase the augmentation degree for every difficulty step. From projected anchor and positive
embedding, we apply contrastive learning to maximize agreement.

the RoBERTa encoder to get the embedding of the
anchor sequence.

2.2 Data Augmentation

We introduce two data augmentation methods, cut-
off and PCA jittering. These methods were inspired
by SimCLR (Chen et al., 2020b), which showed
that random cropping followed by color jittering
is effective for contrastive learning among various
augmentation combinations. Likewise, our method
applies cutoff first, then PCA jittering. We apply
on one of the inner layers of RoBERTa model ran-
domly sampled from {7,9,12} layers. These layers
contain the most of syntactic and semantic infor-
mation (Chen et al., 2020a).

Cutoff Augmentation Cropping-based data aug-
mentation is simple but effective for natural lan-
guage understanding (Meng et al., 2021; Shen et al.,
2020). Among various methods introduced in Shen
et al. (2020), we use the most robust span cutoff
method. Previous span cutoff method makes a con-
tinuous portion of sequences with a specific ratio
to zero on the embedding layer. On the other hand,
we apply this operation to the hidden states of an
inner layer of RoBERTa.

PCA jittering Augmentation Our method is
similar to the widely-used color jittering method
in Krizhevsky et al. (2012) for computer vision
domain, but we apply the operation on the hid-
den states. If the original hidden state is h =
[h0, h1, ..., hd], hidden state after PCA jittering
would be h = [h0 + δ, h1 + δ, ..., hd + δ] where
δ = [p1, p2, ..., pd][αλ1, αλ2, ..., αλd]

T , α ∼
N(0, σ2), d is the dimension of hidden states, pi
and λi are the ith eigenvector and eigenvalue re-
spectively.

2.3 Simple Curriculum Learning Method
We apply curriculum learning during the data aug-
mentation process by increasing the noise level for
each difficulty step, which is cropping ratio for
cutoff and standard deviation of the noise hyper-
parameter for PCA jittering method. As the noise
level gets larger, the augmented positive would
be more dissimilar from the anchor, resulting in a
harder example for contrastive learning. For both
augmentation methods, the noise level is initially
set as 0.01 and incremented until 0.1. 2

We introduce and compare two curriculum learn-
ing methods: Discrete and Continuous. First, the
discrete curriculum learning divides the pretraining
step into ten steps and increases the augmentation
level for each step. Second, the continuous cur-
riculum learning increases the augmentation level
continuously for every iteration of training, starting
from 0.01 until 0.1.

2.4 Contrastive Learning Framework
For each positive and anchor sequence embed-
ding denoted as ei, the projected embedding is
obtained by zi = g(ei) = W (2)ψ(W (1)ei) where
W (1),W (2) are trainable weights and ψ is a ReLU
non-linearity (Chen et al., 2020b). From the pro-
jected anchor and the projected positive, we apply
contrastive learning. For a minibatch of size N ,
there is an anchor and a positive instance for each
document, resulting in 2N instances in total. The
contrastive loss for a positive pair {z2i−1, z2i} is

Lcontrastive =

N∑
i=1

l(2i− 1, 2i) + l(2i, 2i− 1)

l(i, j) = −log exp(sim(zi, zj)/τ)∑2N
k=1 1[i 6=k]exp(sim(zi, zk)/τ)

2The rationale is explained in Appendix A.2.
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Model CoLA MNLI MRPC QNLI QQP RTE SST STSB Avg.

Roberta-base 59.38 87.76 90.07 92.44 89.44 76.90 94.15 90.55 85.09
DeCLUTR 59.60 87.75 89.63 92.70 89.58 75.63 94.04 90.48 84.93
EfficientCL 59.05 87.80 90.68 92.81 89.51 77.62 94.61 90.61 85.34

Table 1: Evaluation result on GLUE development set. All performance is median of five runs with random seeds
except RTE, which reports median of ten runs. The evaluation metric for each task is as follows: Matthews
correlation for CoLA, average of Pearson and Spearman correlation for STS, average of accuracy and F1 for
MRPC and QQP, and accuracy for other tasks.

sim(zi, zj) = zTi zj/(‖zi‖ ‖zj‖)

where τ refers to the temperature hyperparameter.
Our training process is applied continuously on

the pretrained RoBERTa model. To prevent catas-
trophic forgetting of token-level MLM objective
(Chronopoulou et al., 2019), we add the loss from
the MLM objective to the contrastive objective,

Ltotal = LMLM + Lcontrastive.

3 Experiments

3.1 Pretraining and Finetuning

The dataset used for pretraining is OpenWebText
corpus containing 495,243 documents with a mini-
mum token length of 2048, which is the same set-
ting as the DeCLUTR model (Giorgi et al., 2021).
We use a NVIDIA Tesla V100 GPU for pretraining,
which takes 19.7 hours for training. For finetuning
evaluation, we use the development set in GLUE
benchmark. For small datasets (CoLA, STSB,
MRPC, RTE), the model is finetuned for 10 epochs,
and for the rest (MNLI, QQP, SST, QNLI), it is
trained for 3 epochs. We report median values over
5 random initializations for all tasks except RTE.
For RTE, we report median values of 10 runs due
to the high variance of the performance.

3.2 Baselines

We compare our model with the pretrained
RoBERTa-base to check the effectiveness of
our continual pretraining method. We observe
whether our contrastive objective complements the
MLM objective by improving the performance of
sentence-level tasks. We also compare with the
DeCLUTR model (Giorgi et al., 2021) which is
continually pretrained from RoBERTa-base with
contrastive learning. It samples adjacent positive
sequences given an anchor instead of applying data
augmentation or curriculum learning. 3

3Additional variants of baseline models are shown in Ap-
pendix A.1.

4 Results

4.1 Overall Results
We compare the performance of our model with
two baseline models, and the results are shown in
Table 1. Overall, our model performs better than
the baseline models, especially for small datasets
such as MRPC and RTE. For sentence-level tasks
(all except CoLA), our model performs better than
RoBERTa-base and better than DeCLUTR except
QQP. Since our pretraining method makes the
model robust to sentence-level noise, it captures
better representations of sentences. For the CoLA
dataset, our model performs poorly because it is
trained to be robust from small to big noises sequen-
tially. The linguistic acceptability task is sensitive
to noise, meaning that small changes in a sentence
could lead to a different label. Our method hardly
differentiates when the change is small, leading to
wrong predictions.

4.2 Ablation Study
We conduct ablation studies on the GLUE develop-
ment set, and the results are shown in Table 2.

Data Augmentation Method To observe the im-
pact of each augmentation method on the perfor-
mance, we conduct experiments with only one of
the two methods. For all tasks except QQP, each
method underperforms the combination of both.
This is consistent with Chen et al. (2020b) which
suggests that a composition of multiple augmenta-
tions is effective. Because each of the augmenta-
tions is relatively simple, applying only one method
leads to a small degree of augmentation. This dis-
turbs effective learning because the benefit of hard
positive in contrastive learning is neglected.

We highlight the novelty of our augmentation
method by comparing with Wei et al. (2021) which
uses the popular EDA augmentation method. Our
method is different from Wei et al. (2021) in that
curriculum learning and data augmentation are ap-
plied at the continual pretraining stage, not at the
finetuning stage. The augmentation level is from
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Curriculum Cutoff PCA EDA CoLA MNLI MRPC QNLI QQP RTE SST STSB Avg.

Discrete X 58.04 87.69 90.07 92.60 89.54 76.90 94.27 90.42 84.94
Discrete X 59.07 87.56 89.89 92.62 89.44 76.17 94.15 90.48 84.92
Discrete X 58.04 87.72 90.27 92.66 89.49 76.71 93.92 90.49 84.91
No Curr X X 60.33 87.70 90.27 92.51 89.51 76.17 94.04 90.51 85.13

Continuous X X 58.82 87.71 90.27 92.60 89.57 76.35 94.27 90.45 85.01
Discrete X X 59.05 87.80 90.68 92.81 89.51 77.62 94.61 90.61 85.34

Table 2: Ablation studies on GLUE dev set. The first three rows show the results of different data augmentation.
The fourth and fifth test the impact of curriculum learning. The last setting is the best, using both cutoff and PCA
jittering and discrete curriculum learning.

0 to 0.5 with 6 discrete steps, the same as the pa-
per. The results show that EDA underperforms our
method for all tasks, and although EDA is a simple
data augmentation approach, it does not perform
well in the continual pretraining setting.

Curriculum Learning Method We set three dif-
ferent experiment settings to see how curriculum
learning influences performance. The first setting
is No Curr, which randomly selects one ratio out
of ten ranging from 0.01 to 0.1 with 0.01 interval
for every iteration. The second and third settings
are Continuous and Discrete explained in 2.3. For
all tasks except for QQP, the discrete setting per-
forms best. Continuous method goes over simple
examples too fast, leading to confusion rather than
fast convergence (Hacohen and Weinshall, 2019).

Looking at the effect of curriculum learning, it is
effective for most of the tasks, especially for QNLI
and SST. It facilitates faster convergence to the pre-
training objective as shown in Figure 2, leading
to better performance on downstream tasks. Sur-
prisingly, the method without curriculum learning
results in the highest performance on CoLA. Due
to catastrophic forgetting suggested in (Xu et al.,
2020), EffectiveCL is likely to be robust to larger
noise at the end of training. Therefore, because ran-
dom shuffling can better differentiate small noise,
it is suitable for noise-sensitive tasks.

Figure 2: Average batch training loss of first 3,000
steps with and without curriculum learning.

4.3 Efficiency and Applicability
Another advantage of EfficientCL is its memory
efficiency. We compare with DeCLUTR model
since both train with continual pretraining. Fig-
ure 3 shows that with 70% of memory, our model
performs better on GLUE. By applying data aug-
mentation on the anchor for contrastive learning in-
stead of sampling neighboring positives, our model
needs only one anchor to sample, leading to re-
duced computational costs but better performance.

Additionally, for our model, pretraining is possi-
ble with documents having more than 512 tokens.
This is significant for applicability since DeCLUTR
needs at least 2048 tokens for each document to
sample the anchors and the positive spans. From
the OpenWebText corpus, documents with more
than 512 tokens result in 4,126,936 documents,
more than 8 times compared to the current setting.
Although we used the same pretraining data as
DeCLUTR for fair comparison, using more docu-
ments would lead to better performance.

Figure 3: Efficiency of our model compared with De-
CLUTR.

5 Conclusion

In this paper, we propose EfficientCL, a pretrained
model with efficient contrastive learning method
utilizing data augmentation and curriculum learn-
ing. Our data augmentation process is divided into
cutoff and PCA jittering. Rather than using one,
combining two augmentation methods significantly
boosts the performance. Additionally, by incre-
menting the augmentation level for each difficulty
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step, the model achieves faster convergence, result-
ing in better performance on sentence-level tasks.
Our method is also memory efficient and applicable
for a wide range of corpora at pretraining stage.
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Model Roberta Continual Roberta EfficentCL

CoLA 59.38 59.07 59.05
MNLI 87.76 87.65 87.80
MRPC 90.07 90.14 90.68
QNLI 92.44 92.60 92.81
QQP 89.44 89.47 89.51
RTE 76.90 76.90 77.62
SST 94.15 93.92 94.61
STSB 90.55 90.45 90.61

Avg. 85.09 85.03 85.34

Table 3: Evaluation result on GLUE development set.
All performance is median of five runs with random
seeds.

A Appendix

A.1 Variants of Baseline Models

Continually Pretrained RoBERTa-Base
For a fair comparison of pretrained RoBERTa-

base, we also continually pretrain this baseline
on OpenWebText. All the settings such as sam-
pling procedure and batch size are the same as
EfficientCL except that none of data augmentation,
curriculum learning, or contrastive learning is used.
Only a naive MLM objective is used for continual
pretraining. Table 3 shows that EfficientCL outper-
forms continually pretrained RoBERTa for all tasks
except for CoLA, which shows comparable results.
For many tasks (CoLA, MNLI, SST, STSB), contin-
ually pretrained RoBERTa even underperforms pre-
trained RoBERTa. This shows that straightforward
continual pretraining is ineffective because training
hyperparameters such as learning rate scheduling
are completely changed from the pretraining stage.
In contrast, our EfficientCL shows robust perfor-
mance, although the training objective has changed
for continual pretraining setting.

Naive Curriculum Learning Method
Many traditional ways of applying curriculum

learning on natural language use sentence length,
word rarity, or additional teacher model to evaluate
the difficulty for each sentence (Xu et al., 2020).
However, these naive methods are infeasible at the
continual learning stage. First of all, using mul-
tiple teacher models is memory inefficient since
many language models are needed. Also, sorting
sentences in respect to sentence length or word rar-
ity is a huge overhead when the corpus is large.
Compared to these naive methods, our curriculum
learning, which augments the noise level of data
augmentation for contrastive learning, is efficient.

A.2 Hyperparameter Settings
Number of Anchor
Different from DeCLUTR (Giorgi et al., 2021),

we sample one anchor per document instead of two.
Multiple anchors improve the performance by hard
negative mining because hard negative mining is
effective for contrastive learning (Kalantidis et al.,
2020; Robinson et al., 2020). Sampling multiple
anchors from the same document would lead to
mining negatives that are similar, resulting in a
harder task for the model to learn. However, we
empirically found out that the number of epoch
for the model to converge at pretraining stage is
insufficient when training with 2 anchors with data
augmentation. This is a tradeoff between training
efficiency and model performance. We expect that
more training epochs with multiple anchors per
document would lead to better performance.

Data Augmentation Ratio
For cutoff method, Shen et al. (2020) shows that

there exists a sweet point for good performance of
span cutoff, which is cropping ratio from 0 to 0.1.
For PCA jittering method, the original paper set
the standard deviation as 0.1. We found out that
this value is also appropriate for large dimensions
of hidden states.

Curriculum Learning Step
Xu et al. (2020) suggests that the difficulty step

of 10 is appropriate for curriculum learning in nat-
ural language domain.

Experiments
For continual pretraining setting, we apply con-

trastive learning with a minibatch size of 4 and a
temperature of τ = 0.05. The model is trained for 1
epoch using AdamW optimizer with a learning rate
5e-05 and 0.1 weight decay. Slanted triangular LR
scheduler is used for the scheduler, and gradients
are scaled to 1.0 norm.

For finetuning evaluation setting, it is done with
a minibatch size of 16 and optimized using Adam
optimizer with learning rate of 1e-05. The num-
ber of epochs is set as 3 epochs for small datasets
(CoLA, STSB, MRPC, RTE) and 10 epochs for the
rest (MNLI, QQP, SST, QNLI). Zhang et al. (2021)
showed that conventional 3 epoch finetuning is sub-
optimal for small datasets due to instability. We
also empirically found out that training for longer
epochs significantly improves the performance for
small datasets.


