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Abstract

Representation learning for text via pretrain-
ing a language model on a large corpus has
become a standard starting point for building
NLP systems. This approach stands in contrast
to autoencoders, also trained on raw text, but
with the objective of learning to encode each
input as a vector that allows full reconstruction.
Autoencoders are attractive because of their
latent space structure and generative proper-
ties. We therefore explore the construction of a
sentence-level autoencoder from a pretrained,
frozen transformer language model. We adapt
the masked language modeling objective as a
generative, denoising one, while only training
a sentence bottleneck and a single-layer mod-
ified transformer decoder. We demonstrate
that the sentence representations discovered by
our model achieve better quality than previous
methods that extract representations from pre-
trained transformers on text similarity tasks,
style transfer (an example of controlled gener-
ation), and single-sentence classification tasks
in the GLUE benchmark, while using fewer pa-
rameters than large pretrained models.!

1 Introduction

Recent research has focused on devising new unsu-
pervised pretraining methods from unlabeled data
that involves some form of language modeling, pri-
marily autoregressive (Peters et al., 2018; Radford
etal., 2019), masked (Devlin et al., 2019; Liu et al.,
2019; Conneau et al., 2020) and generalized (Rad-
ford et al., 2019; Brown et al., 2020; Song et al.,
2019), with much success on downstream tasks.
Under the hood, most of these methods use trans-
formers (Vaswani et al., 2017) for encoding text se-
quences, which allows them to learn powerful con-
textual word representations that have been used
widely for building models in NLP. However, this
does not hold for sentence representations derived

'Our code is available at: https://github.com/
ivanmontero/autobot

from pretrained transformer language models based
on a special token or basic pooling operations. To
this end, representation learning methods have been
designed to better capture semantic information
from pretrained transformer language models, e.g.,
using Siamese networks trained with a triplet loss
(Reimers and Gurevych, 2019) or transforming the
desired sentence distribution to a Gaussian distri-
bution through normalizing flows (Li et al., 2020).

Existing sentence representations directly de-
rived from pretrained language models or learned
by specialized methods cannot guarantee perfect
reconstruction of the input, a property that can en-
hance the structure of their semantic space and en-
able their use for controlled generation tasks. For
the latter, a few recent studies have looked into
ways to steer generation of pretrained language
models towards a particular style (Dathathri et al.,
2020; Krause et al., 2021), although they require
following the gradient during the sampling process
and rely on style text classifiers which might not
be always available. The latent space of a text au-
toencoder allows one to perform controlled text
generation by directly manipulating sentence repre-
sentations using basic numerical operations (Shen
et al., 2020a). Yet, how to convert pretrained trans-
former language models to autoencoders with such
properties still remains unexplored.

To fill in this gap, we introduce AUTOBOT, a
new autoencoder model for learning sentence “bot-
tleneck” (i.e., fixed-size) representations from pre-
trained transformers that is useful for similarity,
generation, and classification, displayed in Fig-
ure 1. Our model has two unique components:
(i) a transformation that uses dot product attention
to dynamically pool semantic information from the
pretrained model’s hidden states into a sentence
bottleneck representation, and (ii) a shallow trans-
former decoder that is modified to operate based on
the bottleneck representation. Instead of training
our autoencoder from scratch, we directly finetune
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it using an input reconstruction objective on the
unlabeled data on which the original pretrained
transformer was trained. We keep the underlying
pretrained transformer encoder fixed, which makes
it more efficient than training from scratch and
proves beneficial even if we compare to pretrained
transformers trained for an equal number of steps.

Our evaluation on representative sentence simi-
larity, classification, and generation tasks demon-
strates that the resulting sentence representations
are compact, better capture semantic similarity at
the sentence-level than strong sentence representa-
tion methods (Reimers and Gurevych, 2019), and
can be used for controlled generation tasks. Lastly,
our model performs almost on par with the large
RoBERTa model (Liu et al., 2019) even though it
only introduces 1.6% additional parameters relative
to the base ROBERTa model.

2 Model: AUTOBOT

Taking inspiration from recent research on text
autoencoders (Bowman et al., 2016b; Shen et al.,
2020b; Mai et al., 2020), we extend standard au-
toregressive text autoencoders, which have been
predominantly based on recurrent networks, to a
transformer-based architecture and integrate them
with pretrained language models; here we focus on
RoBERTa (Liu et al., 2019).

Autoencoders generally follow the encoder-
decoder model structure to reconstruct their input
with the constraint that the encoder produces a sin-
gle, fixed-length hidden representation enc(x) = z:

AE(x) = dec(enc(z)) = ' (1)

Here, we focus on denoising autoencoders that aim
to reconstruct a perturbed version of the input (Vin-
cent et al., 2010; Shen et al., 2020b), which is com-
patible with many of the pretrained language mod-
els that are based on masked language modeling.
In our experiments, we use the same masking pro-
cedure as Devlin et al. (2019) to perturb the input.

2.1 Encoder

Standard approaches use encoders that reduce the
input to a single representation z. To use a pre-
trained transformer for this purpose we need to
reduce its output hidden representations H after
processing the input to a single vector. Since us-
ing the special token representation or basic pool-
ing methods have been shown sub-optimal in prior
work (Reimers and Gurevych, 2019), here we opt

Pretrained
transformer

H = .
£ enc |- @Z dec X

Figure 1: Our autoencoder consists of a pretrained
transformer encoder enc, a function 8 that compresses
the encoder’s final representations H of size T x d to
a sentence bottleneck representation z of size d, and a
transformer decoder dec that is trained to fully recon-
struct the training sentence .

to keep the original encoder fixed and train a trans-
formation § that will learn to compress H into a
single representation z = 3(H; #), with 6 being an
additional set of parameters to be learned during
finetuning. We choose [ to be a multi-head atten-
tion mechanism that takes as input the keys K and
values V corresponding to the final representations
H from the pretrained model and a query vector q
corresponding to a context vector u that we choose
to be the CLS vector from the pretrained model:

B(H;0) = MultiHead(q, K, V) ()

where the parameters to be learned, ¢, include the
weights that are used to transform the query, keys,
and values which amount to 3d? with d being the
dimensionality of each head (d = 64 in our experi-
ments).

2.2 Decoder

The cross-attention layer in the Transformer de-
coder architecture by Vaswani et al. (2017) expects
hidden representations for every token input from
the encoder in order for each output candidate to
attend to each input token. In the situation where
only a single representation comes from the en-
coder, we have

Attention(Q, z' Wk, zTWV) =z Wy (3)

Note that the queries QQ, which come from the pre-
vious masked self-attention layer, are not taken into
account, and each step in the decoder will receive
the exact same z' W as a result. In order to miti-
gate this, we propose a gating method inspired by
Hochreiter and Schmidhuber (1997). Concretely,
let Q¢ be the tth query representation. Then, the tth
output o; of the cross-attention layer is computed
as follows

g =0(GQ; +G'z); oy =g 0z Wy (4)
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where o (+) is the sigmoid activation function and
G and G’ are the parameters of the transformation
for the gate. One can view the role of the gate as
determining the amount of per-element information
from the linear transformation of the latent repre-
sentation to keep for the current layer and timestep.
Preliminary experiments found this method benefi-
cial for generation.

Training considerations To avoid training our
model from scratch, we finetune it for 100K opti-
mization steps on a pretraining dataset using the
base RoOBERTa model (Liu et al., 2019) on the
encoder side and a single layer decoder side for
efficiency purposes (Kasai et al., 2021). The model
is trained using an input reconstruction loss by min-
imizing the negative log-likelihood computed over
the reconstructed inputs. Note that only the param-
eters of the sentence bottleneck and the decoder are
learned; the encoder parameters are kept fixed.

3 Experiments

To assess the quality of the sentence representa-
tions learned by our model we evaluate on sentence
similarity (Section 3.2), classification (Section 3.3),
and generation tasks (Section 3.4).

3.1 Settings

Datasets Since the RoOBERTa dataset is not pub-
licly available, we use for pretraining the exact
same dataset as BERT (Devlin et al., 2019), which
is composed of BooksCorpus (Zhu et al., 2015)
and English Wikipedia. For sentence similarity, we
use the Natural Language Inference (NLI) dataset
(Bowman et al., 2015) for finetuning and evaluate
on the Semantic Textual Similarity (STS) dataset
(Cer et al., 2017), following Conneau et al. (2017).
For classification, we use mainly single-sentence
datasets from the GLUE benchmark (Wang et al.,
2018), namely Stanford Sentiment Treebank (SST)
and Corpus of Linguistic Acceptability (CoLA)
datasets, but we also report the average perfor-
mance on the remaining datasets. For generation,
we use the Yelp reviews dataset (Shen et al., 2017).

Baselines For sentence similarity, we compare to
SBERT which is a competitive method for deriv-
ing informative sentence representations from pre-
trained language models (Reimers and Gurevych,
2019). They obtain sentence representations by us-
ing simple pooling methods over BERT represen-
tations such as mean and max (instead of the CLS

token representation) then finetuning the whole pre-
trained model using Siamese networks on a com-
bination of natural language inference data. To
compare with them on sentence similarity, we in-
corporate our model within their framework and
follow their settings and training/evaluation proto-
col (details in Appendix A.2).

For sentence classification, we compare our
model to ROBERTa-base and RoBERTa-large mod-
els (Liu et al., 2019). Note that BART (Lewis et al.,
2019) achieves similar results to ROBERTa, so a
similar comparison can be made.

For sentence generation tasks, we compare to a
strong and efficient style transfer method by Shen
et al. (2020b), which is a recurrent network-based
denoising text autoencoder on in domain data. The
style transfer is achieved through vector arithmetic,
namely computing a “sentiment vector” v by tak-
ing the vector difference between 100 negative and
positive sentences, then evaluating by taking an
input sentence, encoding it, adding a multiple of
the sentiment vector to the sentence representation,
then decoding the resulting representation. In addi-
tion to the denoising auto encoder (DAE) of Shen
et al. (2020b), we include more sophisticated meth-
ods for style transfer that are more computationally
expensive such as fast gradient iterative modifica-
tion (FGIM) of Wang et al. (2019) and Emb2Emb
of Mai et al. (2020) for reference.

3.2 Sentence Similarity

The results on the sentence similarity task are dis-
played in Table 1. Due to resource constraints
and unreported results by prior work, we report
our model only with RoBERTa-base. We can ob-
serve that AUTOBOT applied to RoOBERTa-base
significantly outperforms other supervised base
transformer methods. Additionally, AUTOBOT ap-
proaches the performance of large transformers
while having a minimal parameter overhead of
1.6%.

We also find that AUTOBOT without any super-
vision (AUTOBOT-base unsup.) outperforms all of
the unsupervised methods, and most notably im-
proves upon average BERT embeddings by 26.1%.
This demonstrates that our approach is effective in
both supervised and unsupervised settings.

We find in Table 2 that using the proposed sen-
tence bottleneck based on learned context provides
noticeable gains over using simpler pooling meth-
ods from prior work. We suspect this is due to the
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Model Spearman | Parameters Model ‘ SST ‘ CoLA ‘ Others (avg)
Unsupervised RoBERTa-base 94.8 63.6 88.7
Ave. GloVe embeddings 53.02 j AUTOBOT-base | 95.0 | 66.0 88.7
Avg. BERT embeddings 46.35 - RoBERTa-large | 96.4 68.0 91.1
AUTOBOT-base unsup. 58.49 - AUTOBOT-large | 96.9 70.2 91.1
Supervised . . .

Table 3: Single-sentence GLUE classification dev. re-
InferSent - GloVe 68.03 - sults. Median accuracy is reported over over three
Universal Sentence Encoder 74.92 - random seeds. Our model improves performance on
RoBERTa-base 75.37 125M single-sentence classification tasks over both base and
SROBERTa-base 76.89 125M large RoOBERTa models while maintaining their perfor-
AUTOBOT-base (ours) 78.59 127M mance on the remaining multi-sentence tasks.
RoBERTa-large 80.16 355M

Table 1: On semantic textual similarity (STS), AU-
TOBOT outperforms previous sentence representation
methods and reaches a score similar to RoOBERTa-large
while having fewer parameters. We report Spearman’s
rank correlation on the test set and the model sizes are
reported in terms of trained parameter size.

Pooling | Spearman

MEAN 80.78
MAX 78.76
CLS 79.67
B (ours) 81.88

Table 2: Performance of sentence representations from
RoBERTa trained with different pooling methods on
NLI data and then evaluated on STS benchmark’s de-
velopment set in terms of Spearman’s rank correlation.

additional flexibility provided by our bottleneck
acting as “weighted pooling” by attending over all
tokens to compute the final representation, as op-
posed to equal contribution of all tokens regardless
of the input.

3.3 Sentence Classification

The results on single-sentence classification tasks
and other tasks from the GLUE benchmark are
displayed in Table 3. We find that AUTOBOT pro-
vides a noticable performance increase on single-
sentence tasks, specifically on the CoLA datasets
when using both the RoOBERTa-base and RoBERTa-
large models. Additionally, we also find that AU-
TOBOT, when fed both sentences concatenated for
dual sentence GLUE tasks, maintains the original
performance of the underlying pretrained encoder.

Hence, our model improves the quality of the
sentence representations from pretrained trans-
former models without hurting their performance.

3.4 Sentence Generation

For sentence generation, we focus on the senti-
ment transfer task proposed by Shen et al. (2020b)
both with and without further training on in-domain
data from Yelp. When finetuning, we perform an
additional 10K optimization steps using the Yelp
dataset. Note that all the baselines require train-
ing on in-domain data, while this is optional for
our model. In Figure 2 we find that the AUTO-
BOT model not exposed to the Yelp dataset during
finetuning performed on par with the DAE that
was trained specifically on Yelp. Additionally, AU-
TOBOT outperforms the DAE in the above-40 per-
cent accuracy range when finetuned on in-domain
data. We include AUTOBOT results with partial fine-
tuning of the encoder in the appendix, which we
find considerably improves the Self-BLEU metric.
Since AUTOBOT uses vector arithmetic, infer-
ence is as fast as the DAE and over twice that of
other methods.

100

90 ~N
80 o
70 A
60 -

50 o

Accuracy

40
=@~ AUTOBOT-base (no Yelp finetuning)
301 AUTOBOT-base

== = Shen et al. (2019)

20 { =#e= Wang et al. (2019)

@O Vaietal. (2020)

0 5 10 15 20 25 30 35 40 45
BLEU

10

Figure 2: Automatic evaluations of vector arithmetic
for sentiment transfer, plotted as accuracy vs. self-
BLEU. Accuracy (ACC) is measured by a sentiment
classifier, and values for varying multiples of the senti-
ment vector are plotted. Upper right is better.
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4 Related Work

Reconstructing text with autoencoders is an ac-
tive area of research that has lead to several ad-
vancements such as denoising (Vincent et al.,
2010), variational (Kingma and Welling, 2014;
Higgins et al., 2017; Dai and Wipf, 2019), adver-
sarial (Makhzani et al., 2016; Zhao et al., 2018),
and regularized (Ghosh et al., 2020) autoencoders.
They have been found especially useful in con-
trolled text generation (Hu et al., 2017; Logeswaran
et al., 2018; Bowman et al., 2016a), especially in
sentiment style transfer (Mai et al., 2020; Shen
etal., 2017).

The encoder-decoder structure for obtaining rep-
resentations has been used in pretraining (Lewis
et al., 2019), sentence infilling (Huang et al., 2020),
and multilingual (Artetxe and Schwenk, 2019) sce-
narios. In particular, Lewis et al. (2019) treat de-
noising as translation task to perform pretraining
from scratch, but their approach does not induce
a sentence representation space with generative
properties. In contrast, our method makes use of
a frozen pretrained transformer to learn a shallow,
sentence bottleneck autoencoder on top.

5 Conclusion

We proposed an approach that converts a pretrained
transformer language model into a sentence-level
autoencoder that is able to reconstruct its pretrain-
ing data. The resulting model improves the perfor-
mance of the pretrained model on sentence-level
tasks while maintaining its performance on multi-
sentence tasks. In addition, the new sentence repre-
sentations are suitable for efficient conditional text
generation such as sentiment transfer without the
need for training on in-domain data.
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A Reproducibility

A.1 Experimental Setup

Computing Infrastructure For all of our experi-
ments involving base models, we use a computation
cluster with 5 NVIDIA RTX 2080 TI GPU, 11GB
GPU memory, and 128GB RAM. For large models,
we use a computation cluster with 4 NVIDIA TI-
TAN RTX GPUs, 24GB GPU memory and 256GB
RAM.

Implementation We will make our implementa-
tion available on Github.> We used Python 3.7, Py-
Torch 1.6.0, and Sentence Transformers 0.3.7. We
use modified versions of Fairseq 0.9.0 and Trans-
formers 3.3.1. We obtain our datasets from the
citations specified in the main paper.

AUTOBOT Training We extract the sentences
from the BooksCorpus and English Wikipedia
datasets to recreate the BERT dataset, and use
RoBERTa-base’s pretrained tokenizer for tokeniza-
tion. We report our hyperparameters for AUTO-
BOT-base in Table 4. Our decoder only has one
single layer, and RoBERTa-base remains fixed dur-
ing finetuning.

MODEL PARAMETERS VALUE

Fixed Parameters

Transformer Encoder RoBERTa-base

Transformer Encoder Fixed True
Warmup Steps 4000
Dropout 0.1
Optimizer Adam
Learning Rate Schedule Linear Decay
Max Sequence Length 128

Max Tokens 24576
Bottleneck Heads 12

Hidden Size 768

Decoder Layers 1

Tuned Parameters

Num Steps
Learning Rate

{1k, 10k, 100k}
{le-3, le-4, le-5}

Optimal Parameters

Num Steps 100k
Learning Rate le—3
Extra Info

Model Size (# params) 127TM

Table 4: Hyperparamters for AUTOBOT-base

https://github.com/ivanmontero/
autobot

A.2 Sentence Representations

We use the Sentence Transformers framework for
training and evaluation of AUTOBOT. We use the
default settings in their framework to train on NLI,
and evaluate using the Spearman correlation of the
cosine similarity. During NLI finetuning, we only
use the encoder and bottlneck, with the bottleneck
representation used as the sentence representation,
and allow for all parameters to be finetuned.

A.3 Sentence Generation

We use a modified version of Fairseq’s generation
code for encoder-decoder models to perform vec-
tor arithmetic for sentiment transfer. We follow
the instructions of Mai et al. (2020) to finetune
a sentiment classifier using DistilBERT from the
Huggingface transformers library.

For the AUTOBOT models finetuned to the Yelp
dataset, we follow the exact same steps as Ap-
pendix A.1 except beginning with the AUTOBOT-
base model, using the Yelp training set, and per-
forming 10k optimization steps.

A.4 Sentence Classification

We use the Huggingface library to perform sen-
tence classification using AUTOBOT. During fine-
tuning, we only use the encoder and bottleneck,
with the bottleneck representation used as a CLS
representation, and allow for all parameters to be
finetuned. We perform a hyperparameter search
similar to that of RoOBERTa by comparing develop-
ment performances when using {1e-5, 2e-5, 3e-5}
for the learning rate.

B Additional Results

We provide additional results in addition to our
experiments below.

B.1 Autoencoding Steps

We perform an ablation study on the effect of au-
toencoding finetuning steps of the underlying pre-
trained encoder during autoencoding on the down-
stream sentence representation performance. We
provide the detailed performances of performing
Table 4 when using a learning rate of le-3 in Ta-
ble 5.

B.2 Finetunable Encoder Layers

We perform an ablation study on the effect of fine-
tuning the underlying pretrained encoder during
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Training Steps \ Spearman

1 74.38
1k 75.45
10k 78.01
100k 78.59
baseline | 77.03

Table 5: AUTOBOT pretraining steps vs. sentence repre-
sentation performance when training on NLI and eval-
vating on STS

autoencoding on downstream sentence represen-
tation performance. We provide the detailed per-
formances of performing Table 4 with the optimal
parameters, but varying how many of the last lay-
ers of ROBERTa-base to finetune. Results are in
Table 6

Finetunable Layers | Spearman

None 78.59
1 77.24
2 76.17
3 76.20
baseline | 71.03

Table 6: AUTOBOT finetunable layers vs. sentence
representation performance when training on NLI and
evaluating on STS

B.3 Finetunable Encoder Generation

We provide an appended generation table from Sec-
tion 3.4 to include the generation results we ob-
tained by allowing the top three layers of ROBERTa-
base to be finetuned during autoencoding on the
style generation task. The results are shown in Fig-
ure 3. The same model as used in Appendix B.2 is
used.

B.4 Style Transfer Results

We provide Table 7 that reports results on the Yelp
sentiment transfer test set from the generation table
in Section 3.4, appending to the table (Mai et al.,
2020). We outline the relative time differences dur-
ing inference. We can observe that our model not
only provides competitive speed-quality tradeoff.

B.5 Detailed Sentence Classification Results

Section 3.3 provides a summary of the GLUE re-
sults, while outlining the specific single-sentence
classification performances. We provide the results
for each task in Table 8
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Figure 3: Automatic evaluations of vector arithmetic

for sentiment transfer, plotted as accuracy vs. self-

BLEU. Accuracy is measured by a sentiment classifier,

and values for varying multiples of the sentiment vector

are plotted. Upper right is better.

Model | Acc. | BLEU | +Time
FGIM 949 10.8] 70.0x
Mai et al. 2020 + FGIM | 93.1 |  18.1 | 2820.0
Mai et al. 2020 87.1| 22.1| 1.0x
Shen et al. (2019) 968 65| 0.5x
AUTOBOT-base (ours) ‘ 95.6 ‘ 11.90 ‘ 0.5x

Table 7: Self BLEU on the Yelp sentiment transfer test
set with highest transfer accuracy (“Acc.”). “+Time”
reports the inference-time slowdown factor due to each
method’s additional computation relative to the method
by Mai et al. (2020).
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MNLI OQNLI QQP RTE SST MRPC CoLA STS

RoBERTa-base 87.6 928 919 787 948 90.2 63.6 91.2
AUTOBOT-base  88.0 927 919 795 950 884 66.0 914

RoBERTa-large 90.2 947 922 86.6 964 909 68.0 924
AUTOBOT-large  90.5 946 922 87.6 969 89.0 70.2 924

Table 8: Deyv. results on GLUE. For RTE, STS and MRPC we finetune starting from the MNLI model instead of
the baseline pretrained model.
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