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Abstract

Meta-learning has achieved great success in
leveraging the historical learned knowledge
to facilitate the learning process of the new
task. However, merely learning the knowl-
edge from the historical tasks, adopted by cur-
rent meta-learning algorithms, may not gener-
alize well to testing tasks when they are not
well-supported by training tasks. This paper
studies a low-resource text classification prob-
lem and bridges the gap between meta-training
and meta-testing tasks by leveraging the exter-
nal knowledge bases. Specifically, we propose
KGML to introduce additional representation
for each sentence learned from the extracted
sentence-specific knowledge graph. The exten-
sive experiments on three datasets demonstrate
the effectiveness of KGML under both super-
vised adaptation and unsupervised adaptation
settings.

1 Introduction

Learning-to-learn (or meta-learning) (Bengio et al.,
1990; Schmidhuber, 1992; Hochreiter et al., 2001;
Vinyals et al., 2016; Finn et al., 2017) has recently
emerged as a successful technique for training mod-
els on large collections of low-resource tasks. In
the natural language domain, it has been used to
improve machine translation (Gu et al., 2018), se-
mantic parsing (Sun et al., 2020), text classification
(Bao et al., 2019; Geng et al., 2020, 2019; Li et al.,
2020), sequence labelling (Li et al., 2021), text
generation (Guo et al., 2020), knowledge graph
reasoning (Wang et al., 2019), among many other
applications in low-resource settings.

Meta-learning has been shown to dominate self-
supervised pretraining techniques such as masked
language modeling (Devlin et al., 2018) when the
training tasks are representative enough of the tasks
encountered at test time (Bansal et al., 2019, 2020).
However, in practice, it requires access to a very
large number of training tasks (Al-Shedivat et al.,
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Figure 1: Illustration of extracting a sentence-specific
KG from a shared KB.

2021) and, especially in the natural language do-
main, mitigating discrepancy between training and
test tasks becomes non-trivial due to new concepts
or entities that can be present at test time only.

In this paper, we propose to leverage external
knowledge bases (KBs) in order to bridge the gap
between the training and test tasks and enable more
efficient meta-learning for low-resource text clas-
sification. Our key idea is based on computing
additional representations for each sentence by con-
structing and embedding sentence-specific knowl-
edge graphs (KGs) of entities extracted from a
knowledge base shared across all tasks (e.g., Fig. 1).
These representations are computed using a graph
neural network (GNN) which is meta-trained end-
to-end jointly with the text classification model.
Our approach is compatible with both supervised
and unsupervised adaptation of predictive models.

Related work. In modern meta-learning, there
are two broad categories of methods: (i) gradient-
based (Finn et al., 2017; Nichol and Schulman,
2018; Li et al., 2017; Zhang et al., 2020; Zint-
graf et al., 2019; Lee and Choi, 2018; Yao et al.,
2019, 2020) and (ii) metric-based (Vinyals et al.,
2016; Snell et al., 2017; Yang et al., 2018; Yoon
et al., 2019; Liu et al., 2019; Sung et al., 2018).
The first category of methods represents the “meta-
knowledge” (i.e., a transferable knowledge shared
across all tasks) in the form of an initialization of



1815

the base predictive model. Methods in the second
category represent meta-knowledge in the form of
a shared embedding function that allows to con-
struct accurate non-parametric predictors for each
task from just a few examples. Both classes of
methods have been applied to NLP tasks (e.g., Han
et al., 2018; Bansal et al., 2019; Gao et al., 2019),
however, methods that can systematically leverage
external knowledge sources typically available in
many practical settings are only starting to emerge
and focusing on limited applicable scopes (e.g.,
(Qu et al., 2020; Seo et al., 2020)).

Contributions.
1. We investigate a new meta-learning setting

where few-shot tasks are complemented with
access to a shared knowledge base (KB).

2. We develop a new method (KGML) that can
leverage an external KB and bridge the gap
between the training and test tasks.

3. Our empirical study on three text classification
datasets (Amazon Reviews, Huffpost, Twitter)
demonstrates the effectiveness of our approach.

2 Preliminaries

We consider the standard meta-learning setting,
where given a set of training tasks T1, . . . , Tn, we
would like to learn a good parameter initialization
θ? for a predictive model fθ such that it can be
quickly adapted to new tasks given only a limited
amount of data (i.e., few-shot regime). Each task
Ti has a support set of labeled or unlabeled sen-
tences Dsi = {Xs

i ,Y
s
i } = {(xsi,j ,ysi,j)}N

s

j=1 and a
query set, Dqi = {Xq

i ,Y
q
i } = {(x

q
i,j ,y

q
i,j)}N

q

j=1 of
labeled sentences.

In our text classification setup, we assume that
parameters θ are split into two subsets: (1) BERT
(Devlin et al., 2018) parameters θB shared across
tasks and (2) task-specific parameters θc that are
adapted for each task. Below, we discuss two adap-
tation strategies: supervised and unsupervised.

2.1 Supervised adaptation

Under supervised adaptation scenario, we incor-
porate knowledge with both gradient-based meta-
learning and metric-based meta-learning, which are
detailed as:
Gradient-based meta-learning. Following Finn
et al. (2017), the task-specific parameters θci for
each task Ti can be adapted by finetuning them
on the support set: θci = θc − α∇θcL(fθc,θB ;Dsi ),

where L is the cross-entropy loss. Then, using the
query set Dqi , we can evaluate the post-finetuning
model and optimize the model initialization as fol-
lows:

θc?, θ
B
? ← arg min

θc,θB

1

n

∑
i

L(fθci ,θB ;D
q
i ) (1)

At evaluation time, the initialization parameters θ?
are adapted to test tasks Tt by finetuning on the
corresponding support sets Dst .
Metric-based Meta-learning. Following (Snell
et al., 2017) Prototypical Network (ProtoNet), the
task-specific parameter θci is formulated as a lazy
classifier, which is built upon the prototypes cki =

1
|Dsi,k|

∑
j fθB (x

s
i,j;k). Here, Dsi,k represents the

subset of support sentences belonging to class k.
Then, for each sentence in the query set, the prob-
ability of assigning it to class k is calculated as:

p(yqi,j = k|xqi,j) =
exp(−d(fθB (x

q
i,j), c

k
i ))∑

k′ exp(−d(fθB (x
q
i,j), c

k′
i ))

,

(2)
where d is defined as a distance measure. During
the meta-training phase, ProtoNet learns a well-
generalized embedding function θB? . Then, the
meta-learned θB? is applied to the meta-testing
task, where each query sentence is assigned to
the nearest class with the highest probability (i.e.,
ŷqt,j = argmaxr p(y

q
t,j = r|xqt,j)).

2.2 Unsupervised adaptation

When labeled supports sets Dsi are not available,
we follow Zhang et al. (2020) and use ARM-CML.
For each task Ti, we use the shared BERT encoder
to compute a representation of each query sentence
xqi,j , which returns an embedding vector, denoted
fθB (x

q
i,j). Then, we compute the overall represen-

tation of the task by averaging these embedding
vectors, ci = 1

Nq

∑Nq

j=1 fθB (x
q
i,j). This task rep-

resentation is then used as an additional input to
the sentence classifier, which is trained end-to-end.
The meta-training process can be formally defined
as:

θB? , θ
c
? ← min

θB ,θc

1

n

∑
i

L
(
fθB ,θc ;D

q
i , ci

)
(3)

Note that to enable unsupervised adaptation, ARM-
CML learns to compute accurate task embeddings
ci from unlabeled data instead of using finetuning.
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Figure 2: KGML framework on (a) supervised and (b) unsupervised adaptation settings. AGG represents the
aggregator AGGkf for knowledge fusion.

3 Approach

In this section, we present the proposed KGML
framework (Fig. 2), which allows us to enhance
supervised and unsupevised adaptation methods de-
scribed in the previous section with external knowl-
edge extracted from a shared KB and. In the fol-
lowing subsections, we elaborate the key compo-
nents of KGML: (1) extraction and representation
of sentence-specific knowledge graphs (KGs) and
(2) knowledge fusion.

3.1 KG Extraction and Representation
For each sentence xi,j , we propose to extract a KG,
denoted Gi,j = {Ni,j , Ei,j}. The nodes Ni,j of
the graph correspond to entities in the correspond-
ing sentence xi,j and the edges Ei,j correspond to
relations between these entities. The relations be-
tween the entities are extracted from the KB shared
across all tasks. Notice that some entities are not
directly related to each other in the KB. To enhance
the density of graphs, we further “densify” the ex-
tracted KG with additional edges by constructing
a k-nearest neighbor graph (k-NNG) based on the
node embeddings. More details of KG construction
algorithm are provided in Appendix A.

To compute representations of the sentence-
specific KGs, we use graph neural networks (GNN)
(Kipf and Welling, 2016; Zonghan Wu, 2019). In
particular, we use GraphSAGE (Hamilton et al.,
2017) as the forward propagation algorithm, which
is formulated as follows:

hkv = σ
(
Wk

1 · hk−1v +Wk
2 · hkN (v)

)
s.t. hkN (v) = AGGk

({
hk−1u , ∀u ∈ N (v)

}) (4)

where Wk(∀k ∈ {1, ...,K}) are the weight matri-
ces of the GNN,N (v) represents neighborhood set
of node v and hku denotes the node representation
in the k-th convolutional layer (h0

v as the input fea-
ture). σ and AGGk are functions of non-linearity
and aggregator, respectively.

After passing each graph Gi,j into the graph neu-
ral network, we aggregate all node representations
{hKv | v ∈ Ni,j} and output the graph embedding
gi,j as the holistic representation of the knowledge
graph.

Algorithm 1 KGML for Supervised Adaptation

Require: Task distribution p(T ); Stepsize α, β;
Knowledge Base

1: Randomly initialize parameter θ0, φ
2: while not converge do
3: Sample tasks {Ti}|I|i=1

4: for all Ti do
5: Sample support set Ds

i and query set Dq
i

6: Learn the sentence embeddings fθB (x
s(q)
i,j )

7: Extract the knowledge graph Gs(q)i,j for
each sentence x

s(q)
i,j

8: For each graph, using GNN to learn the
graph embedding g

s(q)
i,j via Eqn. (3)

9: Fuse the sentence and graph embeddings
via Eqn. (4) and obtain {f̃θB (x

s(q)
i,j )}Ns(q)

j=1

10: Compute the task specific parameter θci
for MAML or compute the prototypes
{cki }Kk=1 for ProtoNet

11: Compute loss L(fθci ({f̃θB (xqi,j)}
Nq

j=1),Y
q
i )

12: end for
13: Update all parameters θc, θB , φ :=

argminθ0,θB ,φ
1
|I|

∑
i L(fθci ({f̃θB (xqi,j)}

Nq

j=1),Y
q
i )

14: end while

3.2 Knowledge Fusion

To bridge the distribution gap between meta-
training and meta-testing stages, we integrate the
information extracted from knowledge graph into
the meta-learning framework. Assume the sentence
representation is fθB (xi,j). For each sentence, we
are motivated to design another aggregator AGGkf

to aggregate the information captured from the
representation of sentence fθB (xi,j) and its cor-
responding knowledge graph representation gi,j .
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Specifically, the aggregator is formulated as:

f̃θB (xi,j) = AGGkf (fθB (xi,j),gi,j) (5)

There are various selections of aggregators (e.g.,
fully connected layers, recurrent neural network),
and we will detail the selection of aggregators in
the Appendix D. Then, we replace the sentence
representation fθB (xi,j) by f̃θB (xi,j) in the meta-
learning framework. We denote all parameters re-
lated to knowledge graph extraction and knowl-
edge fusion as φ. Notice that φ are globally shared
across all task in MAML since we are suppose to
connect the knowledge among them. In Alg. 1 and
Alg. 3 (Appendix B), we show the meta-learning
procedure of the proposed model under the settings
of supervised and unsupervised adaption, respec-
tively.

4 Experiments

In this section, we show the effectiveness of our
proposed KGML on three datasets and conduct
related analytic study.

4.1 Dataset Description
Under the supervised adaptation, we leverage two
text classification datasets. The first one is Amazon
Review (Ni et al., 2019), aiming to classify the cat-
egory of each review. The second one is a headline
category classification dataset – Huffpost (Misra,
2018), aiming to classify the headlines of News.
We apply the traditional N-way K-shot few-shot
learning setting (Finn et al., 2017) on these datasets
(N=5 in both Huffpost and Amazon Review).

As for the unsupervised adaptation, similar to the
settings in (Zhang et al., 2020), we use a federated
sentiment classification dataset – Twitter (Caldas
et al., 2018), to evaluate the performance of KGML.
Each tasks in Twitter represents the sentences of
one user. Detailed data descriptions are shown in
Appendix C.

4.2 Experimental Settings
For supervised adaptation, we compare KGML
on five recent meta-learning algorithms, includ-
ing MAML (Finn et al., 2017), ProtoNet (Snell
et al., 2017), Matching Network (Vinyals et al.,
2016) (MatchingNet), REGRAB (Qu et al., 2020),
Induction Network (InductNet) (Geng et al., 2019).
We conduct the experiments under 1-shot and 5-
shot settings and report the results of KGML with
gradient-based meta-learning (KGML-MAML)

and metric-based meta-learning (KGML-ProtoNet)
algorithms.

Under the unsupervised adaptation scenario,
KGML is compared with the following four base-
lines: empirical risk minimization (ERM), up-
weighting (UW), domain adversarial neural net-
work (DANN) (Ganin and Lempitsky, 2015), and
adaptive risk minimization (ARM) (Zhang et al.,
2020). Here, we report the performance with full
users and 60% users for meta-training.

On both scenarios, accuracy is used as the eval-
uation metric and all baselines use ALBERT (Lan
et al., 2019) as encoder. WordNet (Miller, 1995) is
used as the knowledge graph. All other hyperpa-
rameters are reported in Appendix D.

4.3 Overall Performance
The overall performance of all baselines and
KGML are reported in Table 1. The results in-
dicate that KGML achieves the best performance
in all scenarios by using knowledge bases to bridge
the gap between the meta-training and meta-testing
tasks. Additionally, under the supervised adapta-
tion scenario, the improvements of Amazon Re-
view are larger than that in Huffpost under the 1-
shot setting, indicating that the former has a larger
gap between meta-training and meta-testing tasks.
One potential reason is that the number of entities
of Amazon review is more than Huffpost head-
lines, resulting in more comprehensive knowledge
graphs. Another interesting finding is that ARM
hurts the performance under the unsupervised adap-
tation. However, with the help of the knowledge
graph, KGML achieves the best performance, cor-
roborating its effectiveness in learning more trans-
ferable representations and further enabling effi-
cient unsupervised adaptation.

4.4 Ablation Study
We conduct ablation studies to investigate the con-
tribution of each component in KGML. Two abla-
tion models are proposed: I. replacing the aggrega-
tor AGGkf with a simple feature concatenator; II.
removing extra edges in KG, which are introduced
by k-nearest neighbor graph. The performance of
each ablation model and the KGML of Amazon
and Huffpost are reported in Table 2. We observe
that (1) KGML outperforms model I, demonstrat-
ing the effectiveness of the designed aggregator;
(2) Comparing between KGML with model II, the
results show that KNN boosts performance. One
potential reason is that KNN densifies the whole
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Table 1: Performance for supervised and unsupervised adaptation methods. We report the averaged accuracy over
600 tasks (supervised adaptation)/all meta-testing users (unsupervised adaptation).

Supervised Adaptation Unsupervised Adaptation
Data Amazon Review Huffpost Data Twitter
Shot 1-shot 5-shot 1-shot 5-shot User Ratio 0.6 1.0

MAML 44.35% 56.94% 39.95% 51.74% ERM 62.91% 66.05%
ProtoNet 55.32% 73.30% 41.72% 57.53% UW 63.51% 64.13%
InductNet 45.35% 56.73% 41.35% 55.96% ARM 60.42% 60.42%

MatchingNet 51.16% 69.89% 41.18% 54.41% DRNN 63.02% 64.02%
REGRAB 55.07% 72.53% 42.17% 57.66% - - -

KGML-MAML 51.44% 58.81% 44.29% 54.16% KGML 64.92% 67.00%
KGML-ProtoNet 58.62% 74.55% 42.37% 58.75% - - -

network according to the entities’ semantic embed-
dings learned from the original WordNet, which
explicitly enriches the semantic information of the
neighbor set of each entity. It further benefits the
representation learning process and improves the
performance.

Table 2: Ablation study (1-shot scenario). Backbone:
base meta-learning algorithm

Ablations Backbone Amazon Huffpost

I. Remove AGGkf
MAML 45.68% 41.55%
ProtoNet 57.94% 41.71%

II. Remove KNN MAML 51.07% 41.20%
ProtoNet 57.80% 41.91%

KGML MAML 51.44% 44.29%
KGML ProtoNet 58.62% 42.37%

4.5 Robustness Analysis

In this subsection, we analyze the robustness of
KGML under different settings. Specifically, under
supervised adaptation, we change the number of
shots in Huffpost. Under unsupervised adaptation,
we reduce the number of training users in Twit-
ter. The performance are illustrated in Figure 3a
and Figure 3b, respectively (see the comparison
between Huffpost-ProtoNet and ProtoNet in Ap-
pendix E). From these figures, we observe that
KGML consistently improves the performance in
all settings, verifying its effectiveness to improve
the generalization ability.

4.6 Discussion of Computational Complexity

We further conduct the analysis of computational
complexity and reported the meta-training time per
task in Table 3, where the results of supervised
adaptation are performed under the setting of Huff-
post 5-shot. Though KGML increases the meta-
training time to some extent, the who training pro-
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38%

44%

50%
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cy
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KGML-MAML
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cu

ra
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KGML
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Figure 3: Robustness analysis. SOTA: best baseline

cess can be finished within 1-2 hours. Thus, the
additional computational cost seems to be a reason-
able trade-off for accuracy.

Table 3: Results of meta-training time per task.

Model Supervised (MAML) Unsupervised

w/o KG 0.297s 0.146s
with KG 0.407s 0.181s

5 Conclusion

In this paper, we investigated the problem of meta-
learning on low-resource text classification, and
propose a new method KGML. Specifically, by
learning the representation from extracted sentence-
specific knowledge graphs, KGML bridges the
gap between meta-training and meta-testing tasks,
which further improves the generalization ability
of meta-learning. KGML is compatible with super-
vised and unsupervised adaptation and the empiri-
cal experiments on three datasets demonstrate its
effectiveness over state-of-the-art methods.
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A Detailed Descriptions of
Sentence-specific KG Construction

To construct a holistic knowledge graph with all
the entities and relations, we first use the existing
knowledge graph (i.e., WordNet (Miller, 1995)) as
the sparse knowledge base Gbase. Some entities
may be the nodes with few interactions or even
isolated. Thus, to connect all entities, the node
embeddings in the knowledge base are then used
to construct a K-NN graph Gknn, which is further
combined with the base knowledge graph, render-
ing the dense knowledge graph G = Gknn ∪ Gbase.

For each sentence xi,j , we use its entities to
query the knowledge graph G, which returns the en-
tity embeddings Ni,j and a adjacency matrix Ai,j .
Each element in Ai,j represents the shortest dis-
tance of the corresponding entities. Inspired by Oc-
cam’s Razor criterion, we compute the Minimum
Spanning Tree (MST) (Wikipedia, 2021) w.r.t all
the target entities (other entities and relations in
the chosen path are included) as the concise and in-
formative graphical representation of the sentence.
In Alg. 2, we illustrate the whole process of the
knowledge graph.

B Pseudocodes of KGML

In this section, we add the pseudocode for unsuper-
vised adaptation in Alg. 3.
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Algorithm 2 Knowledge Graph Extraction

Require: Dense knowledge graph G
1: for each sentence xi,j do
2: Use the entities xi,j to query G and obtain

entity embeddings Ni,j and adjacency ma-
trix Ai,j

3: Apply MST algorithm on Ai,j , which re-
turns T, the minimum spanning tree w.r.t
the entities in xi,j .

4: Construct the knowledge graph Gi,j by in-
cluding the selected nodes and edges on the
path of T, i.e., Gi,j = {(r, s) | ∃(u, v) ∈
T, (r, s) ∈ ShortestPath(u, v)}.

5: end for

C Data Statistics

For supervised adaptation, we use Amazon Review
and Huffpost to evaluate the performance. Ama-
zon Review contains 28 classes, and the number
of classes for meta-training, meta-validation, and
meta-testing are 15, 5, 8, respectively. The Huff-
post dataset includes 41 classes in total, and we use
25, 6, 10 classes for meta-training, meta-validation,
and meta-testing, respectively. In terms of the unla-
beled adaptation, the number of Twitter users for
meta-training, meta-validation, and meta-testing
are 741, 92, 94, respectively.

D Hyperparameter Settings

For all the supervised adaptation and the unla-
beled adaption experiments, we use ALBERT (Lan
et al., 2019) as the sentence encoders and Graph-
SAGE (Hamilton et al., 2017) as the graph en-
coders. All hyperparameters are selected via the
performance on the validation set.

D.1 Supervised Adaptation

The GNN used contains two layers, where the num-
ber of neurons is 64 and 16, respectively. We adopt
two fully connected layers with ReLU as activation
layer for the adaptation layers, where the number
of neurons is 64 for each layer. The aggregator
AGGkf is designed as the one fully connected
layer. We set the inner-loop learning rate α and
outer-loop learning rate β as 0.01 and 2e-5, respec-
tively. The number of steps in the inner loop is set
as 5. We use Adam (Kingma and Ba, 2014) for
outer loop optimization. The maximum number of
epochs for huffpost and Amazon Review is 10,000
and 4,000, respectively.

Algorithm 3 KGML for Unsupervised Adaptation

Require: Task distribution p(T ); Stepsize β;
Knowledge Base

1: Randomly initialize parameter θ0, φ
2: while not converge do
3: Sample tasks {Ti}|I|i=1

4: for all Ti do
5: Sample query set Dq

i from the task Ti
6: Learn the sentence embeddings fθB (xqi,j)

7: Extract the knowledge graph Gqi,j
8: For each graph, using GNN to learn the

graph embedding gqi,j via Eqn. (3)
9: Fuse the sentence and graph embed-

dings and obtain the final embedding
{fθB (xqi,j)}

Ns
j=1

10: Calculate the contextual vector ci and
compute loss L(fθ0({fθB (xqi,j)}

Nq

j=1, ci),Y
q
i )

11: end for
12: Update all parameters θc, θB , φ :=

argmin 1
|I|

∑
i L(fθc({f̃θB (xqi,j)}

Nq

j=1, ci),Y
q
i )

13: end while

D.2 Unsupervised Adaptation
For the sentence encoder, the number of output
dimensions is set as 240. The GNN is composed
of two convolution layers, where each layer con-
tains 64 neurons, and AGGk is designed as a mean
pool operation. We use one fully connected layer
for the final aggregation AGGkf . In the training
phase, the learning rate is set β as 1e-4, and we
use Adam (Kingma and Ba, 2014) optimizer with
weight decay 1e-5. The contextual support size and
meta batch size are 50 and 2, respectively.

E Additional Results of Robustness
Analysis

In Figure 4, we show the comparison between
Huffpost-ProtoNet and ProtoNet w.r.t. the num-
ber of shots. The results further demonstrate the
effectiveness of KGML.
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Figure 4: Additional Robustness analysis.


