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Abstract

Real-world applications often require im-
proved models by leveraging a range of cheap
incidental supervision signals. These could in-
clude partial labels, noisy labels, knowledge-
based constraints, and cross-domain or cross-
task annotations — all having statistical asso-
ciations with gold annotations but not exactly
the same. However, we currently lack a prin-
cipled way to measure the benefits of these
signals to a given target task, and the com-
mon practice of evaluating these benefits is
through exhaustive experiments with various
models and hyperparameters. This paper stud-
ies whether we can, in a single framework,
quantify the benefits of various types of inci-
dental signals for a given target task without
going through combinatorial experiments. We
propose a unified PAC-Bayesian motivated in-
formativeness measure, PABI, that character-
izes the uncertainty reduction provided by in-
cidental supervision signals. We demonstrate
PABT’s effectiveness by quantifying the value
added by various types of incidental signals
to sequence tagging tasks. Experiments on
named entity recognition (NER) and question
answering (QA) show that PABI’s predictions
correlate well with learning performance, pro-
viding a promising way to determine, ahead of
learning, which supervision signals would be
beneficial.!

1 Introduction

The supervised learning paradigm, where direct
supervision signals are available in high-quality
and large amounts, has been struggling to fulfill
needs in many real-world Al applications. As a
result, researchers and practitioners often resort to
datasets that are not collected directly for the tar-
get task but capture some phenomena useful for it

*Part of this work was done while the author was at Allen
Institute for Al
'Our code is publicly available at https://github.
com/CogComp/PABRT.
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Figure 1: An example of NER with various inciden-
tal supervision signals: partial labels (some missing
labels in structured outputs), noisy labels (some incor-
rect labels), auxiliary labels (labels of another task, e.g.
named entity detection in the figure), and constraints in
structured learning (e.g. the BIO constraint where I-X
must follow B-X or I-X (Ramshaw and Marcus, 1999)
in the figure).

(Pan and Yang, 2009; Vapnik and Vashist, 2009;
Roth, 2017; Kolesnikov et al., 2019). Howeyver, it
remains unclear how to predict the benefits of these
incidental signals on our target task beforehand.
For example, given two incidental signals that are
relevant to the target task, it is still difficult for us
to predict which one is more beneficial. Therefore,
the common practice is often trial-and-error: per-
form experiments with different combinations of
datasets and learning protocols, often exhaustively,
to measure the impact on a target task (Liu et al.,
2019; Khashabi et al., 2020). Not only is this very
costly, but this trial-and-error approach can also be
hard to interpret: if we don’t see improvements, is
it because the incidental signals themselves are not
useful for our target task, or is it because the learn-
ing protocols we have tried are inappropriate?
The difficulties of foreseeing the benefits of vari-
ous incidental supervision signals, including partial
labels, noisy labels, constraints2, and cross-domain
signals, are two-fold. First, it is hard to provide
a unified measure because of the intrinsic differ-
ences among different signals (e.g., how do we

“Constraints are used to model dependencies among struc-
tured components in plenty of previous work such as CRF
(Lafferty et al., 2001) and ILP (Roth and Yih, 2004).
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Incidental Supervision Signals Unified Measure Support

Measures partial | noisy | constraints | auxiliary | cross-domain || cross-type | mixed-type || Theoretical | Empirical
CST’11,HH’12,LD’ 14 v X X X X X X v v
AL’88, NDRT’13, RVBS’17 X v X X X X X v v
VW’17, WNR’20 v v X X X X X v X
NHFR’19 v X v X X X X X v
B’17 X X X v X X X X v
GMSLBDS 20 X X X X v X X X v
PABI (ours) v v v v v v v v v

Table 1: Comparison between PABI and prior works: (1) Cross-type: PABI is a unified measure that can mea-
sure the benefit of different types of incidental signals (e.g., comparing a noisy dataset and a partially annotated
dataset). (2) Mixed-type: PABI can measure the benefit of mixed incidental signals (e.g., a dataset that is both
noisy and partially annotated). (3) PABI is derived from PAC-Bayesian theory but also easy to compute in prac-
tice; PABI is shown to have similar or better predicting capability of signals’ benefit (see Figs. 2 and 3 and
Sec. 4.1). Papers are denoted as: CST’11 (Cour et al., 2011), HH’12 (Hovy and Hovy, 2012), LD’ 14 (Liu and
Dietterich, 2014), AL’88 (Angluin and Laird, 1988), NDRT’13 (Natarajan et al., 2013), RVBS’17 (Rolnick et al.,
2017), VW’ 17 (Van Rooyen and Williamson, 2017), WNR’20 (Wang et al., 2020), NHFR’19 (Ning et al., 2019),
B’17 (Bjerva, 2017), GMSLBDS 20 (Gururangan et al., 2020).

predict and compare the benefit of learning from
partial data and the benefit of knowing some con-
straints on the target task?). Second, it is hard to
provide a practical measure supported by theory.
Previous attempts are either not practical (Baxter,
1998; Ben-David et al., 2010) or too heuristic (Gu-
rurangan et al., 2020), or apply to only one type of
signals, e.g., noisy labels (Natarajan et al., 2013;
Zhang et al., 2021). In this paper, we propose a
unified PAC-Bayesian motivated informativeness
measure (PABI) to quantify the value of incidental
signals for sequence tagging tasks. We suggest that
the informativeness of various incidental signals
can be uniformly characterized by the uncertainty
reduction they provide. Specifically, in the PAC-
Bayesian framework, the informativeness is based
on the Kullback-Leibler (KL) divergence between
the prior and the posterior, where incidental signals
are used to estimate a better prior (one that is closer
to the gold posterior) to achieve better generaliza-
tion performance. Furthermore, we provide a more
practical entropy-based approximation of PABI. In
practice, PABI first computes the entropy of the
prior estimated from incidental signals, and then
computes the relative decrease from the entropy of
the prior without any information (i.e. the uniform
prior) as the informativeness of incidental signals.

We have been in need of a unified informative-
ness measure like PABI. For instance, it might be
obvious that we can expect better learning perfor-
mance if the training data is less noisy and more
completely annotated, but what if we want to com-
pare the benefits of a noisy dataset to those of a
dataset that is only partially labeled? PABI enables
this kind of comparisons to be done analytically,

without the need for experiments on a wide range
of incidental signals such as partial labels, noisy
labels, constraints, auxiliary labels (labels of an-
other task), and cross-domain signals, for sequence
tagging tasks in NLP. A specific example of NER
is shown in Fig. 1, and the advantages of PABI
can be found in Table 1.

Finally, our experiments on two NLP tasks, NER
and QA, show that there is a strong positive corre-
lation between PABI and the relative improvement
for various incidental signals. This strong posi-
tive correlation indicates that the proposed unified,
theory-motivated measure PABI can serve as a
good indicator of the final learning performance,
providing a promising way to know which signals
are helpful for a target task beforehand.

2 Related Work

There are lots of practical measures proposed to
quantify the benefits of specific types of signals.
For example, a widely used measure for partial
signals in structured learning is the partial rate
(Cid-Sueiro, 2012; Cour et al., 2011; Hovy and
Hovy, 2012; Liu and Dietterich, 2014; Van Rooyen
and Williamson, 2017; Ning et al., 2019); a widely
used measure for noisy signals is the noise ratio
(Angluin and Laird, 1988; Natarajan et al., 2013;
Rolnick et al., 2017; Van Rooyen and Williamson,
2017); Ning et al. (2019) propose to use the con-
caveness of the mutual information with different
percentage of annotations to quantify the strength
of constraints in the structured learning; others,
in NLP, have quantified the contribution of con-
straints experimentally (Chang et al., 2008, 2012).
Bjerva (2017) proposes to use conditional entropy
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or mutual information to quantify the value for aux-
iliary signals. As for domain adaptation, domain
similarity can be measured by the performance
gap between domains (Wang et al., 2019) or mea-
sures based on the language model in NLP, such as
the vocabulary overlap (Gururangan et al., 2020).
Among them, the most relevant work is Bjerva
(2017). However, their conditional entropy or mu-
tual information is based on token-level label distri-
bution, which cannot be used for incidental signals
involving multiple tokens or inputs, such as con-
straints and cross-domain signals. At the same
time, for the cases where both PABI and mutual
information can handle, PABI works similar to
the mutual information as shown in Fig. 2, and
PABI can further be shown to be a strictly increas-
ing function of the mutual information. The key
advantage of our proposed measure PABI is that
PABI is a unified measure motivated by the PAC-
Bayesian theory for a broader range of incidental
signals compared to these practical measures for
specific types of incidental signals.

There also has been a line of theoretical work
that attempts to exploit incidental supervision sig-
nals. Among them, the most relevant part is task
relatedness. Ben-David and Borbely (2008) define
task relatedness based on the richness of transfor-
mations between inputs for different tasks, but their
analysis is limited to cases where data is from the
same classification problem but the inputs are in
different subspace. Juba (2006) proposes to use the
joint Kolmogorov complexity (Wallace and Dowe,
1999) to characterize relatedness, but it is still un-
clear how to compute the joint Kolmogorov com-
plexity in real-world applications. Mahmud and
Ray (2008) further propose to use conditional Kol-
mogorov complexity to measure the task related-
ness and provide empirical analysis for decision
trees, but it is unclear how to use their related-
ness for other models, such as deep neural net-
works. Thrun and O’Sullivan (1998) propose to
cluster tasks based on the similarity between the
task-optimal distance metric of k-nearest neighbors
(KNN), but their analysis is based on KNN and
it is unclear how to use their relatedness for other
models. A lot of other works provide quite good
qualitative analysis to show various incidental sig-
nals are helpful but they did not provide quantita-
tive analysis to quantify to what extent these types
of incidental signals can help (Abu-Mostafa, 1993;
Baxter, 1998; Ben-David et al., 2010; Balcan and

Blum, 2010; Natarajan et al., 2013; London et al.,
2016; Van Rooyen and Williamson, 2017; Ciliberto
et al., 2019; Wang et al., 2020). Compared to these
theoretical analyses, PABI can be easily used in
practice to quantify the benefits of a broader range
of incidental signals.

3 PABI: A Unified PAC-Bayesian
Informativeness Measure

We start with notations and preliminaries. Let X’
be the input space, ) be the label space, and 5) be
the prediction space. Let D denote the underlying
distribution on X x Y. Let £ : Y x ) — R be the
loss function that we use to evaluate learning algo-
rithms. A set of training samples S = {z;,y; }7*,
is generated i.i.d. from D. In the common su-
pervised learning setting, we usually assume the
concept that generates data comes from the concept
class C. In this paper, we assume C is finite, and its
size is | C |, which is common in sequence tagging
tasks because of finite vocabulary and label set. We
want to choose a predictor ¢ : X — Y from C
such that it generalizes well to unseen data with
respect to ¢, measured by the generalization error
Rp(c) = Exy~p[l(y,c(x))]. The training error
over Sis Rg(c) = L 31 U(y;, c(;)).

More generally, instead of predicting a con-
cept, we can specify a distribution over the con-
cept class. Let P denote the space of probability
distributions over C. General Bayesian learning
algorithms (Zhang, 2006) in the PAC-Bayesian
framework (McAllester, 1999a,b; Seeger, 2002;
McAllester, 2003b,a; Maurer, 2004; Guedj and
Shawe-Taylor, 2019) aim to choose a posterior
my € P over the concept class C based on a
prior 19 € P and training data S, where A is
a hyper parameter that controls the tradeoff be-
tween the prior and the data likelihood. In this
setting, the training error and the generalization
error need to be generalized, to take the distribu-
tion into account, as Lg(my) = E.wr, [Rs(c)] and
Lp(my) = Ecr, [Rp(c)] respectively. When the
posterior is one-hot (exactly one entry of the dis-
tribution is 1), we have the original definitions of
training error and generalization error, as in the
PAC framework (Valiant, 1984).

We are now ready to derive the proposed in-
formativeness measure PABI motivated by PAC-
Bayes. The generalization error bound in the PAC-
Bayesian framework (Catoni, 2007; Guedj and
Shawe-Taylor, 2019) says that with probability
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1 — 0 over S, the following bound holds
Lp(my+) < Lp(7™)

. \/8B(DKL(7r*|7ro) + In 200mC))

m

)

where 7+ is the posterior distribution with the op-
2m(Dg (¥ ||mo)+1n %)

timal \* = 5 , ™ € Pisthe
gold posterior that generates the data, D 1. (7*|| 7o)
denotes the KL divergence from 7y to 7*, B and
C are two constants. This is based on the Theorem
2 in Guedj and Shawe-Taylor (2019).

As shown in the generalization bound, the gener-
alization error is bounded by the KL divergence
Dk (m*||mg) from the prior distribution to the
gold posterior distribution. Therefore, we propose
to utilize incidental signals to improve the prior
distribution from mq to g So that it is closer to the
gold posterior distribution 7*. Correspondingly,
we can define PABI, the informativeness measure
for incidental supervision signals, by measuring
the improvement with regard to the gold posterior,
in the KL divergence sense.

Definition 3.1 (PABI). Suppose we use incidental
signals to improve the prior distribution from mg
to 7g. The informativeness measure for incidental
signals, PABI, is defined as

S(o, 7o) 2 \/1 Dl

Drcr(m*||mo)

Remark. Note that S(T('o, ﬁ'o) = 0if mg = mg,
while if 79 = 7, then S(mp, 7p) = 1. This result
is consistent with our intuition that the closer 7
is to ¥, the more benefits we can gain from inci-
dental signals. The square root function is used
in PABI for two reasons: first, the generalization
bounds in both PAC-Bayesian and PAC (see Appx.
A.1) frameworks have the square root function; sec-
ond, in our later experiments, we find that square
root function can significantly improve the Pearson
correlation between the relative performance im-
provement and PABI. It is worthwhile to note that
the square root is not crucial for our framework,
because our goal is to compare the benefits among
different incidental supervision signals, where the
relative values are expressive enough. In this sense,
any strictly increasing function in [0, 1] over the
current formulation would be acceptable.

We focus on the setting that the gold posterior
7* 1s one-hot, which means 7* concentrates on the

true concept ¢* € C, though the definition of PABI
can handle general gold posterior. However, 7* is
unknown in practice, which makes Eq. (1) hard
to be computed in reality. In the following, we
provide an approximation S of PABL.

Definition 3.2 (Approximation of PABI). Assume
that the original prior 7y is uniform, and the gold
posterior ™ is one-hot concentrated on the true
concept c* in C, as we have assumed that C is finite.
Let H(-) be the entropy function. The approxima-
tion S of PABI is defined as

In|C|

S(Wo,ﬁo) é \/1 - ZE?S; = \/1
2

The uniform prior 7 is usually used when we
do not have information about the prior on which
concept in the class that generates data. The intu-
ition behind S is that, it measures how much en-
tropy incidental signals reduce, compared with non-
informative prior . S can be computed through
data and thus is practical. To see how this approxi-
mation works, first note Dy 1, (7*||mp) = In | C | be-
cause 7* is one-hot and 7 is uniform over the finite
concept class C. Let 7. be the one-hot distribution
concentrated on concept ¢ for each ¢ € C. The ap-
proximation is that we estimate 7* by ., where ¢
follows 7~T01 DKL(ﬂ'*Hﬁ'o) ~ EcwfroDKL(TrcHﬁ'O),
and E.z, D (7||70) = H (7). Therefore,

H (7o)

=

A~

S(mo, 7o) = 4/ 1 (7o)

" In|C|

_ i Ecvzo Dic (|| 7o)
In|C|

-~ \/1 _ Dgp(m*|[70)

Dy (7*||m0)

S(T['U,ﬁ'o).

As shown in Appx. A.1l, the approximation
of PABI and PABI are equivalent in the non-
probabilistic cases with the finite concept class,
indicating the quality of this approximation. Some
analysis on the extensions and general limitations
of PABI can be found in Appx. A.2 and A.3.

4 Examples for PABI

In this section, we show some examples of se-
quence tagging tasks’ in NLP for PABI. We

Given an input x € X = V" generated from a dis-
tribution D, the task aims to get the corresponding label
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Notations Descriptions

D target domain with gold signals
D source domain with incidental signals

c(x) gold system on gold signals

é(x) perfect system on incidental signals

é(x) silver system trained on incidental signals
n difference between the perfect system and the gold system in the target domain
m difference between the silver system and the perfect system in the source domain
7 difference between the silver system and the perfect system in the target domain
72 difference between the silver system and the gold system in the target domain

Table 2: Summary of core notations in the estimation process for transductive signals.

consider two types of incidental signals, signals
with a different conditional probability distribution
(P(y | x)) from gold signals (e.g., noisy signals),
and signals with the same task as gold signals but
a different marginal distribution of x (P(x)) from
gold signals (e.g., cross-domain signals). Similar
to the categorization of transfer learning (Pan and
Yang, 2009), they are denoted as inductive signals
and transductive signals respectively. In our follow-
ing analysis, we study the tasks with finite concept
class which is common in sequence tagging tasks.
For simplicity, we focus on simple cases where
the number of incidental signals is large enough.
How different factors (including base model perfor-
mance, size of incidental signals, data distributions,
algorithms, and cost-sensitive losses) affect PABI
are discussed in Appx. A.4. We derive the PABI
for partial labels in detail and the derivations for
others are similar. More examples and details can
be found in Appx. A.5.

4.1 Examples with Inductive signals

Partial labels. The labels for each example in
sequence tagging tasks is a sequence and some of
them are unknown in this case. Assuming that the
ratio of the unknown labels in data is 77, € [0, 1] ,
the size of the reduced concept class will be |C| =
| £ |MVI"  Therefore, S(mg, 7o) = S(m0, 7o) =

1- 11rrll||g|| - \/1 - nrlzrwhg‘if\l'cﬁl = VI=p.
It is consistent with the widely used partial rate
because it is a monotonically decreasing function
of the partial rate (Cid-Sueiro, 2012).

Noisy labels. For each token, P(y|y) is de-
termined by the noisy rate 7, € [0,1], ie.
Ply = g) = 1 — n, and the probability
of other labels are all ‘277”_1 We can get
the corresponding probability distribution of la-

y € 37 = Y = L", where V is the vocabulary of input
words, L is the label set for the task, and n is the length of the
input sentence.

bels over the tokens in all inputs (7p over
the concept class). In this way, S(m, 7o) =

1 _ (LD Inn,—(=n) =) 14 ig
In| L]

consistent with the widely used noise rate (Natara-
jan et al., 2013) because it is a monotonically de-
creasing function of the noisy rate. In practice,
the noisy rate can be easily estimated with some
aligned data*, and the noise with more complex
patterns (e.g. input dependent) is postponed as our
future work.

4.2 Examples with Transductive Signals

For transductive signals, such as cross-domain sig-
nals, we can first extend the concept class C to the
extended concept class C® with the corresponding
extended input space X'°. After that, we can use
incidental signals to estimate a better prior distri-
bution 7§ over the extended concept class C¢, and
then get the corresponding 7y over the original
concept class by restricting the concept from C®
to C. In this way, the informativeness of transduc-
tive signals can still be measured by S(mg, 7p) or
S(mo, 7). The restriction step is similar to Roth
and Zelenko (2000).

However, how to compute H (7) is still unclear.
We now provide a way to estimate it. To better illus-
trate the estimation process for transductive signals,
we provide the summary of core notations in Table
2. For simplicity, we use ¢(x) to denote the gold
system on the gold signals, ¢(x) to denote the per-
fect system on the incidental signals, and ¢(x) to
denote the silver system trained on the incidental
signals. Source domain (target domain) is the do-
main of incidental signals (gold signals). We use
D to denote the target domain and D to denote the
source domain. Pp(x) is the marginal distribution
of x under D, and similar definition for Pf)(x). In

*If there is no jointly annotated data, we can use similar
methods as Bjerva (2017) to create some approximate jointly
annotated data.
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Algorithm 1: Confidence-Weighted Bootstrapping with Prior Probability. The algorithm utilizes
incidental signals to improve the inference stage in semi-supervised learning.

Input: A small dataset with gold signals D = (X1, Y7 ), and a large dataset with inductive signals D = (X2, Yz)

where X1 N X2 = ¢

1 Initialize claissifier ¢ = LEARN(D) (initialize the classifier with gold signals)
2 P(Y3]Xo, }72) = PRIOR(D, 15) (estimate the probability of gold labels for inputs in D)

3 while convergence criteria not satisfied do

4 Y = INFERENCE(X>; ¢; P(Y3| X2, Y3)) (get predicted labels of inputs in D)

5 p = CONFIDENCE(Xo; &, P(Y3| X2, Y2)) (get confidence for predicted labels)

6 D= (Xo, Y, p) (get confidence-weighted incidental dataset with predicted labels)

7 ¢ = LEARN(D + 25) (learn a classifier with both gold dataset and incidental dataset)

8 return ¢

our analysis, we assume ¢(x) is a noisy version of
¢(x) with the noisy rate 7, and ¢(x) is a noisy ver-
sion of ¢(x) with the noisy rate 7, (7)]) in the source
(target) domain : 17; = E,. pﬁ(x)l(é(x) # ¢(x))
(1}, = Exempp o L (6(x) # ().

In practice, n is unknown but it can be es-
timated by n; in the source domain and 7, =
Ex~pp(x)1(é(x) # c(x)) (the noisy rate of the
silver system compared to the gold system on the
target domain) as follows:

1 = B pp(x)1(c(x) # ¢(x))
(I£]1=1)(m =)

L—|L](1—m) 3)
(L] =1 (m —n2)
L—|L|1-m)

Here we add an assumption: 7} in the target
domain is equal to 7); in the source domain.” In
Appx. A.6, we can see that Eq. (3) serves as
an unbiased estimator for 7 under some assump-
tions, but the concentration rate will depend on
the size of the source data, which requires finer-
grained analysis on the estimator in Eq. (3) and
we postpone it as our future work. Similar to
noisy labels, the corresponding informativeness
of transductive signals can be then computed as

S(mo, 7g) = \/1 - ”ln(w‘*l)*’ihllnlfa(lfn) In(1-n)

Note that we treat cross-domain signals as a special
type of noisy data, when 7 is estimated.

To justify the use of n in the informativeness
measure for transductive signals, we show in Theo-
rem A.2 (see Appx. A.7) that (informally speaking)
the generalization error of a learner that is jointly

SWe add this assumption mainly because we want to es-
timate the 7 only based on 7: and 72, which can be easily
computed in practice.

trained on data from both source and target do-
mains can be upper bounded by 7 (plus a function
of the size of the concept class and the number of
samples).

Finally, we note that although the computation
cost of PABI for transductive signals is higher than
that for inductive signals where PABI does not
need any training, it is still much cheaper than
building combined models with joint training. For
example, given 1" source domains and 7" target do-
mains, the goal is to select the best source domain
for each target domain. If we use the joint training,
we need to train 7' x T = T? models. However,
with PABI, we only need to train 7'+ T = 27T
models. Furthermore, for each model, joint train-
ing on the combination of two domains requires
more time than the training on a single domain used
in PABI. In this situation, we can see that PABI is
much cheaper than building combined models with
joint training.

4.3 Examples with Mixed Incidental Signals

The mix of partial and noisy labels. The corre-
sponding informativeness for the mix of partial

and noisy labels is S(mo,70) = /(1 —7,) x

o I0(] £ |—1)— 17 I 170 — (1— 1) In(1—17)
(1 _n n 1n|’7£| n n )’

where 7, € [0, 1] denotes the ratio of unlabeled
tokens, and 7, € [0, 1] denotes the noise ratio.

The mix of partial labels and constraints. For
BIO constraints with partial labels, we can use
dynamic programming with sampling as Ning et al.
(2019) to estimate In |C| and S (o, o).

5 Experiments

In this section, we verify the effectiveness of PABI
for various inductive signals and transductive sig-
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Figure 2: Correlations between informativeness (ranging from 0 to 1) and relative performance improvement for
NER with various inductive signals (signals with a different conditional probability distribution (P(y |x)) from
gold signals). On one hand, as shown in (a)-(c), PABI has a similar foreseeing ability with measures for
specific signals. On the other hand, as shown in (d)-(f), PABI can measure the benefits of mixed inductive
signals and compare different types of inductive signals, which cannot be handled by existing frameworks.
For individual inductive signals, the baselines (gray points) are, i.e. one minus partial rate for partial labels (Ning
et al., 2019), one minus noisy rate for noisy labels (Natarajan et al., 2013), and entropy normalized mutual in-
formation for auxiliary labels (Bjerva, 2017). For NER with various inductive signals (f) (with all PABI points
from (a)-(e)), Pearson’s correlation and Spearman’s rank correlation are 0.92 and 0.93. Note that the relative im-
provement for NER (with informativeness 0.90 but relative improvement 0.70) in auxiliary labels (c) is smaller
than expected mainly due to the imbalanced label distribution (88% O among all BIO labels). More discussions
about the imbalanced distribution can be found in Appx. A.4.

nals on NER and QA. More details about experi-
mental settings are in Appx. A.8.

we propose a new bootstrapping-based algorithm
CWBPP, as shown in Algorithm 1, where induc-
tive signals are used to improve the inference stage
by approximating a better prior. It is an extension
of CoDL (Chang et al., 2007) by covering various
inductive signals.

Learning with various inductive signals. In
this part, we analyze the informativeness of induc-
tive signals for NER. We use Ontonotes NER (18
types of named entities) (Hovy et al., 2006) as the
main task. We randomly sample 10% sentences

(30716 words) of the development set as the small
gold signals, 90% sentences (273985 words) of the
development set as the large incidental signals. We
use two-layer NNs with 5-gram features as our ba-
sic model. The lower bound for our experiments is
the result of the model with small gold Ontonotes
NER annotations and bootstrapped on the unla-
beled texts of the large gold Ontonotes NER, which
is 38% F1, and the upper bound is the result of the
model with both small gold Ontonotes NER anno-
tations and the large gold Ontonotes NER annota-
tions, which is 61% F1. To utilize inductive signals,

We experiment on NER with various inductive
signals, including three types of individual signals,
partial labels, noisy labels, auxiliary labels, and
two types of mixed signals: signals with both par-
tial and noisy labels, and signals with both partial
labels and constraints. As shown in Fig. 2, we find
that there is a strong correlation between the rela-
tive improvement and PABI for various inductive
signals. For individual signals in Fig. 2(a)-2(c),
we find that PABI has a similar foreseeing abil-
ity comparing to the measures for specific signals,
i.e., 1 — n, for partial labels, 1 — 7, for noisy la-
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Figure 3: Correlation between informativeness measures (baselines or the PABI) and relative performance im-
provement (via joint training or pre-training) for cross-domain NER and cross-domain QA. We can see that the
correlation between the relative improvement and PABI is stronger than other baselines. Red results with
the PABI which is based on 7 in Eq. (3); Gray points indicate the results with the naive informativeness measure
72; Black points indicate the results with the vocabulary overlap baseline (Gururangan et al., 2020). The specific

correlations can be found in Table 3.

bels, and entropy normalized mutual information®
(IIEIYQ/ )) for auxiliary labels. For mixed signals
in Fig. 2(d)-2(e), the strong correlation is quite
promising because the benefits of mixed signals
cannot be quantified by existing frameworks. Fi-
nally, the strong positive correlation for different
types of signals in Fig. 2(f) indicates that it is fea-
sible to compare the benefits of different incidental
signals with PABI, which cannot be addressed by
existing frameworks.

Learning with cross-domain signals. In this
part, we consider the benefits of cross-domain sig-
nals for NER and QA. For NER, we consider four
NER datasets, Ontonotes, CoNLL, Twitter (Strauss
et al., 2016), and GMB (Bos et al., 2017). We
aim to detect the person names here because the
only shared type of the four datasets is the per-
son’. In our experiments, the Twitter NER serves
as the main dataset and the other three datasets
are cross-domain datasets. There are 85 sentences
in the small gold training set, 756 sentences (9
times of the gold signals) in the large inciden-
tal training set, and 851 sentences in the test set.
For QA, we consider SQuAD (Rajpurkar et al.,
2016), QAMR (Michael et al., 2017), QA-SRL
Bank 2.0 (FitzGerald et al., 2018), QA-RE (Levy
et al., 2017), NewsQA (Trischler et al., 2017), Triv-
1aQA (Joshi et al., 2017). In our experiments, the

% In Bjerva (2017), they propose to use mutual information
or conditional entropy to measure the informativeness, so we
normalize the mutual information with the entropy to make
the value between O and 1.

"Note that our focus here is cross-domain signals, the
divergent set of classes for different domains is a mix of cross-
domain and auxiliary signals, which is our future work.

SQuAD dataset serves as the main dataset and other
datasets are cross-domain datasets. We randomly
sample 700 QA pairs as the small gold signals,
about 6.2 K QA pairs as the large incidental signals
(9 times of the small gold signals), and 21K QA
pairs as the test data. We tried larger datasets for
both gold and incidental signals (keeping the ratio
between two sizes as 9), and the results are similar
as long as the size of gold signals is not too large.

We use BERT as our basic model and consider
two strategies to make use of incidental signals:
joint training and pre-training. For NER, the lower
bound is the result with only small gold twitter
annotations, which is 61.51% F1, and the upper
bound is the result with both small gold twitter an-
notations and large gold twitter annotations, which
is 78.31% F1. For QA, the lower bound is the
result with only small gold SQuAD annotations,
which is a 26.45% exact match. The upper bound
for the joint training is the result with both small
gold SQuAD annotations and large SQuAD anno-
tations, which is a 50.72% exact match. Similarly,
the upper bound for the pre-training is a 49.24%
exact match.

The relation between the relative improvement
(pre-training or joint training) and informativeness
measures (baselines or the PABI) is shown in Fig. 3
and Table 3. We can see that there is a strong posi-
tive correlation between the relative improvement
and PABI for cross-domain signals. Comparing
to the naive baseline 72, we can see that the ad-
justment from 7; is crucial (Eq. (3)), indicating
that directly using 72 is not a good choice. We
also show the vocabulary overlap baseline as in
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Tasks Joint-training NER Joint-training QA Pre-training QA

Correlations Pearson | Spearman || Pearson | Spearman || Pearson | Spearman
Vocabulary overlap -0.85 -1.00 -0.40 -0.30 -0.30 -0.30
Naive baseline 0.19 -0.50 0.88 0.82 0.85 0.82
PABI 0.96 1.00 1.00 1.00 0.99 1.00

Table 3: Correlation between informativeness measures (baselines or the PABI) and relative performance improve-
ment (via joint training or pre-training) for cross-domain NER and cross-domain QA. We compare PABI with two
baselines: the vocabulary overlap baseline (Gururangan et al., 2020) and the naive informativeness measure 7s.
Pearson indicates Pearson’s correlation, and Spearman indicates Spearman’s rank correlation.

Gururangan et al. (2020), where we compute the
overlap over the top 1K most frequent unigrams
(excluding stop words and punctuations) between
different domains. The results for this baseline are
quite bad, and the fact that our data is not so large
makes this baseline more valueless.

6 Conclusion and Future Work

Motivated by PAC-Bayesian theory, this paper pro-
poses a unified framework, PABI, to character-
ize the benefits of incidental supervision signals
by how much uncertainty they can reduce in the
hypothesis space. We demonstrate the effective-
ness of PABI in foreseeing the benefits of various
signals, i.e., partial labels, noisy labels, auxiliary
labels, constraints, cross-domain signals and com-
binations of them, for solving NER and QA. To our
best knowledge, PABI is the first informativeness
measure that can handle various incidental signals
and combinations of them; PABI is motivated by
the PAC-Bayesian framework and can be easily
computed in real-world tasks. Because the recent
success of natural language modeling has given rise
to many explorations in knowledge transfer across
tasks and corpora (Bjerva, 2017; Phang et al., 2018;
Zhu et al., 2019; Liu et al., 2019; He et al., 2020;
Khashabi et al., 2020) , PABI is a concrete step
towards explaining some of these observations.

We conclude our work by pointing out several
interesting directions for our future work.

First, PABI can also provide guidance in design-
ing learning protocols. For instance, in a B/I/O
sequence chunking task,® missing labels make it a
partial annotation problem while treating missing
labels as O introduces noise. Since the informative-
ness of partial signals is larger than that of noisy
signals with the same partial/noisy rate (see details
in Sec. 4.1), PABI suggests not treating missing
labels as O, and this is exactly what Mayhew et al.

8B/I/0O indicates whether a token is
ning/inside/outside of a text span.

the begin-

(2019) prove to us via their experiments. We plan
to explore more in this direction to apply PABI in
designing better learning protocols.

Second, we need to acknowledge that our current
exploration for auxiliary labels is still limited. The
results for auxiliary labels with a different label
set (Fig. 2(c)) is blocked by the imbalanced label
distribution (Appx. A.4). For more complex cases,
such as part-of-speech tagging (PoS) for NER, we
can only treat them as cross-sentence constraints
now and the results are also limited (Appx. A.5).
In the future, we will work more in this direction
to better quantify the value of auxiliary signals.

Another interesting direction is to link PABI
with the generalization bound. It might be too hard
to directly link PABI with the generalization bound
for all types of incidental signals, but it is possi-
ble to link it to the generalization bound for some
specific types. For example, for partial and noisy
labels, PABI can directly be expressed in the gener-
alization bound as in Cour et al. (2011); Natarajan
et al. (2013); Van Rooyen and Williamson (2017);
Wang et al. (2020). The main difficulties are in
constraints and auxiliary signals, and we postpone
it as our future work.

Finally, we plan to evaluate PABI in more ap-
plications, such as textual entailment and image
classification, and more types of signals, such as
cross-lingual and cross-modal signals.
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A Appendix

A.1 PABI in the PAC Framework

We have derived PABI in the PAC-Bayesian frame-
work. Here, we discuss briefly on what PABI
reduces to in the PAC framework and what lim-
itations are when PABI is restricted to the PAC
framework. The generalization bound in the PAC
framework (Mohri et al., 2018) says with probabil-

2
ity 1 —dover S, Rp(c) < Rg(c) +/ %

We propose to reduce the concept class from C to
C by using incidental signals. Then PABI in the
PAC framework can be written as

~ Inl|C
S(C,C)=1/1— ln\|C|] .

“4)

It turns out that Eq. (4) is a special case of Eq. (1)
when 7* is one-hot over C, 7y is uniform over C
and 7 is uniform over C.

Specifically, suppose 7* is one-hot over C, 7
is uniform over C and 7 is uniform over C. We
have DKL(T('*HTF()) =In | C | and DKL(TF*Hﬁ'()) =
In |C|. Tt follows that

S(ﬂ'o,fro) = \/1 — M

D, (7*||m0)

(@Y}

In

—/1—

Q

n|
=5(C,0).

At the same time, we have

. H(7

S(mp, o) =4 /1 — HE:S%
_ |, H(#o)
=\! In|C|
B In|C|
=V me
=5(C,0).

As shown in the above derivation, we can see
that the three informativeness measures, PABI in
Eq. (1), the approximation of PABI in Eq. (2), and
PABI in the PAC framework in Eq. (4), are equiva-
lent, i.e. S(mo, 7o) = S(mo, 7o) = S(C,C), in the
non-probabilistic cases with the finite concept class.
The equivalence among three measures further in-
dicates that both PABI and the approximation of
PABI are reasonable.

It is worthwhile to notice that the size of con-
cept class also plays an important role in the lower
bound on the generalization error as shown in the
following theorem, indicating that PABI based on
the reduction of the concept class is a reasonable
measure.

Theorem A.1. Let C be a concept class with VC
dimension d > 1. Then, for any m > 1 and any
learning algorithm A, there exists a distribution D
over X and a target concept c € C such that

d—1
Pg. .pm — | >1/1
S~D [RD(65)> 32m] > /00

where cg is a consistent concept with S returned
by A. This is the Theorem 3.20 in Chapter 3.4 of
Mohri et al. (2018).

However, PABI restricted to the PAC framework
cannot handle the probabilistic cases. For exam-
ple, incidental signals can reduce the probability
of some concepts, though the concept class is not
reduced. In this example, S(C,C) is zero, but we
actually benefit from incidental signals.

A.2 PABI in the Parametric Concept Class

In practice, algorithms are often based on paramet-
ric concept class. The two informativeness mea-
sures in the PAC-Bayesian framework, S (7, 7o)
and S(m, 7o), can be easily adapted to handle the
cases in parametric concept class. Given parametric
space C.,, we can easily change the probability dis-
tribution 7(C,,) over the parametric concept class
to the probability distribution 7(C) over the finite
concept class C = {c : V" — L"} by clustering
concepts in the parametric space according to their
outputs on all inputs. The concepts in each cluster
have the same outputs on all inputs as outputs of
one concept in the finite concept class C. We then
merge the probabilities of concepts in the same
cluster to get the probability distribution 7(C) over
the finite concept class C. This merging approach
can be applied to any concept class which is not
equal to the finite concept class C, including non-
parametric and semi-parametric concept class. In
practice, we can use sampling algorithms, such as
Markov chain Monte Carlo (MCMC) methods, to
simulate this clustering strategy.

A.3 Limitations of PABI

Different informativeness measures are based on
different assumptions, so we analyze their limita-
tions in detail to understand their limitations in
applications.
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For the informativeness measure S(C, C), it can-
not handle probabilistic signals or infinite concept
classes. There are various probabilistic inciden-
tal signals, such as soft constraints and probabilis-
tic co-occurrences between an auxiliary task and
the main task. An example of probabilistic co-
occurrences between part-of-speech (PoS) tagging
and NER is that the adjectives have a 95% probabil-
ity to have the label O in NER. As for the infinite
concept class, most classifiers are based on infinite
parametric spaces. Thus, S(C, C ) cannot be applied
to these classifiers.

The informativeness measure S(m, 7o) is hard
to be computed for some complex cases. In prac-
tice, we can use the estimated posterior distribution
over the gold data, which is asymptotically unbi-
ased, to estimate it. Another approximation is to

. . A H(x
use the informativeness measure S = /1 — Hggg

However, it is not directly linked to the generaliza-
tion bound, so more work is needed to guarantee
its reliability for some complex probabilistic cases.
We postpone to provide the theoretical guarantees

5 _H
for S = E;rog on more complex cases as
our future work.

A.4 Discussion of Factors in PABI

In this subsection, we consider the impact of the fol-
lowing factors in PABI: base model performance,
the size of incidental signals, data distribution, al-
gorithm and cost-sensitive loss.

Base model performance. In the generalization
bound in both PAC and PAC-Bayesian, we can see
that the relative improvement in the generalization
bound from reducing C is small if m is large. In
practice, the relative improvement is the real im-
provement with some noise. Therefore, we can see
that the real improvement is dominant if m is small
and the noise is dominant if m is large. Therefore,
PABI may not work well when m is large and
when the performance on the target task is already
good enough.

The size of incidental signals. Our previ-
ous analysis is based on a strong assumption
that incidental signals are large enough (ide-
ally m — o0). A more realistic PABI is
based on C with 77 examples as S(C,C) =

In|Cin |~In|Coi| _ lnICmI ln\cm| o I[Cp |
In [ | In|Cp | B
\/(1_1n|6m|) X Tafc] =
_ In|C| In|Cp | i
\/(1 1n|C|) miCl > where C; denotes

the restricted concept class of C on the m ex-
amples, and so does C,;. Note that the ratio of
the intrinsic information in incidental signals is

independent of the size m, so ||gm‘| = 11:||g||
holds for our signals. For example, llr?‘lgﬁ”ll =1
m

for partial data with unknown ratio 7,, doesn’t
depend on the size m. (1) When m is large

enough, S(C,C) = /1 — lﬁ‘lg“ (2) When the

sizes of different incidental signals are all m,
the relative improvement is independent of m

because L | Cm‘ | is the same constant for different
incidental signals. Our experiments are based on
this case and does not really rely on the assumption
that incidental signals are large enough. (3) The
incidental signals we are comparing are not large

enough and have different sizes, we need to use

S(€,0) = /(- 2l
that difference. We can replace |V|" with some
reasonable M, e.g. the largest size of incidental
signals, to make PABI in a larger range of values
in [0, 1]. In future, we need to explore more in this

direction.

to 1ncorporate

Data distribution. As for the distribution
of examples, both PAC and PAC-Bayesian are
distribution-free (see more in Chapter 2.1 of Mohri
et al. (2018)). However, if we consider the joint dis-
tribution between examples and labels, such as im-
balanced label distribution, the situation will be dif-
ferent. Specific types of joint data distribution refer
to a restricted concept class C’. Therefore, PABI
is expected to work well if the reduction from C is
similar to the reduction from C’ with incidental sig-

nals, i.e. 5(C',C) = In [C]

mic o /q
~ Im|CI"

T[]

Algorithm. Different algorithms make differ-
ent assumptions on the concept class. For exam-
ple, SVM aims to find the maximum-margin hy-
perplane (see more in Chapter 5.4 of Mohri et al.
(2018)). Therefore, a specific algorithm actually
is based on a restricted concept class C’ (e.g. con-
cepts with margin in SVM case). Similarly, PABI
is expected to work well if the reduction from C
is similar to the reduction from C’ with incidental
signals. We also cannot compare the benefits from
various incidental signals with different algorithms.
If the algorithm is not expressive enough to take
advantage of incidental signals, we may also not
be able to use PABI there.

Cost-sensitive Loss. For different loss functions
other than 0-1 loss, there are still some similar gen-
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eralization bounds in PAC and PAC-Bayesian (us-
ing complexity of concept class and sample size)
(Bartlett et al., 2006; Ciliberto et al., 2016). There-
fore, PABI can also be used (possibly with some
minor modifications) for cost-sensitive loss func-
tions.

A.5 More Examples with Incidental Signals

In this subsection, we show more examples with
incidental signals, including within-sentence con-
straints, cross-sentence constraints, auxiliary labels,
cross-lingual signals, cross-modal signals, and the
mix of cross-domian signals and constraints.
Within-Sentence Constraints. As for within-
sentence constraints, we show three types of com-
mon constraints in NLP, which are BIO constraints,
assignment constraints, and ranking constraints.

* BIO constraints are widely used in sequence
tagging tasks, such as NER. For BIO
constraints, I-X must follow B-X or I-X,
where “X” is finer types such as PER (person)
and LOC (location). We consider a simple

case here: there are only B, I, O three
labels. We have In|C| = |V [*(In|L]|™ +
+1)/2 _
ln[zulo 2 (n72+1)(|£}2)m]) for
the BIO constraint. Thefefore,
S(mo, 7o) = S(mo,70) = S(C,C) =
In| £+ 5 () GE )™
B In|L|™ :

This value can be approximated by the
dynamic programming as Ning et al. (2019).

* Assignment constraints can be used in var-
ious types of semantic parsing tasks, such
as semantic role labeling (SRL). Assume we
need to assign d agents with d’ tasks such that
the agent nodes and the task nodes form a
bipartite graph (without loss of generality, as-
sume d < d’). Each agent is represented by
a feature vector in V. We have S(mo, 7o) =
S(mo,70) = S(C,0) = \J1- gl =

1— n () This i i ’
T - is informativeness doesn’t
rely on the choice of V; where that V; de-
notes discrete feature space for arguments.

* Ranking constraints can be used in ranking
problems, such as temporal relation extrac-
tion. For a ranking problem with ¢ items,
there are d = t(t — 1)/2 pairwise com-
parisons in total. Its structure is a chain
following the transitivity constraints, i.e., if

o
©

Relative Improvement
o o
S »
+

0.2 a8

0.75 0.8
Informativeness

O L
0.65 0.7 0.85

Figure 4: The correlations between the informativeness
and the relative performance improvement for NER
with cross-sentence constraints.

A < Band B < C,then A < C. In
this way, we have S(mg, 7g) = S(70, 7o) =

sc.C) = \J1-pld = /1 ot

In 24

1— 2Int—2
(t—1)In2°

rely on the choice of V; where V; denotes
discrete feature space for events.

This informativeness doesn’t

Cross-sentence Constraints. For cross-
sentence constraints, we consider a common ex-
ample, global statistics based on 2-tuple of to-
kens, i.e. pairs of tokens in different sen-
tences must have the same labels. We can
group words into K groups with probabil-
ity p. In this way, we have S(mo, 7o) =

1 — E@+pn| L[K+(1—p) In(| L[V " [ L|X))
In|C|

/P> where E(p) = —plnp — (1 — p)In(1 — p).
The approximation holds as long as | £ |, V), and n
are not all too small. For example, as shown in Ta-
ble 4, the percentage of 5-gram words with unique
NER labels is 99.37%, so ideally the corresponding
PABI will be v/0.9937 = 0.9968. It is worthwhile
to note that the k-gram words with unique labels
can also be caused by the low frequency of the ap-
pearance of the k-grams. In our experiments, we
only consider the k-grams with unique labels that
appear at least twice in the data. We experiment on
NER with three types of cross-sentence constraints:
uni-gram words with unique NER labels, bi-gram
words with unique NER labels, and 5-gram part-of-
speech (PoS) tags with unique NER labels’. The

“Here we use PoS tags as a special type of cross-sentence
constraints by specifying the labels of tokens whose PoS tags
have unique NER labels, although PoS tags can also be viewed
as auxilary signals for NER.
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k-gram 1 2 3 4 5 6 7 8 9 10
word-pos || 8.68 | 49.45 | 84.08 | 96.22 | 98.96 | 99.54 | 99.69 | 99.73 | 99.75 | 99.76
word-ner || 27.65 | 76.23 | 92.98 | 98.04 | 99.37 | 99.74 | 99.84 | 99.88 | 99.89 | 99.90

pos-ner 0.20 | 6.65 | 13.78 | 25.36 | 41.50 | 60.14 | 77.04 | 88.61 | 95.01 | 97.92

ner-pos 0.00 | 0.01 | 003 | 0.07 | 0.17 | 039 | 0.80 | 1.47 | 245 | 3.71

Table 4: K-gram co-occurrence analysis for PoS and NER in the whole Ontonotes dataset. For example, word-pos
represents the percentage (%) of k-gram words that have the unique k-gram PoS labels.

results are shown in Fig. 4.
Aucxiliary labels. For auxiliary labels, we show
two examples as follows:

» For a multi-class sequence tagging task, we
use the corresponding detection task as aux-
iliary signals. Given a multi-class sequence
tagging task with C' labels in the BIO for-
mat (Ramshaw and Marcus, 1999), we will
have 3 labels for the detection and 2C + 1 la-
bels for the classification. Thus, S(mg, 7g) =
S(mo, o) = S(C,0) = /1 - GEekis,
where p, is the percentage of the label O
among all labels.

Coarse-grained NER for Fine-grained NER.
We have four types, PER, ORG, LOC and
MISC for CoNLL NER and 18 types for
Ontonotes NER. The mapping between
CoNLL NER and Ontonotes NER is as

follows: PER (PERSON), ORG (ORGQG),
LOC(LOC, FAC, GPE), MISC(NORP,
PRODUCT, EVENT, LANGUAGE),

O(WORF_OF_ART, LAW, DATE, TIME,
PERCENT, MONEY, QUANTITY, OR-
DINAL, CARDINAL, O) (Augenstein
et al., 2017). In the BIO setting, we have
S(mo, 7o) = S(mo,70) = S(C,C) =

P In3+P,, In4+P,1n 19
1-— 4 v , where p;, pm,

po are the percentage of LOC(including
B-LOC and I-LOC), MISC (including
B-MISC and I-MISC), and O among all
possible labels.

Note that PABI is consistent with the entropy nor-
malized mutual information (see more in footnote
I(Y;Y)
H(Y)

6) because S”(wo, 7o) =
bels.

Cross-lingual signals. For cross-lingual signals,
we can use multilingual BERT to get ¢ in the ex-
tended input space (V U V)™, After that, 1, and 7
can be computed accordingly.

for auxiliary la-

Cross-modal signals. For cross-modal signals,
we only consider the case where labels of gold
and incidental signals are same and inputs of gold
and incidental are aligned. A common situation
is that a video has visual, acoustic, and textual
information. In this case, the images and speech
related to the texts can be used as cross-modal
information. We can use cross-modal mapping
between speech/images and texts (e.g. Chung et al.
(2018)) to estimate the 7; and ny for cross-modal
signals.

The mix of cross-domain signals and con-
straints. Let ¢ denote the perfect system on cross-
domain signals and satisfying constrains on inputs
of gold signals, and ¢ denote the model trained on
cross-domain signals and satisfying constraints on
inputs of gold signals. In this way, we can estimate
11 and 79 by forcing constraints in their inference
stage.

A.6 Derivation of Equation (3)

For simplicity, we use Y to denote ¢(x), Y to
denote &(x), and Y to denote Y (x). We then
re-write the definitions of 7, 7} and N2 asn =
Ewap(x)l(c(X) 7£ E(X)) = P(YA# Y): 77{ =
Exroiol(2(x) # &(x)) = P(V # V) and
e = Exoppl(é(x) # ¢(x)) = P(Y #Y).
Note that L is the label set for the task. Consid-
ering all three systems in the target domain, we
have

l—mp =P =Y)
=PY =Y,Y=Y)+PY =Y, Y £Y)
=PY =Y)P(Y =Y|Y =Y)
+P(Y#Y)P(Y =Y|Y £Y)
=PY =Y)P(Y =Y)
+P(Y # Y)P’(Zi};)
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(1 £]=1) (3 —n2)

Therefore, we have n = 210
1

A.7 PABI for Transductive Signals

Assumption I: ¢(x) is a noisy version of ¢(x) with a
noise ratio 1 in both target and source domain: n =
]EXNP'D(X)]‘(C<X) 7& 6(X)) - EXNPﬁ(x)]-(C(X) 7&
¢(x)).

Theorem A.2. Let C be a concept class of VC di-
mension d for binary classification. Let S, be
a labeled sample of size m generated by draw-
ing Sm points (S) from D according to ¢ and
(1 — B)m points (S) from D (the distribution
of incidental signals) according to ¢. If ¢ =
arg min,cc RS%% () = argmingcsRs(c) +
2Rz (c) is the empirical joint error minimizer, and
cr = argmin e Rp(c) is the target error mini-
mizer, ¢* = arg min,c. Ry (c)+ Rp(c) is the joint
error minimizer, under assumption I, and assume
that C is expressive enough so that both the target
error minimizer and the joint error minimizer can
achieve zero errors, then for any 6 € (0,1), with
probability at least 1 — 6,

1 1 2d1n 2¢m 4 21n 8
d) <n+ 5+1—ﬁ\/ -

A concept is a function ¢: X — {0,1}. The
probability according to the distribution D that
a concept ¢ disagrees with a labeling function f
(which can also be a concept) is defined as

Rp(c, f) = Exeplle(x) = f(X)I]  (5)

Note that here ¢(y, c(x)) = |y — c(z)] is the loss
function and Rp(c) = Exp[l(y, c(x))] where y
is the gold label for x. We denote R,(c) (o €
[0, 1]) the corresponding weighted combination of
true source and target errors, measured with respect
to D and D as follows:

Ru(c) = aRp(c) + (1 — a)Rp(c)

Lemma A.3. Let c be a concept in concept class
C. Then

[Ra(c) — Bp(c)| < (1 —a)(A+7(c))
where A = Rp(c*) + Rp(c"), ¢ =
argmin.c. Rx(c) + Rp(c), and 7(c) =
|Rp(c,c*) — Rp(c,c")|.

Proof.

[Ra(c) — Rp(c)| = (1 — a)|Rp(c) — Rp(c)]
S(l—a)HR*( ) — Rp(c,c”)]
+ |Rp(c, ) — Rp(c, ¢
+ |Rp(c, ") — Rp(c)]|
< (1= a)[Rp(c?)
+|Rp(c, ") — Rp(c, c)]
+ Rp(c")]

= (1-a)(A+7(c))

Lemma A.4. For a fixed concept c from C with VC
dimension d, if a random labeled sample (S) of
size m is generated by drawing 3m points (S) from
D and (1 — B)m points (S) from D, and labeling
them according to fp and f;, respectively, then for
any ¢ € (0, 1) with probability at least 1 — § (over
the choice of the samples),

RS+ «a

/ (1-a) \/2d1n26m+2ln5
1_

where Rs, o = aRg(c) +
the natural number.

(1—-a)Rs(c)and e is

Proof. Given Lemma 5 in Ben-David et al.
(2010), which says for any § € (0, 1), with proba-
bility 1 — 6 (over the choice of the samples),

—2me?
Pl|Rs, a(c)=Ralc)| = €] < 2exp(z—7—52)
I

According to the Vapnik-Chervonenkis theory
(Vapnik and Chervonenkis, 2015), we have with
probability 1 — 4,

RS+:

(1-a) \/2dln2em+21n5
\/ 1-83

This is the standard generalization bound with an

adjust term O‘Tf + ! 1__022 (see more in Chapter
3.3 of Mohri et al. (2018)). ]

Proof of Theorem A.2. Let o = %,
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argmin Rg, o(c) = 3(Rz(c) + Rs(c))

Rp()
< Ro(@)+ (1 —a)(A+7(¢)) (Lemma A.3)
< Ro(@)+ (1 —a)(A+ |Rp(¢, ")
< Ro(@)+(1—a)A
( p(c") + Bp(¢) + Rp(c")

— a)(2A + 2R, (¢))

= (3 —2a)R, (A’)—|—2(1—a)A
S _2a)RS+a
/ 2d1n 247 + 2]
(3 — 20)( 1 \/ n + n5)

+2 1—a)A (LemmaA4w1th6/2)
3 —2a) R5+a cr)+

o 2d1 26m
(3 — 20)( / 11 a) \/ n

+2 1—a)A

—2a
_ 2d1 26m
(3 —2a)( (1-o) \/ -
\/ 1-8
+2 1—a)A (LemmaA4w1th5/2)
(1 —a)(A+7(ch)))+

2d In 24
3 2a 7_'_ -5

+2(1 —a)A (Lemma A.3)
< (3 —=2«a)Rp(cp)+

—1—21n5

)

(¢ = argm1nRS+a

+21n5

)

—2a))(Rp(cy)

+21n5

)

a2 (1—a«)?
—+
B 1-5
+(20% = Ta + 5)A + (202 — 5a + 3)7(cy)
Note that
7(cr) = |Rp(cp, ¢*) — Rp(cp, )|
< Ry(cr) + Ryp(c*) + Rp(cr) + Rp(c™)
= A+ Rp(cr) + Rp(cr)

(3 —2a)(4

m

2
\/len em —|—21n5)

Therefore,
Rp(&) < Rp(cr
+4\/7\/2% Zem <
1 —
+ 3Rp(cr) + 3A oz:i)

Also note that L; loss is equivalent to 0-1 loss in
the binary classification, so that Rz (c}) = n under

assumption . In addition, assuming that C is expres-
sive enough so that both the target error minimizer
and the joint error minimizer can achieve zero er-
rors (Rp(ch) = 0 and A = 0), the generalization

— Rp(&,c*)|) bound can be simplified as follows:

A/

/ 2d In 24m
1 _

Note that the proof of Theorem A.2 is similar to
Theorem 3 in Ben-David et al. (2010). Our theorem
is based on binary classification mainly because the
error item in Eq. (5) based on the L1 loss will be
equivalent to zero-one loss for binary classifica-
tion. Although for multi-class classification, the
L1 loss is different from commonly used zero-one
loss, Theorem A.2 also indicates the relation be-
tween the generalization bound of joint training
and the cross-domain performance Rp(c%) (equal
to Rj(c}) under assumption I). Furthermore, a
multi-class classification task can be represented
by a series of binary classification tasks. Therefore,
we postpone more accurate analysis for multi-class
classification as our future work.

+ 21
n(s U

A.8 Details of Experimental Settings

In this subsection, we briefly highlight some impor-
tant settings in our experiments and more details
can be found in our released code.

NER with individual inductive signals. For
partial labels, we experiment on NER with four
different partial rates: 0.2, 0.4, 0.6, and 0.8. For
noisy labels, we experiment on NER with seven
different noisy rates: 0.1 — 0.7. For auxiliary la-
bels, we experiment on two auxiliary tasks: named
entity detection and coarse NER (CoNLL anno-
tations with 4 types of named entities (Sang and
De Meulder, 2003)).

NER with mixed inductive signals. A more
complex case is the comparison between the mixed
inductive signals. For the first type of mixed sig-
nals, we experiment on the combination between
three unknown partial rates (0.2, 0.4, and 0.6) and
four noisy rates (0.1, 0.2, 0.3, and 0.4). As for the
second type of mixed signals, we experiment on
the combination between the BIO constraint and
five unknown partial rates (0.2, 0.4, 0.6, 0.8, and
1.0).

NER with various inductive signals. After we
put the three types of individual inductive signals
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and the two types of mixed inductive signals to-
gether, we still see a correlation between PABI and
the relative performance improvement in experi-
ments in Fig. 2(f).

NER with cross-domain signals Because we
only focus on the person names, a lot of sentences
in the original dataset will not include any entities.
We random sample sentences to keep that 50%
sentences without entities and 50% sentences with
at least one entity. 777 and 72 is computed by using
sentence-level accuracy.

QA with cross-domain signals. For consis-
tency, we only keep one answer for each question
in all datasets. Another thing worthwhile to notice
is that the most informative QA dataset is not al-
ways the same for different main QA datasets. For
example, for NewsQA, the most informative QA
dataset is SQuAD, while the most informative QA
dataset for SQuAD is QAMR.

Experimental settings for learning with vari-
ous inductive signals. The 2-layer NNs we use in
CWBPP (algorithm 1) has a hidden size of 4096,
ReLU non-linear activation and cross-entropy loss.
As for the embeddings, we use 300 dimensional
GloVe embeddings (Pennington et al., 2014). The
size of the training batch is 10000 and the optimizer
is Adam (Kingma and Ba, 2015) with learning rate
3e~*. When we initialize the classifier with gold
signals (line 1), the number of training epochs is
20. After that, we conduct the bootstrapping 5 it-
erations (line 3-7). The confidence for predicted
labels is exactly the predicted probability of the
classifier (line 5). In each iteration of bootstrap-
ping, we further train the classifier on the joint data
1 epoch (line 7). It usually costs several minutes to
run the experiment for each setting on one GeForce
RTX 2080 GPU.

Experimental settings for learning with cross-
domain signals. As for BERT, we use the pre-
trained BERT-base pytorch implementation (Wolf
et al., 2020). We manually use the common param-
eter settings for our experiments. Specifically, for
NER, the pre-trained BERT-base is case-sensitive,
the max length is 256, batch size is 8, the epoch
number is 4, and the learning rate is 5e . As for
QA, the pre-trained BERT-base is case-insensitive,
the max length is 384, batch size is 16, the epoch
number is 4, and the learning rate is 5¢~°. It usually
costs less than half an hour to run the experiment
for each setting on one GeForce RTX 2080 GPU.
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