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Abstract

We study the power of cross-attention in the
Transformer architecture within the context
of transfer learning for machine translation,
and extend the findings of studies into cross-
attention when training from scratch. We
conduct a series of experiments through fine-
tuning a translation model on data where ei-
ther the source or target language has changed.
These experiments reveal that fine-tuning only
the cross-attention parameters is nearly as ef-
fective as fine-tuning all parameters (i.e., the
entire translation model). We provide insights
into why this is the case and observe that lim-
iting fine-tuning in this manner yields cross-
lingually aligned embeddings. The implica-
tions of this finding for researchers and practi-
tioners include a mitigation of catastrophic for-
getting, the potential for zero-shot translation,
and the ability to extend machine translation
models to several new language pairs with re-
duced parameter storage overhead.'

1 Introduction

The Transformer (Vaswani et al., 2017) has become
the de facto architecture to use across tasks with
sequential data. It has been dominantly used for
natural language tasks, and has more recently also
pushed the state-of-the-art on vision tasks (Doso-
vitskiy et al., 2021). In particular, transfer learn-
ing from large pretrained Transformer-based lan-
guage models has been widely adopted to train new
models: adapting models such as BERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020)
for encoder-only tasks and models such as BART
(Lewis et al., 2020) and mBART (Liu et al., 2020)
for encoder-decoder tasks like machine translation
(MT). This transfer learning is predominantly per-
formed in the form of fine-tuning: using the values
of several hundred million parameters from the pre-
trained model to initialize a model and start training
from there.

'Our code is available at
MGheini/xattn-transfer-for-mt.

https://github.com/

Fine-tuning pretrained models often involves up-
dating all parameters of the model without making
a distinction between them based on their impor-
tance. However, copious recent studies have looked
into the relative cruciality of multi-headed self- and
cross- attention layers when training an MT model
from scratch (Voita et al., 2019; Michel et al., 2019;
You et al., 2020). Cross-attention (also known as
encoder-decoder attention) layers are more impor-
tant than self-attention layers in the sense that they
result in more degradation in quality when pruned,
and hence, are more sensitive to pruning (Voita
et al., 2019; Michel et al., 2019). Also, cross-
attention cannot be replaced with hard-coded coun-
terparts (e.g., an input-independent Gaussian dis-
tribution) without significantly hurting the perfor-
mance, while self-attention can (You et al., 2020).
With the ubiquity of fine-tuning as a training tool,
we find a similar investigation focused on trans-
fer learning missing. In this work, we inspect
cross-attention and its importance and capabilities
through the lens of transfer learning for MT.

At a high level, we look at training a model for
a new language pair by transferring from a pre-
trained MT model built on a different language
pair. Given that, our study frames and addresses
three questions: 1) How powerful is cross-attention
alone in terms of adapting to the new language pair
while other modules are frozen? 2) How crucial
are the cross-attention layers pretrained values with
regard to successful adaptation to the new task?
and 3) Are there any qualitative differences in the
learned representations when cross-attention is the
only module that gets updated?

To answer these questions, we compare mul-
tiple strategies of fine-tuning towards a new lan-
guage pair from a pretrained translation model that
shares one language with the new pair. These are
depicted in Figure 1: a) Ignoring the pretrained
parameters and training entirely from randomly
initialized parameters (i.e. ‘from scratch’) b) Fine—
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Figure 1: Overview of our transfer learning experiments, depicting (a) training from scratch, (b) conventional
fine-tuning (src+body), (c) fine-tuning cross-attention (src+xattn), (d) fine-tuning new vocabulary (src), (e)
fine-tuning cross-attention when transferring target language (tgt+xattn), (f) transfer learning with updating
cross-attention from scratch (src+randxattn). Dotted components are initialized randomly, while solid lines
are initialized with parameters from a pretrained model. Shaded, underlined components are fine-tuned, while

other components are frozen.

tuning all parameters except the embeddings for
the language in common,” (i.e. ‘regular’ fine-tun-
ing, our upper bound), c) Fine-tuning solely the
cross-attention layers and new embeddings, and
d) Fine-tuning only the new embeddings. Here,
new embeddings refer to randomly initialized em-
beddings corresponding to the vocabulary of the
new language. In Figures 1a—1d, we assume the
new language pair has a new source language and
not a new target language; Figure 1e shows an ex-
ample of target-side transfer. In the experiments
that follow we will always train new, randomly
initialized embeddings for the vocabulary of the
newly introduced language. Generally, all other
parameters are imported from a previously built
translation model and, depending on the experi-
ment, some will remain unchanged and others will
be adjusted during training.

Our experiments and analyses show that fine-
tuning the cross-attention layers while keeping the
encoder and decoder fixed results in MT quality
that is close to what can be obtained when fine-
tuning all parameters (§4). Evidence also sug-
gests that fine-tuning the previously trained cross-
attention values is in fact important—if we start
with randomly initialized cross-attention parame-
ter values instead of the pretrained ones, we see a
quality drop.

Furthermore, intrinsic analysis of the embed-
dings learned under the two scenarios reveals that
full fine-tuning exhibits different behavior from

Freezing shared language embeddings is common prac-
tice (Zoph et al., 2016).

cross-attention-only fine-tuning. When the encoder
and decoder bodies are not fine-tuned, we show
that the new language’s newly-learned embeddings
align with the corresponding embeddings in the
pretrained model. That is, when we transfer from
Fr—En to Ro—En for instance, the resulting Roma-
nian embeddings are aligned with the French em-
beddings. However, we do not observe the same
effect when fine-tuning the entire body. In §5 we
see how such aligned embeddings can be useful.
We specifically show they can be used to alleviate
forgetting and perform zero-shot translation.

Finally, from a practical standpoint, our strategy
of fine-tuning only cross-attention is also a more
lightweight fine-tuning approach (Houlsby et al.,
2019) that reduces the storage overhead for extend-
ing models to new language pairs: by fine-tuning a
subset of parameters, we only need to keep a copy
of those instead of a whole-model’s worth of values
for the new pair. We quantify this by reporting the
fraction of parameters that is needed in our case
relative to having to store a full new model for each
adapted task.

Our contributions are: 1) We empirically show
the competitive performance of exclusively fine-
tuning the cross-attention layers when contrasted
with fine-tuning the entire Transformer body; 2) We
show that when fine-tuning only the cross-attention
layers, the new embeddings get aligned with the re-
spective embeddings in the pretrained model. The
same effect does not hold when fine-tuning the en-
tire Transformer body; 3) we demonstrate effective
application of this aligning artifact in mitigating
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catastrophic forgetting (Goodfellow et al., 2014)
and zero-shot translation.

2 Cross-Attention Fine-Tuning for MT

Fine-tuning pretrained Transformer models to-
wards downstream tasks has pushed the limits of
NLP, and MT has been no exception (Liu et al.,
2020). Despite the prevalence of using pretrained
Transformers, recent studies focus on investigat-
ing the importance of self- and cross- attention
heads while training models from scratch (Voita
et al., 2019; Michel et al., 2019; You et al., 2020).
These studies verify the relative importance of
cross-attention over self-attention heads by explor-
ing either pruning (Voita et al., 2019; Michel et al.,
2019) or hard-coding methods (You et al., 2020).
Considering these results and the popularity of pre-
trained Transformers, our goal in this work is to
study the significance of cross-attention while fo-
cusing on transfer learning for MT. This section
formalizes our problem statement, introduces the
notations we will use, and describes our setup to
address the questions we raise.

2.1 Problem Formulation

In this work, we focus on investigating the effects
of the cross-attention layers when fine-tuning pre-
trained models towards new MT tasks. Fine-tuning
for MT is a transfer learning method that, in its
simplest form (Zoph et al., 2016), involves training
a model called the ‘parent’ model on a relatively
high-resource language pair, and then using the
obtained parameters to initialize a ‘child model’
when further training towards a new, potentially
low-resource, language pair. Here, high-resource
and low-resource refer to the amount of parallel
data that is available for the languages. Hence-
forth, we use ‘parent’” and ‘child’ when referring to
training components (e.g., model, data, etc.) in the
pretraining and fine-tuning stages, respectively.

Formal Definition. Consider a model fy trained
on the parent dataset, where each training instance
(ws,,yt,) is a pair of source and target sentences in
the parent language pair s,—t,. Then fine-tuning
is the practice of taking the model’s parameters
6 from the model fy to initialize another model
go- gp 1s then further optimized on a dataset of
(xs,,yt.) instances in the child language pair s.~t.
until it converges to g,. We assume either s, = s,
or t. = t, (i.e., child and parent language pairs
share one of the source or target sides).

Granular Notations. It is common practice for
fine-tuning to further update all parent parameters
0 on the child data without making any distinction
between them. We instead consider # at a more
granular level, namely as:

0= U{asrm 0tgt7 genca edem exattn}

where 6. includes source-language token embed-
dings, source positional embeddings, and source
embeddings layer norm parameters; 0 similarly
includes target-language (tied) input and output to-
ken embeddings, target positional embeddings, and
target embeddings layer norm parameters; ey in-
cludes self-attention, layer norm, and feed-forward
parameters in the encoder stack; 4. includes self-
attention, layer norm, and feed-forward parame-
ters in the decoder stack; and 6Oy, includes cross-
attention and corresponding layer norm parameters.

2.2 Analysis Setup

Inspections like ours into individual modules of
Transformer often rely on introducing some con-
straints in order to understand the module better.
These constraints come in the form of full removal
or pruning (Tang et al., 2019; Voita et al., 2019),
hard-coding (You et al., 2020), and freezing (Bo-
goychev, 2020). We rely on freezing. We proceed
by taking pretrained models, freezing certain parts,
and recording the effect on performance, measured
by BLEU.

Within the framework of our problem, to address
the questions raised in §1, our analysis compares
full and partially-frozen fine-tuning for MT under
several settings, which we summarize here:

Cross-attention fine-tuning & embedding fine-
tuning comparative performance. This is to re-
alize how much fine-tuning the cross-attention lay-
ers helps in addition to fine-tuning respective em-
beddings alone.

Cross-attention fine-tuning & full fine-tuning
comparative performance. We wish to find out
where fine-tuning cross-attention stands relative
to fine-tuning the entire body. This is to confirm
whether or not cross-attention alone can adapt to
the child language pair while the encoder and de-
coder layers are frozen.

Pretrained cross-attention layers & random
cross-attention layers. We wish to understand
how important a role cross-attention’s pretrained
values play when single-handedly adapting to a
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new language pair. This determines if the knowl-
edge encoded in cross-attention itself has a part in
its power.

Translation cross-attention & language mod-
elling cross-attention. Finally, we contrast the
knowledge encoded in cross-attention learned by
different pretraining objectives. This is to evalu-
ate if the knowledge brought about by a different
pretraining objective affects the patterns observed
from a cross-attention pretrained on MT while fine-
tuning for MT.

3 Experimental Setup

In this section, we describe our experiments and
the data and model that we use to materialize the
analysis outlined in §2.2.

3.1 Methods

We first provide the details of our transfer setup,
and then describe the specific fine-tuning baselines
and variants used in our experiments.

General Setup. An important concern when
transferring is initializing the embeddings of the
new language. When initializing parameters in the
child model, there are several ways to address the
vocabulary mismatch between the parent and the
child model: frequency-based assignment, random
assignment (Zoph et al., 2016), joint (shared) vo-
cabularies (Nguyen and Chiang, 2017; Kocmi and
Bojar, 2018; Neubig and Hu, 2018; Gheini and
May, 2019; Liu et al., 2020), and no assignment at
all, which results in training randomly initialized
embeddings (Aji et al., 2020). In our experiments,
we choose to always use new random initialization
for the new embeddings (including token embed-
dings, positional embeddings, and corresponding
layer norm parameters). This decision is made
to later let us study what happens to embeddings
under each of the settings, independent of any pre-
training artifacts that exist in them. For instance,
when transferring from Fr—En to {Ro-En, Fr—Es},
respectively, all parameters are reused except for
{Ogc, Gtgt},3 which get re-initialized given the new
{source, target} language. The side that remains
the same (e.g., En when going from Fr-En to Ro—
En), uses the parent vocabulary and keeps the cor-
responding embeddings frozen during fine-tuning.*

3We drop the “respectively” henceforth and use {...}
throughout to indicate alternation.

*Preliminary ablations fine-tuning all embeddings did not
change the outcome or conclusions of our experiments.

Train Corpus

(Sent. Count) Test Corpus  Vocab. Size
Ro-En 2:?31:‘116() newstest2016 16 K/ reuse tgt
Ja-En g&;glﬁg IWSLT17 8 K/ reuse tgt
De-En igigﬂlg IWSLT16 8 K/ reuse tgt
Ha-En fla 5r£91C0r511:)/l v8 newsdev2021 8 K /reuse tgt
Fr-Es g?;;clg)m m. VIS newstest2013  reuse src /8§ K
Fr-De g;‘z]?lc;;n m. vIS newstest2020  reuse src /8 K

Table 1: Data sources and statistics for each of the child
language pairs.

Fine-tuning Settings. With the general transfer
setup, we employ different settings in our exper-
iments to address the points in §2.2. Each fine-
tuning method is clarified based on our notations
in §2.1 : 1) {src, tgt} only updates the embed-
dings {0y, Oig } (Figure 1d). 2) {src, tgt}+body
additionally updates the entire Transformer body
({Gsrc, etgt} + genc + edec + Qxattn) (Figure lb)- 3)
{src, tgt}+xattn only updates the cross-attention
layers in addition to the first baseline ({fsc, O} +
Oxattn)> and keeps the encoder and decoder stacks
frozen (Figure Ic, le). These collectively ad-
dress the first and second settings in §2.2. 4)
{src, tgt}+randxattn similarly only updates the
cross-attention layers in addition to embeddings,
but uses randomly initialized values instead of pre-
trained values (Figure 1f). This addresses the third
setting in §2.2.

For all transfer experiments, we also conduct
the scratch variant (Figure 1 a), where we train
a model from scratch on the child dataset. This
is to confirm the effectiveness of transfer under
each setting. We conduct all the above experi-
ments using a French—English translation model
as parent and transferring to six different child lan-
guage pairs. In §4.1 we conduct an ablation that
substitutes mBART (Liu et al., 2020) as a parent.
mBART is trained with denoising objective in a
self-supervised manner. In contrast to a transla-
tion model, the cross-attention layers in mBART
have thus not been learned using any parallel data.
This enables us to distinguish between different
pretraining objectives, addressing the fourth setting
in §2.2.
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3.2 Data and Model Details

Dataset. For the choice of language pairs and
datasets, we mostly follow You et al. (2020) (Fr—En,
Ro-En, Ja—En, De—En) and additionally include
Ha—En, Fr—Es, and Fr—De. We designate Fr—En as
the parent language pair and Ro—En, Ja—En, De—En,
Ha—En (new source), Fr-Es, Fr-De (new target) as
child language pairs. Our Fr—En parent model is
trained on the Europarl + Common Crawl subset
of WMT14 Fr—En,> which comprises 5,251,875
sentences. Details and statistics of the data for the
child language pairs are provided in Table 1.

Model Details. We use the Transformer base ar-
chitecture (6 layers of encoder and decoder with
model dimension of 512 and 8 attention heads) for
all models, (Vaswani et al., 2017) and the Fairseq
(Ott et al., 2019) toolkit for all our experiments.

All models rely on BPE subword vocabularies
(Sennrich et al., 2016) processed through the Sen-
tencePiece (Kudo and Richardson, 2018) BPE im-
plementation. The vocabulary for the parent model
consists of 32K French subwords on the source
side, and 32K English subwords on the target side.
The sizes of the vocabularies for child models are
also reported in Table 1. We follow the advice from
Gowda and May (2020) when deciding what vocab-
ulary size to choose, i.e., we choose the maximum
number of operations to ensure a minimum of 100
tokens per type.

4 Results and Analysis

Our preliminary empirical results consist of
five experiments for each of the child lan-
guage pairs based on methods described in
§3.1: scratch, {src,tgt}, {src,tgt}+body,
{src,tgt}+xattn, and {src,tgt}+randxattn.
Our core results, which rely on transferring from
the Fr—En parent under each setting, are reported
in Table 2. All scores are detokenized cased BLEU
computed using SACREBLEU (Post, 2018).°

4.1 Cross-attention’s Power and Importance

Translation Quality. Table 2 shows that
{src,tgt}+xattn substantially improves upon
{src,tgt} in all but one case (Ha—En), especially
when transferring to a pair with a new target lan-
guage, and is competitive with {src, tgt}+body

Shttp://statmt.org/wnt14/translation-task.
html

8Signature: BLEU+case.mixed+numrefs. 1 +smooth.exp
+tok.13a+version.1.4.8.

across all six language pairs, suggesting that
cross-attention is capable of taking advantage
of encoded generic translation knowledge in
the Transformer body to adapt to each child
task. Performance gain from {src,tgt} and
drop from {src,tgt}+body when changing the
target language (i.e., Fr—Es and Fr-De) are more
pronounced than when transferring the source.
This is expected—when changing the target, two
out of three cross-attention matrices (key and value
matrices) are now exposed to a new language.
When transferring source, only the query matrix is
exposed to the new language.

Storage. We also report the fraction of the param-
eters that need to be updated in each case. This is
equivalent to the storage overhead that the training
process incurs, as the updated parameters need to
be stored to be used later. However, the parameters
that are reused are only stored once. The number
of parameters updated is dependent on the size of
the vocabulary in each experiment, since embed-
dings for a new vocabulary are included. Hence,
the single number reported for each fine-tuning
strategy is the average across the six language
pairs. Extending to new language pairs following
{src, tgt}+xattn is much more efficient in this re-
gard, as expected. We concretely calculate the num-
ber of parameters that need to be stored combined
for the six new language pairs: {src, tgt}+xattn
stores only 124,430,336 parameters compared to
{src,tgt}+body’s 313,583,616.

Pretrained and Random Values. Finally,
{src,tgt}+randxattn experiments also offer
perspective on the importance of translation
knowledge encoded in cross-attention itself. Not
only does randomly initialized cross-attention fail
to perform as well as pretrained cross-attention
when being transferred, but in two cases, it even
falls behind training from scratch.

Our results from transferring mBART (Liu et al.,
2020) to the child language pairs also emphatically
illustrate the importance of the type of knowledge
encoded in cross-attention. mBART is a 12-layer
Transformer pretrained with a denoising objective
in a self-supervised manner using span masking
and sentence permutation noising functions. Hence,
its cross-attention does not have any translation
knowledge a priori, in contrast with the French—
English MT parent model. We transfer mBART
to the same language pairs as in Table 2 and pro-
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Ro-En Ja-En De-En Ha-En Fr-Es Fr-De
scratch (100%) 29.0 9.2 30.8 54 24.4 18.5
{src,tgt} (8%) 29.8 8.7 324 8.6 21.6 11.6
{src, tgt}+body (75%) 31.0 11.8 36.2 8.8 27.3 214
{src, tgt}+xattn (17%) (-0.1) 309 (-2.0)09.8 (-1.2)35.0 (-0.4)8.4 (-0.8)26.5 (-1.8)19.6
{src,tgt}+randxattn (17%) 279 8.4 333 7.0 26.0 18.8

Table 2: BLEU scores for each of the five experiments across six language pairs. Bold numbers indicate the top two
scoring approaches. Percentages in parentheses next to fine-tuning strategy is the fraction of parameters that had
to be updated and hence stored as new values for future use. Numbers in parentheses next to {src, tgt}+xattn

scores show the difference from {src, tgt}+body.

vide the results in Figure 2. Since mBART uses a
shared vocabulary and tied embeddings between
the encoder and decoder, in Figure 2 we use embed
in experiments’ names to signify all embeddings
get updated in the case of mMBART (O + Oygy).

mBART is a larger model than our Fr-
En parent, both in terms of architecture and
training data. So a higher range of scores
is expected. ~ While the same patterns hold
across embed+{body,xattn,randxatnn} fine-
tuning, the crux of the matter is that embed fine-
tuning fails in contrast to the comparable {src,
tgt} fine-tuning setting of the translation parent.
src fine-tuning has higher BLEU than scratch
in three cases (Ro—En, De-En, Ha—En). How-
ever, embed fine-tuning has higher BLEU than the
scratch baseline only in the Ja—En case, and even
then, very slightly so (only by 0.1 BLEU). This
shows that absence of translation knowledge in
mBART’s pretrained cross-attention leads to its
fine-tuning being more crucial in mBART’s func-
tionality for translation adaptation: exclusively fine-
tuning embeddings in mBART simply fails, while
doing the same with a translation parent model is
more successful.

4.2 Learned Representations Properties

Given that besides cross-attention, embeddings
are the only parameters that get updated in both
{src,tgt}+body and {src, tgt}+xattn settings,
we take a closer look at them. We want to know
how embeddings change under each setting.

To probe the relationship between embeddings
learned as a result of different kinds of fine-tuning,
we examine the quality of induced’ bilingual lex-
icons, a common practice in cross-lingual embed-
dings literature (Artetxe et al., 2017) but inciden-
tally learned in this case.

"via nearest neighbor retrieval

We use the bilingual dictionaries released as a
resource in the MUSE (Lample et al., 2018) reposi-
tory.® For instance, to compare the German embed-
dings from each of the src+body and src+xattn
De-En models to the French embeddings learned
in the parent model, we use the De—Fr dictionary.
We filter our learned embeddings (which are, in
general, of subwords) to be compatible with the
MUSE vocabulary. Of the 8,000 German subwords
in the vocabulary, 2,025 are found in MUSE. For
each of these, we find the closest French embed-
ding by cosine similarity; if the resulting (German,
French) pair is in MUSE, we consider this a match.
Via this method, we find the accuracy of the bilin-
gual lexicon induction through the embeddings
of src+xattn model is 55%. However, the accu-
racy through the embeddings of src+body is much
lower at 19.7%. Due to only considering the exact
matches against the gold dictionary, this is a very
strict evaluation. We also manually look at a sam-
ple of 40 words from the German set and check for
the correctness of retrieved pairs for those using
an automatic translator: while src+xattn scores
in the range of 80%, src+body scores in the range
of 30%. Details of this manual inspection are pro-
vided in Table 4 of the appendix. We further report
the accuracy of the bilingual dictionaries of three
other pairs learned under the two fine-tuning set-
tings for which gold dictionaries are available in
Figure 3. We don’t limit ourselves to child-parent
dictionary induction; we also consider child-child
dictionary induction (e.g., De—Es) which essen-
tially relies on both languages being aligned with
the parent (i.e., En).

Overall, these results confirm that embeddings
learned under {src,tgt}+xattn effectively get
aligned with corresponding parent embeddings.
However, this is not the case with embeddings

8https: //github.com/facebookresearch/MUSE
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Figure 2: BLEU scores across different transfer settings using mBART as parent. Exclusive fine-tuning of embed-
dings (embed) is not effective at all due to lack of translation knowledge in the cross-attention layers.
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Figure 3: Accuracy of bilingual dictionaries induced
through embeddings learned under tgt+body and
tgt+xattn settings. De and Es effectively get aligned
with En under tgt+xattn (left). As they are both
aligned to En, we can also indirectly obtain a De—Es
dictionary (right). Similar practice completely fails un-
der tgt+body.

learned under {src,tgt}+body. This suggests
such effect is not the default pattern in translation
models, but rather an artifact of the freezing choices
made in {src, tgt}+xattn.

5 Utilities of Aligned Embeddings

We saw how fine-tuning only cross-attention results
in cross-lingual embeddings with respect to parent
embeddings. That is how cross-attention is able
to use the baked-in knowledge in the encoder and
decoder without any further updates to them. In
this section, we discuss two areas where this can
be turned to our advantage: mitigating forgetting
and performing zero-shot translation.

5.1 Mitigating Forgetting

One area where the discovery of §4.2 can be taken
advantage of is mitigating catastrophic forgetting.
Catastrophic forgetting refers to the loss of pre-
viously acquired knowledge in the model during
transfer to a new task. To the best of our knowledge,
catastrophic forgetting in MT models has only been
studied within the context of inter-domain adapta-
tion (Thompson et al., 2019; Gu and Feng, 2020),
and not inter-lingual adaptation.

The effectiveness of the cross-lingual embed-

dings learned under the {src, tgt}+xattn setting
at mitigating forgetting is evident from the re-
sults provided in Figure 4. Here we take three
of the transferred models, plug back in the appro-
priate embeddings in them, and compare their per-
formance on the original language pair against
the parent model. Specifically, we take the De—
En, Ro—-En, and Fr—Es models transferred from
Fr—En under each of the two {src,tgt}+xattn
and {src,tgt}+body settings, plug in back
the original {Fr, En} embeddings, and evalu-
ate performance on the Fr—En test set. This
score is then compared against the Fr—En par-
ent model performance on Fr—En test set, which
scores 35.0 BLEU. While being comparable in
terms of performance on the child task as reported
in Table 2, {src, tgt}+xattn constantly outper-
forms {src, tgt}+body on Fr—En. Compared to
the original Fr-En model, the source-transferred
models (De—En, Ro—En) outperform the target-
transferred model (Fr-Es). However, tgt+xattn
is much more robust against forgetting compared
to tgt+body, which remembers close to nothing
(0.2 BLEU).

msrc+body M src+xattn W tgt+body W tgt+xattn

e
E; 40 ) 346
30.1

:2 30 249
Ao 18.4
RE 20
&% 10
mé 02
=E o

RO-EN DE-EN FR-ES

Figure 4: Performance on the original language pair
after transfer. The original Fr—En parent model scores
35.0 BLEU on the Fr—En test set. {src,tgt}+xattn
outperforms {src, tgt}+body on the parent task.

5.2 Zero-Shot Translation

Another area where well-aligned embeddings from
the {src, tgt}+xattn setting can come in handy
is zero-shot translation. Since the source embed-
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dings are aligned, we, for instance, can replace the
French embeddings in the Fr—Es model learned
via tgt+xattn with German embeddings from the
De—En model learned via src+xattn and form a
De-Es translation model with no De-Es training or
direct De—Fr alignment. We additionally build two
more zero-shot systems in the same manner: Ro—Es
(using transferred Ro—En and Fr—Es models) and
Ro-De (using transferred Ro—En and Fr—De mod-
els). To put zero-shot scores in context, for each
pair we also train a model from scratch: for De—
Es using 294,216-sentence News Commentary v14
corpus, and for Ro—Es and Ro—De using 387,653-
sentence and 385,663-sentence Europarl corpora
respectively. All scores are provided in Table 3.

De-Es Ro-Es Ro-De
Zero-shot BLEU 9.2 14.7 9.8
Supervised BLEU 18.3 18.6 13.4

Table 3: Performance of zero-shot systems for three
language pairs. De—Es is evaluated on newstest2013
test set. Ro—Es and Ro-De are evaluated on respective
TED talks corpus test sets (Qi et al., 2018).

In the case of De—Es, we train two additional
models from scratch on 50,000- and 100,000- sen-
tence subsets of the training corpus. These re-
spectively score 7.2 and 12.0 BLEU on the new-
stest2013 De-Es test set (v.s. zero-shot perfor-
mance of 9.2). Taken together, these results show
that the zero-shot methods we obtain from cross-
attention-based transfer can yield reasonable trans-
lation models in the absence of parallel data.

6 Related Work

Studying Cross-attention. Several recent works
consider the importance of self- and cross-attention
heads in the Transformer architecture (Voita et al.,
2019; Michel et al., 2019; You et al., 2020).
The consensus among these works is that cross-
attention heads are relatively more important than
self-attention heads when it comes to introducing
restrictions in terms of pruning and hard-coding.

Module Freezing. In terms of restrictions intro-
duced, our work is related to a group of recent
works that freeze certain modules while fine-tuning
(Zoph et al., 2016; Artetxe et al., 2020; Lu et al.,
2021). Artetxe et al. (2020) conduct their study on
an encoder-only architecture. They show that by
freezing a pretrained English Transformer language

model body and only lexically (embedding layers)
transferring it to another language, they can later
plug in those embeddings into a fine-tuned down-
stream English model, achieving zero-shot transfer
on the downstream task in the other language. Lu
et al. (2021) also work with a decoder-only archi-
tecture. They show that by only fine-tuning the
input layer, output layer, positional embeddings,
and layer norm parameters of an otherwise frozen
Transformer language model, they can match the
performance of a model fully trained on the down-
stream task in several modalities.

Lightweight Fine-tuning. Houlsby et al. (2019)
reduce the number of parameters to be updated
by inserting adapter modules in every layer of
the Transformer model. Then during fine-tuning,
they update the adapter parameters from scratch
and fine-tune layer norm parameters while keep-
ing the rest of the parameters frozen. Since
adapters are only inserted and initialized at the
time of fine-tuning, they are not able to reveal
anything about the importance of pretrained mod-
ules. Our approach, however, enables highlight-
ing the crucial role of the encoded translation
knowledge by contrasting {src, tgt}+xattn and
{src,tgt}+randxattn. Bapna and Firat (2019)
devise adapters for MT by inserting language pair-
specific adapter parameters in the Transformer ar-
chitecture. In the multilingual setting, they show
that by fine-tuning adapters in a shared pretrained
multilingual model, they can compensate for the
performance drop of high-resource languages in-
curred by shared training. Philip et al. (2020) re-
place language pair-specific adapters with mono-
lingual adapters, which enables adapting under the
zero-shot setting.

Another family of lightweight fine-tuning ap-
proaches (Li and Liang, 2021; Hambardzumyan
et al., 2021; Lester et al., 2021), inspired by prompt
tuning (Brown et al., 2020), also relies on updating
a set of additional new parameters from scratch
towards each downstream task. Such sets of pa-
rameters equal a very small fraction of the total
parameters in the pretrained model. By contrast,
our approach updates a subset of the model’s own
parameters instead of adding new ones. We leave
a comparison of the relative advantages and disad-
vantages of these approaches to future work.

Cross-lingual Embeddings. Finally, while we
were able to obtain cross-lingual embeddings
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through our transfer learning approach without
using any dictionaries or direct parallel corpora,
Wada et al. (2020) use a direct parallel corpus and
a shared LSTM model that does translation and re-
construction at the same time to obtain aligned em-
beddings. Given tremendously large monolingual
corpora for embedding construction, cross-lingual
embeddings can also be obtained by applying a lin-
ear transformation on one language’s embedding
space to map it to the second one in a way that
minimizes the distance between equivalents in the
shared space according to a dictionary (Mikolov
et al., 2013; Xing et al., 2015; Artetxe et al., 2016).
These works specifically targeted the parallel dic-
tionary reconstruction task, while we used the task
incidentally, to intrinsically evaluate the parameters
learned by our methods.

7 Conclusion

We look at how powerful cross-attention can be un-
der constrained transfer learning setups. We empiri-
cally show that cross-attention can single-handedly
result in comparable performance with fine-tuning
the entire Transformer body, and it is through no
magic: it relies on translation knowledge in the
pretrained values to do so and has new embeddings
align with corresponding parent language embed-
dings. We furthermore show that such aligned em-
beddings can be used towards catastrophic forget-
ting mitigation and zero-shot transfer. We hope
this investigative study encourages more analyses
in the same spirit towards more insights into the
inner workings of different modules and how they
can be put to good use.
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A Manual Bilingual Dictionary
Evaluation

German Word

srct+xattn
French Equivalent

srctbody
French Equivalent

Entdeckung
Feind
Architekten
gibt
erforschen
Philosoph
Cent
formen
lassen
Nummer
konnen
dasselbe
gelost
wenig
zerstort
Bericht
Mark

Brief
Linien
entworfen
Dunkelheit
Kreis

Haie

spielt
Elektrizitét
Solar
Fliigel
Konzept
Strukturen
will

Hier
verlieren
unterstiitzen
Planet
buchstiblich
Schuld
dass
plotzlich
Kann

Ball

découverte
ennemi
architectes
existe
explorer
philosophie
centi
forme
laissez
numéro
puissent
mémes
résoud
peu
détruit
reportage
Mark
lettre
lignes
congus
ténebres
cercle
requins
joue
électricité
solaire
ailes
concept
structures
veut
Ici
perdent
soutien
planete
littéralement
bla
que
soudainement
Pouvez
ballon

amende
ennemi
architecture
jette
sond
philosophie
centaines
forme
PCP
Key
puisse
lourds
résoud
peu
dévas
témoin
trailer
lettres
lignes
monté
obscur
rond
Hun
tragédie
électriques
Arabes
avion
alliance
définit
voulons
Vous
perdent
appui
planete
multimédia
génére
toi
risques
ciel
ballon

Table 4: Sampled German words and their equiv-
alents based on the embeddings learned by each
of the models. The correct translations are high-
lighted. Each pair was manually checked for cor-
rectness using an automatic translator.

1765



