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Abstract

Probing experiments investigate the ex-
tent to which neural representations make
properties—like part-of-speech—predictable.
One suggests that a representation encodes
a property if probing that representation
produces higher accuracy than probing a
baseline representation like non-contextual
word embeddings. Instead of using baselines
as a point of comparison, we’re interested in
measuring information that is contained in
the representation but not in the baseline. For
example, current methods can detect when a
representation is more useful than the word
identity (a baseline) for predicting part-of-
speech; however, they cannot detect when the
representation is predictive of just the aspects
of part-of-speech not explainable by the word
identity. In this work, we extend a theory
of usable information called V-information
and propose conditional probing, which
explicitly conditions on the information in
the baseline. In a case study, we find that
after conditioning on non-contextual word
embeddings, properties like part-of-speech are
accessible at deeper layers of a network than
previously thought.

1 Introduction

Neural language models have become the foun-
dation for modern NLP systems (Devlin et al.,
2019; Radford et al., 2018), but what they under-
stand about language, and how they represent that
knowledge, is still poorly understood (Belinkov
and Glass, 2019; Rogers et al., 2020). The prob-
ing methodology grapples with these questions by
relating neural representations to well-understood
properties. Probing analyzes a representation by us-
ing it as input into a supervised classifier, which is
trained to predict a property, such as part-of-speech
(Shi et al., 2016; Ettinger et al., 2016; Alain and
Bengio, 2016; Adi et al., 2017; Belinkov, 2021).
One suggests that a representation encodes a
property of interest if probing that representation

produces higher accuracy than probing a baseline
representation like non-contextual word embed-
dings. However, consider a representation that
encodes only the part-of-speech tags that aren’t
determined by the word identity. Probing would
report that this representation encodes less about
part-of-speech than the non-contextual word base-
line, since ambiguity is relatively rare. Yet, this
representation clearly encodes interesting aspects
of part-of-speech. How can we capture this?

In this work, we present a simple probing
method to explicitly condition on a baseline.! For
a representation and a baseline, our method trains
two probes: (1) on just the baseline, and (2) on
the concatenation of the baseline and the represen-
tation. The performance of probe (1) is then sub-
tracted from that of probe (2). We call this process
conditional probing. Intuitively, the representation
is not penalized for lacking aspects of the property
accessible in the baseline.

We then theoretically ground our probing
methodology in V-information, a theory of usable
information introduced by Xu et al. (2020) that
we additionally extend to multiple predictive vari-
ables. We use V-information instead of mutual in-
formation (Shannon, 1948; Pimentel et al., 2020b)
because any injective deterministic transformation
of the input has the same mutual information as
the input. For example, a representation that maps
each unique sentence to a unique integer must have
the same mutual information with any property as
does BERT’s representation of that sentence, yet
the latter is more useful. In contrast, V-information
is defined with respect to a family of functions
V that map one random variable to (a probability
distribution over) another. V-information can be
constructed by deterministic transformations that
make a property more accessible to the functions
in the family. We show that conditional probing

'Our code is available at https://github.com/
john-hewitt/conditional-probing.
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provides an estimate of conditional V-information
Iy, (repr — property | baseline).

In a case study, we answer an open question
posed by Hewitt and Liang (2019): how are the
aspects of linguistic properties that aren’t explain-
able by the input layer accessible across the rest
of the layers of the network? We find that the part-
of-speech information not attributable to the input
layer remains accessible much deeper into the lay-
ers of ELMo (Peters et al., 2018a) and RoBERTa
(Liu et al., 2019) than the overall property, a fact
previously obscured by the gradual loss across lay-
ers of the aspects attributable to the input layer. For
the other properties, conditioning on the input layer
does not change the trends across layers.

2 Conditional V-information Probing

In this section, we describe probing methods and
introduce conditional probing. We then review V-
information and use it to ground probing.

2.1 Probing setup

We start with some notation. Let X € X be a
random variable taking the value of a sequence
of tokens. Let ¢(X) be a representation resulting
from a deterministic function of X; for example,
the representation of a single token from the se-
quence in a layer of BERT (Devlin et al., 2019).
Let Y € )Y be a property (e.g., part-of-speech of a
particular token), and V a probe family, that is, a set
of functions { fp : 6 € RP}, where fy : z — P())
maps inputs 2 to probability distributions over the
space of the label.” The input z € R™ may be in
the space of ¢(X), that is, R?, or another space,
e.g., if the probe takes the concatenation of two rep-
resentations. In each experiment, a training dataset
Dy = {(wi,v:)}: is used to estimate 6, and the
probe and representation are evaluated on a sep-
arate dataset D = {(z4,v;)}:. We refer to the
result of this evaluation on some representation R
as Perf(R).

2.2 Baselined probing

Let B € R? be a random variable representing a
baseline (e.g., non-contextual word embedding of
a particular token.) A common strategy in probing
is to take the difference between a probe perfor-
mance on the representation and on the baseline

2We discuss mild constraints on the form that V' can take
in the Appendix. Common probe families including linear
models and feed-forward networks meet the constraints.

(Zhang and Bowman, 2018); we call this baselined
probing performance:

Perf(¢(X)) — Perf(B). (1)

This difference in performances estimates how
much more accessible Y is in ¢(X) than in the
baseline B, under probe family V.

But what if B and ¢(X) capture distinct aspects
of Y? For example, consider if ¢(X) captures
parts-of-speech that aren’t the most common label
for a given word identity, while B captures parts-
of-speech that are the most common for the word
identity. Baselined probing will indicate that ¢(X)
explains less about Y than the baseline, a “nega-
tive” probing result. But clearly ¢(X) captures an
interesting aspect of Y'; we aim to design a method
that measures just what ¢(X) contributes beyond
B in predicting Y, not what B has and ¢(X) lacks.

2.3 Our proposal: conditional probing

In our proposed method, we again train two probes;
each is the concatenation of two representations of
size d, so we let z € R??. The first probe takes
as input [B; ¢(X)], that is, the concatenation of
B to the representation ¢(X) that we’re studying.
The second probe takes as input [B; 0], that is, the
concatenation of B to the 0 vector. Conditional
probing method takes the difference of the two
probe performances, which we call conditional
probing performance:

Perf([B; 6(X)]) — Perf([B:0)).  (2)

Including B in the probe with ¢(X ) means that
¢»(X) only needs to contribute what is missing
from B. In the second probe, the 0 is used as a
placeholder, representing the lack of knowledge of
¢(X); its performance is subtracted so that ¢(X)
isn’t given credit for what’s explainable by B.’

2.4 V-information

V-information is a theory of usable information—
that is, how much knowledge of random variable Y
can be extracted from r.v. R when using functions
in V), called a predictive family (Xu et al., 2020).
Intuitively, by explicitly considering computational
constraints, V-information can be constructed by
computation, in particular when said computation
makes a variable easier to predict. If V is the set
of all functions from the space of R to the set of

3The value O is arbitrary; any constant can be used, or one
can train the probe on just B.
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probability distributions over the space of Y, then
V-information is mutual information (Xu et al.,
2020). However, if the predictive family is the
set of all functions, then no representation is more
useful than another provided they are related by a
bijection. By specifying a ), one makes a hypoth-
esis about the functional form of the relationship
between the random variables 12 and Y. One could
let V be, for example, the set of log-linear models.

Using this predictive family 1, one can define
the uncertainty we have in Y after observing R as
the V-entropy:

Hy(Y|R) = inf Bryory [ ~log fIr](9)], )

where f[r] produces a probability distribution over
the labels. Information terms like Iy)(R — Y') are
defined analogous to Shannon information, that is,
Iyv(R —Y) = Hy(Y) — Hy(Y|R). For brevity,
we leave a full formal description, as well as our
redefinition of V-information to multiple predictive
variables, to the appendix.

2.5 Probing estimates VV-information

With a particular performance metric, baselined
probing estimates a difference of V-information
quantities. Intuitively, probing specifies a func-
tion family V), training data is used to find f € V
that best predicts Y from ¢(X) (the infimum in
Equation 7), and we then evaluate how well Y is
predicted. If we use the negative cross-entropy
loss as the Perf function, then baselined probing
estimates

y(¢(X) =Y) - Iv(B =Y),

the difference of two V-information quantities.
This theory provides methodological best practices
as well: the form of the family ) should be chosen
for theory-external reasons,* and since the probe
training process is approximating the infimum in
Equation 3, we’re not concerned with sample effi-
ciency.

Baselined probing appears in existing
information-theoretic probing work: Pimentel et al.
(2020b) define conditional mutual information
quantities wherein a lossy transformation c(-)
is performed on the sentence (like choosing a
single word), and an estimate of the gain from

“There are also PAC bounds (Valiant, 1984) on the estima-
tion error for V-information (Xu et al., 2020); simpler families
V with lower Rademacher complexity result in better bounds.

knowing the rest of the sentence is provided;
I($(X); Y]e(6(X))) = I(X; Y]e(X)).5 Method-
ologically, despite being a conditional information,
this is identical to baselined probing, training one
probe on just ¢(X) and another on just c(¢(X)).6

2.6 Estimating conditional information

Inspired by the transparent connections between
V-information and probes, we ask what the V-
information analogue of conditioning on a variable
in a mutual information, that is, (X, Y| B). To do
this, we extend V-information to multiple predic-
tive variables, and design conditional probing (as
presented) to estimate

Iv(¢(X) = Y|[B)
= Hy(Y|B) — Hy(Y|B, ¢(X)),

thus having the interpretation of probing what
¢(X) explains about Y apart from what’s already
explained by B (as can be accessed by functions in
V). Methodologically, the innovation is in provid-
ing B to the probe on ¢(X), so that the information
accessible in B need not be accessible in ¢(X).

3 Related Work

Probing—mechanically simple, but philosophically
hard to interpret (Belinkov, 2021)—has led to a
number of information-theoretic interpretations.
Pimentel et al. (2020b) claimed that probing
should be seen as estimating mutual information
I(¢(X);Y) between representations and labels.
This raises an issue, which Pimentel et al. (2020b)
notes: due to the data processing inequality, the MI
between the representation of a sentence (from e.g.,
BERT) and a label is upper-bounded by the MI
between the sentence itself and the label. Both an
encrypted document X and an unencrypted version
¢(X) provide the same mutual information with
the topic of the document Y. This is because MI
allows unbounded work in using X to predict Y,
including the enormous amount of work (likely)
required to decrypt it without the secret key. In-
tuitively, we understand that ¢(X) is more useful
than X, and that this is because the function ¢ per-
forms useful “work” for us. Likewise, BERT can
perform useful work to make interesting properties

SEquality depends on the injectivity of ¢; otherwise know-
ing the representation ¢(X ) may be strictly less informative
than knowing X.

®This is because of the data processing inequality and the
fact that ¢(¢(X)) is a deterministic function of ¢(X).
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more accessible. While Pimentel et al. (2020b) con-
clude from the data processing inequality that prob-
ing is not meaningful, we conclude that estimating
mutual information is not the goal of probing.

Voita and Titov (2020) propose a new probing-
like methodology, minimum description length
(MDL) probing, to measure the number of bits
required to transmit both the specification of the
probe and the specification of labels. Intuitively, a
representation that allows for more efficient com-
munication of labels (and probes used to help per-
form that communication) has done useful “work”
for us. Voita and Titov (2020) found that by using
their methods, probing practitioners could pay less
attention to the exact functional form of the probe.
V-information and MDL probing complement each
other; V-information does not measure sample ef-
ficiency of learning a mapping from ¢(X) to Y,
instead focusing solely on how well any function
from a specific family (like linear models) allows
one to predict Y from ¢(X). Further, in prac-
tice, one must choose a family to optimize over
even in MDL probing; the complexity penalty of
communicating the member of the family is anal-
ogous to choosing V. Further, our contribution of
conditional probing is orthogonal to the choice of
probing methodology; it could be used with MDL
probing as well.

V-information places the functional form of the
probe front-and-center as a hypothesis about how
structure is encoded. This intuition is already pop-
ular in probing, For example, Hewitt and Manning
(2019) proposed that syntax trees may emerge as
squared Euclidean distance under a linear trans-
formation. Further work refined this, showing
that a better structural hypothesis may be hyper-
bolic (Chen et al., 2021) axis-aligned after scaling
(Limisiewicz and Marecek, 2021), or an attention-
inspired kernel space (White et al., 2021).

In this work, we intentionally avoid claims as
to the “correct” functional family V to be used in
conditional probing. Some work has argued for
simple probe families (Hewitt and Liang, 2019;
Alain and Bengio, 2016), others for complex fami-
lies (Pimentel et al., 2020b; Hou and Sachan, 2021).
Pimentel et al. (2020a) argues for choosing mul-
tiple points along an axis of expressivity, while
Cao et al. (2021) define the family through the
weights of the neural network. Other work per-
forms structural analysis of representations without
direct supervision (Saphra and Lopez, 2019; Wu

et al., 2020).

Hewitt and Liang (2019) suggested that dif-
ferences in ease of identifying the word identity
across layers could impede comparisons between
the layers; our conditional probing provides a
direct solution to this issue by conditioning on
the word identity. Kuncoro et al. (2018) and
Shapiro et al. (2021) use control tasks, and Rosa
et al. (2020) measures word-level memorization
in probes. Finally, under the possible goals of
probing proposed by Ivanova et al. (2021), we
see V-information as most useful in discovering
emergent structure, that is, parsimonious and
surprisingly simple relationships between neural
representations and complex properties.

4 Experiments

In our experiments, we aim for a case study
in understanding how conditioning on the non-
contextual embeddings changes trends in the acces-
sibility of linguistic properties across the layers of
deep networks.

4.1 Tasks, models, and data

Tasks. We train probes to predict five linguistic
properties, roughly arranged in order from lower-
level, more concrete properties to higher-level,
more abstract properties. We predict five linguis-
tic properties Y': (i) upos: coarse-grained (17-tag)
part-of-speech tags (Nivre et al., 2020), (ii) xpos:
fine-grained English-specific part-of-speech tags,
(iii) dep rel: the label on the Universal Dependen-
cies edge that governs the word, (iv) ner: named
entities, and (v) sst2: sentiment.

Data. All of our datasets are composed of En-
glish text. For all tasks except sentiment, we
use the Ontonotes v5 corpus (Weischedel et al.,
2013), recreating the splits used in the CoNLL
2012 shared task, as verified against the split statis-
tics provided by Strubell et al. (2017).”® Since
Ontonotes is annotated with constituency parses,
not Universal Dependencies, we use the converter
provided in CoreNLP (Schuster and Manning,

"In order to provide word vectors for each token in the
corpus, we heuristically align the subword tokenizations of
RoBERTa with the corpus-specified tokens through character-
level alignments, following Tenney et al. (2019).

80ntonotes uses the destructive Penn Treebank tokeniza-
tion (like replacing brackets { with ~LCB- (Marcus et al.,
1993)). We perform a heuristic de-tokenization process before
subword tokenization to recover some naturalness of the text.
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Figure 1: Probing results on RoBERTa. Results are
reported in bits of V-information; higher is better.

2016; Manning et al., 2014). For the sentiment an-
notation, we use the binary GLUE version (Wang
et al., 2019) of the the Stanford Sentiment Tree-
bank corpus (Socher et al., 2013). All results are
reported on the development sets.

Models. We evaluate the popular RoBERTa
model (Liu et al., 2019), as provided by the Hug-
gingFace Transformers package (Wolf et al., 2020),
as well as the ELMo model (Peters et al., 2018a),
as provided by the AllenNLP package (Gardner
etal., 2017). When multiple RoBERTa subwords
are aligned to a single corpus token, we average
the subword vector representations.

Probe families. For all of our experiments, we
choose V to be the set of affine functions followed
by softmax.” For word-level tasks, we have

fo(#i(X);) = softmax(We;(X); +b) (4

where ¢ indexes the layer in the network and j
indexes the word in the sentence. For the sentence-
level sentiment task, we average over the word-
level representations, as

fo(¢i(X)) = softmax(W avg(¢;(X)) +b) (5)

4.2 Results

Results on ELMo. ELMo has a non-contextual
embedding layer ¢g, and two contextual layers ¢;
and ¢, the output of each of two bidirectional
LSTMs (Hochreiter and Schmidhuber, 1997). Pre-
vious work has found that ¢; contains more syn-
tactic information than ¢, (Peters et al., 2018b;

“We used the Adam optimizer (Kingma and Ba, 2014) with
starting learning rate 0.001, and multiply the learning rate by

0.5 after each epoch wherein a new lowest validation loss is
not achieved.

Baselined Conditional

1 P2 o1 2
upos 0.20 0.16 0.22 0.20
Xpos 0.20 0.16 0.21 0.20
deprel 0.99 0.81 1.00 0.87
ner 0.24 0.23 025 0.24
sst2 0.18 0.13 0.17 0.13

Table 1: Results on ELMo, reported in bits of V-
information; higher is better. ¢; refers to layer :.

Zhang and Bowman, 2018). Baselined probing
performance, in Table 1, replicates this finding.
But Hewitt and Liang (2019) conjecture that this
may be due to accessibility of information from ¢g.
Conditional probing answers shows that when only
measuring information not available in ¢, there is
still more syntactic information in ¢; than ¢2, but
the difference is much smaller.

Results on ROBERTa. RoBERTa-base is a pre-
trained Transformer consisting of a word-level em-
bedding layer ¢g and twelve contextual layers ¢;,
each the output of a Transformer encoder block
(Vaswani et al., 2017). We compare baselined
probing performance to conditional probing per-
formance for each layer. In Figure 1, baselined
probing indicates that part-of-speech information
decays in later layers. However, conditional prob-
ing shows that information not available in ¢q is
maintained into deeper layers in RoBERTa, and
only the information already available in ¢ de-
cays. In contrast for dependency labels, we find
that the difference between layers is lessened after
conditioning on ¢g, and for NER and sentiment,
conditioning on ¢y does not change the results.

5 Conclusion

In this work, we proposed conditional probing, a
simple method for conditioning on baselines in
probing studies, and grounded the method theoreti-
cally in V-information. In a case study, we found
that after conditioning on the input layer, usable
part-of-speech information remains much deeper
into the layers of ELMo and RoBERTa than pre-
viously thought, answering an open question from
Hewitt and Liang (2019). Conditional probing is a
tool that practitioners can easily use to gain addi-
tional insight into representations.'’

"An executable version of the experiments in
this paper is on Codalab, at this link: https:
//worksheets.codalab.org/worksheets/
0x46190e£f741004a43a2676a3b46ealc76.
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A Multivariable V-information

In this section we introduce Multivariable V-
information. V-information as introduced by Xu
et al. (2020) was defined in terms of a single pre-
dictive variable X, and is unwieldy to extend to
multiple variables due to its use of a “null” input
outside the sample space of X (Section D.3).!!

"In particular, the null input encodes not knowing the value
of X; technical conditions in the definition of V-information

as to the behavior of this null value increase in number expo-
nentially with the number of predictive variables.

Our multivariable V-information removes the use
of null variables and naturally captures the mul-
tivariable case. Consider an agent attempting to
predict Y € ) from some information sources
X1,...,Xp, where X; € Xj. Let P()) be the set
of all probability distributions over Y.

At a given time, the agent may only have access
to a subset of the information sources. Let the
known set C' € C and unknown set C' € C be a
binary partition of X7, ..., X,,. Though the agent
isn’t given the true value of C' when predicting Y/,
it is instead provided with a constant value a € C,
which does not vary with Y.

We first specify constraints on the set of func-
tions that the agent has at its disposal for predicting
Y from X:

Definition 1 (Multivariable Predictive Family). Let
Q={f: X x---x X, = P(Y)}. Wesay that
V C Q is a predictive family if, for any partition of

Xy, ..., X, into C,C, we have

Vi1, o Tn, EV XA X -+ X Xy, ©)
3f' eVv:ve ed, fle,e) = f(c?),
where we overload f(c,¢) to equal f(x1,...,xy)

for the values of x1, . . ., x,, specified by c, .

Intuitively, the constraint on V states that for any
binary partition of the X7, ..., X, into known and
unknown sets, if a function is expressible given
some constant assignment to the unknown vari-
ables, the same function is expressible if the un-
known variables are allowed to vary arbitrarily. In-
tuitively, this means one can assign zero weight to
those variables, so their values don’t matter. This
constraint, which we refer to as multivariable op-
tional ignorance in reference to Xu et al. (2020),
will be used to ensure non-negativity of informa-
tion; when some X, is moved from C to C as a
new predictive variable for the agent to use, op-
tional ignorance ensures the agent can still act as if
that variable were held constant.

Example 1. Let X1,..., X, € R%, ... R% and
Y € Y be random variables. Let ) be defined as
in Definition 1. Then V = {f : f(x1,...,2y,) =
softmax(Wo o(Wi[z1;- -« ;2,] +b) 4+ b)}, the set
of 1-layer multi-layer perceptrons, is a predictive
family. Ignorance of some x; can be achieved by
setting the corresponding rows of W to zero.

2The exact value of @ will not matter, as a result of Defini-
tion 1.
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Given the predictive family of functions the
agent has access to, we define the multivariable
V-information analogue of entropy:

Definition 2 (Multivariable Predictive V-entropy).
Let Xq,...,X, € X1,...,X,. Let C € C and
C € C form a binary partition of X1, ..., X,. Let
a € C. Then the V-entropy of Y conditioned on C
is defined as

Hy(Y|C) = }25 Ecy| —log f(c,a)ly]]. (D)

Note that a does not vary with y; thus it is ‘infor-
mationless’. The notation f(c, a) takes the known
value of C C {Xj,...,X,}, and the constant
value a, and produces a distribution over ), and
f(c,a)[y] evaluates the density at y.

If we let V' = €, the set of all functions from the
A to distributions over )/, then V-entropy becomes
exactly Shannon entropy (Xu et al., 2020). And just
like for Shannon information, the multivariable V-
information from some variable X, to Y is defined
as the reduction in entropy when its value becomes
known. In our notation, this means some X is
moving from C (the unknown variables) to C' (the
known variables), so this definition encompasses
the notion of conditional mutual information if C'
is non-empty to start.

Definition 3 (Multivariable V-information). Let
Xi,...,. Xy, € X1,..., X, and Y € Y be ran-
dom variables. Let V be a multivariable pre-
dictive family. Then the conditional multivari-
able V-information from Xy to Y, where { €
{1,...,n}, conditioned on prior knowledge of

C Cc {Xu1,...,X,}, is defined as

Iy(Xe = Y|C) = Hy(Y|C) — Hy(Y|C U {X,})
3

A.1 Properties of multivariable
V-information

The crucial property of multivariable V-
information as a descriptor of probing is
that it can be constructed through computation. In
the example of the agent attempting to predict the
sentiment (Y') of an encrypted message (X), if the
agent has V equal to the set of linear functions,
then Iy(X — Y) is small'®>. A function ¢ that
decrypts the message constructs V-information
about Y, since Iy(¢p(X) — Y) is larger. In
probing, ¢ is interpreted to be the contextual

BWhere Iy, (X — Y) is defined to be Iy, (X — Y|{})

representation learner, which is interpreted as
constructing V-information about linguistic
properties.

V-information also has some desirable elemen-
tary properties, including preserving some of
the properties of mutual information, like non-
negativity. (Knowing some X, should not reduce
the agent’s ability to predict ).

Proposition 1. Let X;,..., X,, € X1,..., X, and
Y € Y be random variables, and V and U be
predictive families. Let C, C be a binary partition
of X1,...,Xp.

1. Independence If Y, C are jointly independent
OfXg, then IV(Xg — Y’C) = 0.

2. Monotonicity If U C V, then Hy(Y|C) <
Hy(Y)0).

3. Non-negativity I,( X, — Y|C) > 0.

B Probing as Multivariable
V-information Estimation

We’ve described the V-information framework, and
discussed how it captures the intuition that us-
able information about linguistic properties is con-
structed through contextualization. In this section,
we demonstrate how a small step from existing
probing methodology leads to probing estimating
V-information quantities.

B.1 Estimating V-entropy

In probing, gradient descent is used to pick the
function in ) that minimizes the cross-entropy loss,

1

N > —logplylgi(x);0), (9

xvyEDtr

where 0 are the trainable parameters of functions in
V. Recalling the definition of V-entropy, this mini-
mization performed through gradient descent is ap-
proximating the inf over V, since — log p(y|z; 8) is
equal to — log fp(x)[y]. To summarize, this states
that the supervision used in probe training can be
interpreted as approximating the inf in the defi-
nition of V-entropy. In traditional probing, the
performance of the probe is measured on the test
set Dy using the traditional metric of the task, like
accuracy of Fi score. In V-information probing,
we use Dy, to approximate the expectation in the
definition of V-entropy. Thus, the performance of a
single probe on representation 12, where the perfor-
mance metric is cross-entropy loss, is an estimate
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of Hy(Y|R). This brings us to our framing of a
probing experiment as estimating a V-information
quantity.

B.2 Baselined probing

Let baselined probing be defined as in the main
paper. Then if the performance metric is defined
as the negative cross-entropy loss, we have that
Perf(B) estimates —Hy (Y |B), Perf(¢(X)) esti-
mates —Hy(Y|¢(X)), and so baselined probing
performance is an estimate of

Hy(Y{B}) = Hy(Y[{$:i(X)})

LX) = Y)-L(Boy) O

B.3 Conditional probing

Let conditional probing be defined as in the
main paper. Then if the performance metric
is defined as the negative cross-entropy loss,
we have that Perf([B; 0]) estimates —Hy (Y| B),
Perf([B; ¢(X)]) estimates —Hy (Y| B, ¢(X)), and
so conditional probing performance is an estimate
of

Hy(Y{B}) — Hy(Y{B, ¢:(X)})

11
— Ly(6:(X) - Y|B) (n

The first is estimated with a probe just on B—under
the definition of predictive family, this means pro-
viding the agent with the real values of the base-
line, and some constant value like the zero vector
instead of ¢;(X). That is, holding a € ¢;(X);
constant and sampling b, y ~ B, Y, the probability
assigned to y is f(b,a)[y] for f € V. The second
term is estimate with a probe on both B and ¢;(X).
So, sampling b, z,y ~ B, X, Y, the probability as-
signed to y is f (b, ¢;(x))[y] for f € V. Intuitively,
conditional probing measures the new information
in ¢;(X) because in both probes, the agent has
access to B, so no benefit is gained from ¢;(X)
supplying the same information.

C Proof of Proposition 1

Monotonicity If U C V, then Hy(Y|C) <
Hy (Y|C). Proof:

Hy(Y|C) = }g{{ E,y [—log fle, a)(y)]
> }1615 Ecy[—1log fle,al(y)]  (12)
= Hy(Y|C)

This holds because we are taking the infimum over
V such thatif f € U then f € V.

Non-Negativity (X, — Y|C) > 0. Where
V& C V is the subset of functions that satisfies
fle.dl = fle,@)V @ € C, and a,a,, denote the
constant values of the unknown set with and with-
out Xy, the proof'is as follows:

Hy(Y|C) = }25 Ec 2y, [—log fle, al(y)]

- fienvf— Eewpy [—10g fle, xe, a0 (y)]
C

> }IEI{; Ec,xg,y [_ log f[ca Ly, d/f] (y)]
= Hy(Y|CU{X,})
(13)
By definition, Iy(X, — Y|C) = Hy(Y|C) —
Hv(Y‘C U {Xg}) > 0.
Independence IfY, C are jointly independent of
Xy, then I)(X — Y|C) = 0. Proof:
Hy(Y|CU{X,})
= Jicrelf)Ec,xe,y [—1log fle, e, ) (y)]

= }gngEc,y [—1log fle, e, a6 (y)]

> E:Eg |:}I€1£ Ec,y [_ log f[ca Ly, C_L/Z] (y)]:|

= E,, [fienvfé Ecy [—log fle, zy, dy] (y)]]
— fienvf@ Ecy [~ 1log fle,al(y)]
> inf B, [ log f[c, al(y)]

= Hy(Y|C)
(14)

In the second line, we break down the expectation
based on conditional independence. Then we ap-
ply Jensen’s inequality and optional ignorance to
remove the expectation w.r.t. z. Since V5 C V), the
former’s infimum is at least as large as the latter’s.
Then

Iy(Xy = Y|C) = Hy(C)-Hy(Y|CU{X,}) <0

Combined with non-negativity (i.e., Iy(X, —
Y'|C) > 0) we have inequality in both directions,
SO Iv(Xg — Y‘C) =0.

D Equivalence of Xu et al. (2020) and
our V-information

In order to define conditional probing, we needed
a theory of V-information that considered arbi-
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trarily many predictive variables X7, ..., X,. V-
information as presented by Xu et al. (2020) con-
siders only a single predictive variable X'. It be-
comes extremely cumbersome, due to the use of
null variables in their presentation, to expand this
to more, let alone arbitrarily many variables. So,
we redefined and extended V-information to more
naturally capture the case with an arbitrary (finite)
number of variables. In this section, we show that,
in the single predictive variable case considered by
Xu et al. (2020), our V-information definition is
equivalent to theirs. For the sake of this section,
we’ll call the V-information of Xu et al. (2020)
Xu-V-information, and ours V-information.

In particular, we show that there is a trans-
formation from any predictive family of Xu-V-
information to predictive family for V-information
under which predictive V-entropies are the same
(and the same in the opposite direction.)

D.1 From Xu et al. (2020) to ours

We recreate the definition of predictive family from
Xu et al. (2020) here:

Definition 4 (Xu predictive family). Let T = {f :
XU{o} — P())}. Wesaythatd C Y is a Xu
predictive family if it satisfies

Vf eU,NP € range(f),3f €U, s.t.
Vo € X, flz] = P, f'le] = P

(15)
(16)

Now, we construct one of our predictive families
from the Xu predictive family. Let &/ C T be a Xu
predictive family. We now construct a predictive
family under our framework, ¥V C ). For each
feld, f: xu{o} — P(Y), construct the
following two functions: first, g, which recreates
the behavior of f on the domain of X:

g: X =P
g:xz— f(x)

A7)
(18)

and second, ¢/, which recreates the behavior of f
on &, given any input from A

g X —PO)
gz~ f(2)

(19)
(20)

Then we define our predictive family as the union
of g, ¢ forall f € V:

V={J{g.d}

feu

2n

where V C Qand Q = {f : X — P(Y)}. Note
from this construction that we’ve eliminated the
presence of the null variable from the definition of
predictive family.

We now show that V), as defined in the con-
struction above, is in fact a predictive family un-
der our definition. Under our definition, there
are two cases: either ¥ € C or X € C. If
X € C, then for all f,z € V x X, if we take
any f/ € V (which is non-empty), then there is
noé@ € C, so vacuously the condition holds. If
X € C, then for all f,z € V, we have that f
was either g or ¢’ for some function h € U in
the construction of V (because all functions in
V were part of some pair g, ¢’.) Then we take
f' = ¢', and have that for all & € C, thatis z € X,
f'(c,e) = f'(e,@) = ¢'(x) = h(D), satisfying
the constraint.

Finally, we show that the predictive V-entropies
of V (under our definition) and &/ (under that of Xu
et al. (2020)) are the same. Consider Xu-predictive
entropies:

Hy(Y[X) = J}g{{ E.y[—log flz](y)] (22

Hy(Y|2) = inf E,[—log f2](y)]  (23)
First we want to show Hy(Y|X) = Hy(Y|X).
Consider the inf in Equation 22; the f € U/ that
achieves the inf corresponds to some g € V by con-
struction, and since f(z) = g(x), we have that the
value of the inf for V) is at least as low as for /. The
same is true in the other direction; in our definition
Hy (Y| X), the g that achieves the inf corresponds
to some f € U that produces the same probability
distributions. So, Hy/(Y'|X) = Hy(Y|X).

Now we want to show Hy(Y|@) = Hy(Y).
Now, consider the inf in Equation 23. The f € U
that achieves the inf corresponds to some g, ¢’ in
the construction of V; that ¢’ takes any x € X
and produces f[@]; hence the value of the inf for
V is at least as low as for &{. The same is true
in the other direction. We have that Hy(Y) =
inf ey E,[—log f(a)[y]] for any a € X. Either a
g or a g’ from the construction of V achieves this
inf; if a g achieves it, then its corresponding ¢’
emits the same probability distributions, so WLOG
we’ll assume it’s a ¢'. We know that ¢'(a) = f(92)
forall a € X, so Hy(Y|@) is at most Hy(Y). So,
Hy(Y|2) = Hy(Y).

Since the V-entropies of the predictive family
from Xu et al. (2020) and ours are the same, all the
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information quantities are the same. This shows
that the predictive family we constructed in our
theory is equivalent to the predictive family from
Xu et al. (2020) that we started with.

D.2 From our V-information to that of Xu
et al. (2020)

Now we construct a predictive family &/ under the
framework of Xu et al. (2020) from an arbitrary
predictive family V under our framework. For each
function f € V, we have from the definition that
there exists f € V such that Vo € X, f'(z) = P
for some P € P()). We then define the function:

g: XU{e} =P (24)
| fx) zeXx
g(z) = {f,(a) o (25)

where a € X is an arbitrary element of X, and the
set of constant-valued functions

G={¢:4(z)=P| P erange(f)}, (26
where z € X U {@}, and let
u=\J{gpua 27)

fev

The set U is a predictive family under Xu-V-
information because for any f € U, f is either
a g ora g in our construction, and so optional ig-
norance is maintained by the set GG that was either
constructed for g or that ¢’ was a part of. That is,
from the construction, G' contains a function for
each element in the range of g (or ¢’) that maps all
x € X as well as @ to that element, and I/ contains
all elements in G.

Now we show that the predictive V-entropies of
U (from this construction) under Xu et al. (2020)
are the same as for V under our framework.

First we want to show Hy (Y |X) = Hy(Y|X).
For the g that achieves the inf over &/ in Equa-
tion 22, we have there exists f € V such that
g(x) = f(x) given that x € X, so Hy(y|z) <
Hy(y|x) The same is true in the other direction;
the f € V that achieves the inf in V-entropy simi-
larly corresponds to g € U, implying Hy (Y| X) <
Hy(Y|X), and thus their equality.

Now we want to show Hy(Y|@) = Hy(Y).
For the g € U that achieves its inf, we have by
construction that there is an f’ € V such that
for any a € X, it holds that g(@) = f/(a). So,
Hy(Y|X) < Hy(Y]X). In the other direction, for

the f € V that achieves its inf given an arbitrary
a € X, there is the f’ € V from our construc-
tion of U such that f(a) = f'(x) = ¢g(2) for all
x € X. This implies Hy(Y|X) < Hy(Y|X), and
thus their equality.

D.3 Remarks on the relationship between our
V-information and that of Xu et al.
(2020)

The difference between our V-information and that
of Xu et al. (2020) is in how the requirement of
optional ignorance is encoded into the formalism.
This is an important yet technical requirement that
if a predictive agent has access to the value of a
random variable X, it’s allowed to disregard that
value if doing so would lead to a lower entropy. An
example of a subset of 2 for which this doesn’t
hold in the multivariable case is for multi-layer per-
ceptrons with a frozen (and say, randomly sampled)
first linear transformation. The information of, say,
X1 and Xs, are mixed by this frozen linear trans-
formation, and so X7 cannot be ignored in favor of
just looking at Xo. However, if the first linear trans-
formation is trainable, then it can simply assign 0
weights to the rows corresponding to X and thus
ignore it.

The V-information of Xu et al. (2020) ensures
this option by introducing a null variable & which
is used to represent the lack of knowledge about
their variable X — and for any probability distribu-
tion in the range of some f € U/ under the theory,
there must be some function f that produces the
same probability distribution when given any value
of X or &. This is somewhat unsatisfying because
f should really be a function from X — P(}), but
this implementation of optional ignorance changes
the domain to X U {@}. When attempting to ex-
tend this to the multivariable case, the definition
of optional ignorance becomes very cumbersome.
With two variables, the domain of functions in a
predictive family must be (X, U{@}) x (XoU{2}).
Because the definition of V-entropy under Xu et al.
(2020) treats using X" separately from using &, one
must define optional ignorance constraints sepa-
rately for each subset of variables to be ignored,
the number of which grows exponentially with the
number of variables.

Our re-definition of V-information gets around
this issue by defining the optional ignorance con-
straint in a novel way, eschewing the & and instead
encoding it as the intuitive implementation that we
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xpos : ROBERTa-768
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Figure 2: Probing results on RoBERTa for xpos. Re-
sults are reported in bits of V-information; higher is
better

described in the MLP — that for any function in the
family and fixed value for some subset of the in-
puts (which will be the unknown subset), there’s a
function that behaves identically even if that subset
of values is allowed to take any value. (Intuitively,
by, e.g., having it be possible that the weights for
those inputs are O at the first layer.)

E Full Results

In this section, we report all individual probing
experiments: single-layer probes’ V-entropies in
Table 2, single-layer probes’ task-specific metrics
in Table 3, two-layer probes’ V-entropies in Ta-
ble 4, and two-layer probes’ task-specific metrics
in Table 5. In Figure 2, we report the xpos figure for
RoBERTa corresponding to the other four figures
in the main paper. We see that it shows roughly the
same trend as the upos figure from the main paper.
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RoBERTa Single-Layer V-Entropy

Layer upos  xpos dep ner sst2
0 0.336  0.344 1468 0.391 0.643
1 0.145 0.158 0.827 0.216 0.645
2 0.119 0.139 0.676 0.188 0.630
3 0.118 0.133 0.635 0.172 0.574
4 0.117 0.132  0.627 0.167 0.545
5 0.119 0.136  0.632 0.167 0.489
6 0.121 0.139 0.645 0.167 0.484
7 0.126  0.145 0.640 0.170 0.462
8 0.129 0.144 0.633 0.168 0.467
9 0.131 0.149 0.653 0.173 0.494
10 0.138 0.156 0.677 0.177 0.508
11 0.154 0.169 0.705 0.184 0.527
12 0.161 0.182 0.746 0.191 0.583

Table 2: V-entropy results (in bits) on probes taking
in one layer, for each layer of the network. Lower is
better.

RoBERTa Single-Layer Metrics

Layer upos  xpos dep ner sst2
0 0908 0.908 0.669 0.535 0.808
1 0968 0.964 0.821 0.710 0.815
2 0975 0969 0.854 0.735 0.813
3 0975 0970 0.865 0.763 0.845
4 0976 0971 0.867 0.763 0.850
5 0975 0970 0.866 0.763 0.869
6 0975 0970 0.863 0.764 0.870
7 0974 0969 0864 0.754 0.877
8 0974 0970 0.865 0.762 0.868
9 0974 0969 0.863 0.756 0.860
10 0973 0968 0.859 0.756 0.857
11 0971 0.967 0.854 0.744 0.850
12 0969 0.965 0.847 0.735 0.843

Table 3: Task-specific metric results on probes taking
in one layer, for each layer of the network. For upos,
xpos, dep, and sst2, the metric is accuracy. For NER,
it’s span-level F; as computed by the Stanza library (Qi
et al., 2020). For all metrics, higher is better.

RoBERTa Two-Layer V-entropy

Layer upos  xpos dep ner sst2
0-0 0.335 0345 1466 0.391 0.639
0-1 0.141 0.154 0.763 0210 0.633
0-2 0.115 0.133 0.646 0.184 0.615
0-3 0.110 0.127 0.609 0.169 0.567
0-4 0.109 0.126 0593 0.164 0.549
0-5 0.110 0.125 0.602 0.163 0.474
0-6 0.109 0.126 0.613 0.165 0.484
0-7 0.109 0.127 0.609 0.166 0.451
0-8 0.108 0.125 0.598 0.171 0.462
0-9 0.109 0.125 0.614 0.167 0.489
0-10 0.110 0.127 0.636 0.177 0.504
0-11  0.111 0.127 0.654 0.175 0.525
0-12 0.116 0.132 0.682 0.185 0.563

Table 4: V-entropy results on probes taking in two lay-
ers: layer 0 and each other layer of the network. Lower
is better.
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RoBERTa Two-Layer Metrics

Layer upos  xpos dep ner sst2
0-0 0.908 0.907 0.670 0.543 0.808
0-1 0969 0965 0.834 0.722 0.825
0-2 0975 0970 0.861 0.744 0.822
0-3 0976 0971 0870 0.765 0.850
0-4 0977 0972 0874 0.767 0.849
0-5 0977 0972 0872 0.772 0.875
0-6 0977 0972 0.869 0.766 0.875
0-7 0977 0972 0.869 0.760 0.869
0-8 0977 0972 0872 0.762 0.862
0-9 0977 0972 0.869 0.766 0.864
0-10 0977 0972 0864 0.755 0.857
0-11 0977 0972 0.861 0.753 0.859
0-12 0975 0971 0.856 0.743 0.847

Table 5: Task-specific metric results on probes taking

in two layers: layer 0 and each other layer of the net-
work. For upos, xpos, dep, and sst2, the metric is accu-

racy. For NER, it’s span-level F; as computed by the

Stanza library. For all metrics, higher is better.
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