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Abstract

Deep neural networks are vulnerable to adver-

sarial attacks, where a small perturbation to

an input alters the model prediction. In many

cases, malicious inputs intentionally crafted

for one model can fool another model. In this

paper, we present the first study to systemat-

ically investigate the transferability of adver-

sarial examples for text classification models

and explore how various factors, including net-

work architecture, tokenization scheme, word

embedding, and model capacity, affect the

transferability of adversarial examples. Based

on these studies, we propose a genetic algo-

rithm to find an ensemble of models that can

be used to induce adversarial examples to fool

almost all existing models. Such adversarial

examples reflect the defects of the learning pro-

cess and the data bias in the training set. Fi-

nally, we derive word replacement rules that

can be used for model diagnostics from these

adversarial examples.

1 Introduction

Recent studies demonstrate that deep neural net-

works are vulnerable to adversarial examples, inten-

tionally crafted to fool the models. Although gen-

erating adversarial examples for texts has shown to

be more challenging than for images due to their

discrete nature, many methods have been proposed

to generate adversarial text examples and reveal

the vulnerability of deep neural networks in nat-

ural language processing (NLP) tasks, including

reading comprehension (Jia and Liang, 2017), text

classification (Samanta and Mehta, 2017; Wong,

2017; Liang et al., 2018; Alzantot et al., 2018; Yang

et al., 2020), machine translation (Zhao et al., 2018;

Ebrahimi et al., 2018; Cheng et al., 2020), dialogue

systems (Cheng et al., 2019), and dependency pars-

ing (Zheng et al., 2020). These methods perturb

text examples by replacing, scrambling, and eras-

ing characters, words or other language units to

fool an NLP model.
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Figure 1: Overview of the study. (a) Given a pool of

representative neural models, we compute the adversar-

ial transferability rate between any pair of models; (b)

A genetic algorithm is used to find an optimal ensem-

ble with the minimum number of members so that the

adversarial examples crafted by attacking the ensem-

ble can strongly transfer to other models; (c) Highly-

transferable adversarial examples can be crafted by at-

tacking the ensemble model; (d) We derive adversarial

word replacement rules from the adversarial examples

constructed by the ensemble such that these rules can

be used to identify data biases and to diagnose a model

under the black-box setting.

Most existing studies focus on developing effec-

tive algorithms for attacking a specific model. The

successful attacks demonstrate the instability of

model predictions. However, the vulnerability of a

model may correlate with different factors, such as

network architecture, tokenization scheme, word

embedding type, model capacity, and the spurious

predictive patterns in the training data.

In this study, we aim to understand the attack al-

gorithms through the lens of analyzing transferabil-

ity of adversarial examples. We first systematically

investigate which factors of neural models impact

the black-box transferability (i.e., how adversarial

examples generated against one model can fool

another one (Szegedy et al., 2013)) of adversarial
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Table 1: Three adversarial examples that successfully fool all 63 models with various configurations (see detailed

in Section 2.1), crafted by using adversarial word replacement rules discovered by our algorithm on AGNEWS.

Senate Panel Gives NASA Extra Money (AP) AP - NASA would get #36;16.4 billion next year under a
bill a Senate committee approved Tuesday, reversing a decision by House lawmakers to cut contract
the space agency’s budget below this year’s levels.
Deal in Congress to keep preserve tax cuts, Widening Deficit Republican and Democratic leaders agreed
to extend $5 billion worth of tax cuts sought by President Chairman Bush without trying to pay for them.
Nortel Downsizes Again Aug. 23, 2004 (TheDeal.com) Problem-plagued Nortel Networks Web Corp.
announced plans Thursday, Aug. 19, to eliminate an additional 3,500 jobs and fire seven more senior
executives administrators as the company labors to reinvent.

examples through extensive experiments on two

text classification datasets, Sentiment Movie Re-

views (MR) (Pang and Lee, 2005) and AG News

corpus (AGNEWS) (Zhang et al., 2015). These fac-

tors include network architectures (LSTM, CNN,

or Transformer), tokenization schemes (charac-

ter, sub-word, or word), embedding types (GloVe,

word2vec, or fastText), and model capacities (dif-

ferent network depths). We vary one factor at a

time while fixing the others to see which factor is

the more significant one, and found that the tok-

enization scheme has the greatest influence on the

adversarial transferability, following by network

architecture, embedding type, and model capacity.

Based on the analysis, we study whether it is pos-

sible to craft highly-transferable text adversarial

examples for many neural models by ensembling a

small number of models. Specifically, these highly-

transferable adversarial examples provide the fol-

lowing insights. First, the adversaries do not need

white-box access to victim models. They launch

the attacks by their own models trained on similar

data, which can transfer across models (Moosavi-

Dezfooli et al., 2017). Second, as stated in Wallace

et al. (2019), such adversarial examples are a useful

analysis tool and reveal general input-output pat-

terns learned by models, which can be leveraged to

study the influence of dataset biases and to identify

those biases learned by models.

We also found that the adversarial examples ob-

tained by an ensemble model are more transferable

and propose a genetic algorithm to find an optimal

ensemble based on the empirical transferability be-

tween different models. The adversarial examples

generated by attacking the founded ensemble are

strongly transferable to other models. For some

models, they even exhibit better transferability than

those generated by attacking the same model but

with different random initialization.

Finally, inspired by Ribeiro et al. (2018), we

generalize the adversarial examples constructed by

our ensemble into semantics-preserving adversarial

word replacement rules that can induce adversaries

on any text input strongly transferring to other neu-

ral network-based models (see Table 1). Since

those rules are model-agnostic, they provide an

analysis of global model behavior and help us to

identify dataset biases and to diagnose heuristics

learned by the models (See Figure 1 for an illustra-

tion of the process).

2 Adversarial Transferability Among

Neural Models

In the following, we first want to investigate how

network architectures, tokenization schemes, em-

bedding types, and model capacities affect the at-

tack transferability. We conduct an empirical study

by varying one factor at a time while fixing the rest

to see the differences in their attack transferability.

Technically, we generate the adversarial examples

by attacking a source model and pass the gener-

ated adversarial examples through other models for

comparison.

2.1 Experimental Design

We use convolutional neural network (CNN), long

short-term memory (LSTM), and bidirectional

LSTM as base models with 1, 2, and 4 layers (an

additional 6-layer one for CNN). Those networks

can take three forms as input: word, character, and

word + character. If word-based models are used,

their word embeddings are randomly initialized

or initialized with GloVe (Pennington et al., 2014),

word2vec (Mikolov et al., 2013), or fastText (Joulin

et al., 2016). When taking word + character as in-

put, the models are initialized with the embeddings

pre-trained by ELMo (Peters et al., 2018). We also

include BERT (Devlin et al., 2018), RoBERTa (Liu

et al., 2019), and ALBERT (Lan et al., 2019) into

the model pool for analysis, and the total number of

models under investigation is 63 (see Appendix A.1

for details), which cover popular neural networks

that are used in NLP literature.
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All the models are investigated under two re-

cently proposed attack algorithms, PWWS (Ren

et al., 2019) and GA (Alzantot et al., 2018). The

sets of allowed word substitutions are based on the

synonyms created in WordNet (Miller, 1995), and

for any word in a text, the word to replace must

have the same part-of-speech (POS) as the original

one1. Alzantot et al. (2018) also used a language

model (LM) to rule out candidate substitute words

that do not fit within the context. However, unlike

PWWS, ruling out some candidates by an LM will

greatly reduce the number of candidate substitute

words (65% off on average). For consistency, we

report the robust accuracy under GA attack with-

out using an LM. Zang et al. (2020) suggested that

existing textual attack algorithms can roughly be

divided into two categories: greedy and population-

based algorithms. PWWS and TextFooler (Jin et al.,

2020) fall into the first category while GA and PSO

(Zang et al., 2020) belong to the second one. We

chose one attack algorithm in each category when

investigating the transferability among neural mod-

els and use TextFooler to evaluate the generalizabil-

ity of the proposed method in Section 3.3.

We conducted experiments on two text classifi-

cation datasets: Sentiment Movie Reviews (MR)

(Pang and Lee, 2005) and AG News corpus (AG-

NEWS) (Zhang et al., 2015). All models are trained

on the standard training set with the cross-entropy

loss. For each dataset, we attack 1, 000 randomly

selected test examples. For evaluating their trans-

ferability on other models, we randomly choose

500 adversarial examples that successfully cause

the source model to make incorrect predictions.

The transferability between each possible pair of

models is shown in Appendix A.2.

2.2 Significance of Various Factors

To find out which factor affects the transferability

of adversarial examples the most, we vary one fac-

tor at a time while fixing all the others for each

model in the pool, and compare the transferabil-

ity rates between them. For example, we take a

2-layer word-based LSTM model randomly ini-

tialized, denoted as “LSTM-Word-Random-2”, as

a target model. If we want to know the impact

of network architecture, we generate 1, 000 adver-

sarial examples each by attacking BiLSTM-Word-

1We did not use two recently proposed attack algorithms of
BERT-Attack (Li et al., 2020) and BAE (Garg and Ramakrish-
nan, 2020) because they cannot guarantee that any substitute
word is always synonymous with the original word.

Random-2, and CNN-Word-Random-2, and use

randomly selected 500 examples each of successful

attack to evaluate the robustness of the target model.

If we want to understand the impact of word embed-

ding, the adversarial examples will be crafted by

LSTM-Word-GloVe-2, LSTM-Word-word2vec-2,

and LSTM-Word-fastText-2 models.

Table 2: Relative adversarial transferability rate to the

base transferability rate on AGNEWS and MR datasets

under PWWS and GA attacks.

Transferability
AGNEWS MR

PWWS GA PWWS GA

Architecture 0.197 0.018 0.145 0.021
Tokenization 0.286 0.030 0.285 0.049
Embedding 0.085 0.015 0.114 0.015
Capacity 0.066 0.013 0.045 0.011

Table 3: Adversarial transferability rate among various

neural network architectures on AGNEWS dataset un-

der PWWS attack. The architectures listed in the rows

are source models, those in the columns are target ones.

Model LSTM BiLSTM CNN BERT

LSTM 0.448 0.394 0.353 0.190
BiLSTM 0.387 0.420 0.337 0.183
CNN 0.343 0.334 0.442 0.169
BERT 0.357 0.346 0.348 0.396

Since some models may be inherently more vul-

nerable than others, we need to evaluate the base

transferability rate to remove the effects that are

not caused by the factors we consider. For each tar-

get model, we train two instances with the same set-

ting but different random initialization to obtain its

base transferability rate by generating adversarial

examples against one model and testing them on an-

other. This base transferability rate of a model will

be subtracted from all the actual adversarial trans-

ferability rates obtained when taking the model as

the test model2. We report the average of (sub-

tracted) adversarial transferability rates in Table 2,

these rates are averaged over the configurations (all

possible pairs) described in Section 2.1. Note that

the smaller the values are, the more the adversarial

2For example, the base transferability rate of Model A is
90% and that of Model B is 60%. If we also know that 70%
of adversarial examples produced using Model C can cause
Model A to make mistakes, and 50% of those are misclassified
by Model B, we may conclude that the transferability rate of
C-to-A (70%) is higher than that of C-to-B (50%), which is
obviously wrong because the difference between the transfer-
ability rate of C-to-B (50%) and B’s base transferability rate
(60%) is much smaller than that between the rate of C-to-A
(70%) and A’s base rate (90%). We report such (subtracted)
adversarial transferability rates in Table 2 only.
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transferability rate is close to its base (intra-model)

transferability rate. From these rates, we found the

tokenization scheme has the greatest influence on

the adversarial transferability, followed by network

architecture, embedding type, and model capacity

no matter what attack algorithm or dataset is used.

2.3 Intra-Factor Transferability

In the following, we drill down into each specific

factor. Table 3 shows adversarial transferability

among different network architectures and config-

urations. For example, the architecture of “BERT”

includes three variants: vanilla BERT, RoBERTa,

and ALBERT. Each cell (i, j) in the table reports

the transferability between two classes of models

i and j. The value of each cell is computed as

follows: for each possible pair of models (s, t)
where model s belongs to class i and model t be-

longs to class j, we first calculate the transferability

rate between models s and j, i.e. the percentage

of adversarial examples produced using model s
misclassified by model t; we then average these

transferability rates over all the possible pairs.

As shown in Table 3, the adversarial transferabil-

ity is not symmetric, i.e. the transferability of the

transfer pair (i, j) might be different from the pair

(j, i). As expected, intra-model adversarial exam-

ple transferability rates are consistently higher than

inter-model transferability ones. The adversarial

examples generated using BERTs transfer slightly

worse than other models whereas BERTs show

much more robust to adversarial samples produced

using the models from other classes. It is probably

because BERTs were pre-trained with large-scale

data and take different tokenization scheme (i.e.

sub-words). We found the models from BERT fam-

ily tend to distribute their “attention” over more

words of an input text than others, which makes

it harder to change their predictions by perturbing

just few words. In contrast, other models often “fo-

cus” on certain keywords when making predictions,

which makes them more vulnerable to black-box

transfer attacks (see Appendix A.3).

In Table 4, we report the impact of tokenization

schemes and embedding types on the adversarial

transferability. Each cell is obtained by the method

as the values reported in Table 3. The pre-trained

models show to be more robust against black-box

transfer attacks no matter their word embeddings

or other parameters or both are pre-trained with

large-scale text data. Character-based models are

more robust to transfer attacks than those taking

words or sub-words as input, and their adversarial

examples also transfer much worse than others.

2.4 Summary of Findings

Some findings on the adversarial transferability

among models are summarized below:

• No matter what attack algorithm or dataset is

used, the tokenization scheme has the greatest im-

pact on the adversarial transferability, followed

by the netowrk architecture, embedding type, and

model capacity in the order of importance.

• The adversarial transfer is not symmetric, and the

transferability rates of intra-model adversarial

examples are consistently higher than those of

inter-model ones.

• Pre-trained neural models show to be more robust

against black-box transfer attacks no matter their

word embeddings or other parameters or both are

pre-trained with large-scale text data.

• The adversarial examples produced by attacking

BERTs transfer slightly worse than others, but

BERTs show much more robust to transfer ad-

versarial attacks. We found that BERTs tend to

distribute their “attention” over more words than

others, which makes it harder to change their pre-

dictions by perturbing just few words. Similar

observation has been observed in (Hsieh et al.,

2019).

• Character-based models are more robust to trans-

fer attacks than those taking words or sub-words

as input, but their adversarial examples also trans-

fer much worse than others.

• Among the models from BERT family, the mod-

els pre-trained with more data show to be more

robust against black-box transfer attacks using

the models pre-trained with less data, while the

adversarial examples produced by attacking the

former transfer slightly better than the latter.

We also found that the adversarial examples pro-

duced by using an ensemble with a small number of

models are much more transferable than those by a

single model. A small ensemble greatly speeds up

the adversarial example generation process, which

is useful to perform the test-time attacks when eval-

uating the robustness of local models or launch

the online attack in a real-world simulated envi-

ronment because attacking an ensemble consisting

of all possible models is time-consuming and not

cost-efficient. The next two questions are how to
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Table 4: Adversarial transferability rates with different tokenization schemes and embedding types on AGNEWS

dataset under PWWS attack. The models listed in the rows are source models, those in the columns are target ones.

Input Random GloVe word2vec fastText Character ELMo BERT Average

Random 0.457 0.389 0.445 0.434 0.214 0.315 0.166 0.346
GloVe 0.481 0.503 0.489 0.493 0.219 0.336 0.174 0.385
word2vec 0.473 0.413 0.472 0.461 0.216 0.316 0.165 0.360
fastText 0.481 0.442 0.482 0.488 0.222 0.330 0.169 0.373
Character 0.261 0.233 0.256 0.256 0.386 0.300 0.186 0.268
ELMo 0.406 0.379 0.401 0.405 0.256 0.679 0.216 0.392
BERT 0.348 0.329 0.343 0.348 0.328 0.408 0.396 0.357
Average 0.415 0.384 0.413 0.412 0.263 0.383 0.210 0.354

select few models from a pool of models to cre-

ate an ensemble that has good coverage to attack

all other models and whether adversarial examples

produced by the ensemble can strongly transfer to

other unseen models (not listed in the model pool).

We will answer these two questions in Section 3.

The above findings can guide us to choose a

pool of representative neural models, from which

we select a small number of them to form an en-

semble. For example, such a pool of models should

include at least one neural network for each type

of tokenization scheme, but it does not need to in-

clude too many networks of different depths. The

smaller the number of models in a pool, the less

the computational cost will be for estimating the

transferability rate between any pair of them.

3 Highly-Transferable Examples

Next, we discuss how to find an optimal ensemble

model that can be used to craft adversarial exam-

ples that strongly transfer across other models. We

then distill the ensemble attack into adversarial

word replacement rules that can be used to gener-

ate adversarial examples with high transferability.

These rules can also help us to identify dataset

biases and analyze global model behaviors.

3.1 Ensemble Method

Consider an ensemble model that outputs the pre-

diction score for a class label by averaging over

the scores of individual models, we can generate

adversarial examples to fool the ensemble model

by applying word substitution-based perturbations

to input texts. We take the average of the logits

produced by all the member models as the final

prediction. Observing that the transferability is af-

fected by various factors, and many factors need to

be carefully considered when forming an ensemble,

we propose a population-based genetic algorithm

to find an optimal ensemble.

In the proposed algorithm, a candidate solution

is a set of models S = (s1, s2, . . . , sm), where

m is a pre-defined size of ensemble. A fitness

function evaluates each solution to decide whether

it will contribute to the next generation of solutions.

We define a function r(s, t, a) as the percentage

of adversarial samples produced using model s
misclassified by model t under attack algorithm

a. For a solution S, the fitness function f(S) that

returns a measure of the candidate’s fitness which

we want to maximize is defined as follows:

f(S)=
∑

tj∈T

{

max
si∈S,si 6=tj

[

min
ak∈A

r(si, tj , ak)

]}

/ |T |, (1)

where T is a pool of representative models under

investigation, |T | is the cardinality of T , and A
is a set of attack algorithms. Let P (n) define a

population of candidate solutions at the n-th gen-

eration : P (n) = {sn
1
, sn

2
, . . . , snm}. Initial popu-

lations P (0) are selected randomly. After evalu-

ating each candidate by the fintness function, the

algorithm takes two candidate solutions based on

fitness, merges their sets, and then randomly selects

m models from the set to produce new candidates.

The mutation is another important genetic operator

that takes a single candidate and randomly replaces

at most one of its models with another one from

T . The algorithm continues until the number of

generations reaches the maximum value.

In order to evaluate the ensembles found by the

population-based algorithm, we ask a senior re-

searcher to select the ensembles as a baseline. This

researcher uses a simple strategy to make selection:

first choose the model whose adversarial examples

yield the highest transferability, and gradually add

complementary models which are different from

those already in the ensemble in the aspects of to-

kenization scheme, architecture, and embedding

type. We list the ensembles selected by the algo-

rithm and the human expert in Appendix A.4.
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Figure 2: Transferability rates of the adversarial examples generated using different ensembles with various sizes

on both AGNEWS and MR datasets under two attack algorithms (PWWS and GA). The upper red dotted line

represents the average of the base transferability rates (defined in Section 2.2) that theoretically are highest rates

that can be achieved using a single local model, and the lower green line shows the average of transferability rates

over all the possible pairs of models. The ensemble method clearly outperforms the single model-based transfer

method, and in most cases the adversarial examples produced using the ensembles founded by the proposed genetic

algorithm transfer better across different models than those selected by a human expert.

In Figure 2, we show the transferability rates of

the adversarial examples produced using the ensem-

bles with various sizes on both AGNEWS and MR

datasets under two attack algorithms (PWWS and

GA). The reported transferability rates are averaged

over all the remaining models except those used to

produce the adversarial examples. We found that

in most cases the adversarial examples produced

using the ensemble founded by the genetic algo-

rithm transfer better across different models than

those selected by a human expert, especially when

the ensemble size is small. The ensemble method

performs superior to a single model-based trans-

fer method, and in some cases the transferability

rates achieved by the ensemble method even go

beyond the upper red dotted line (i.e. the highest

rates that can be achieved by using a single local

model). When the ensemble size is greater than 6,

the marginal gains in average transferability rate

decrease no matter what attack algorithm or dataset

is used in our experimental setting.

3.2 Mining Word Replacement Rules

We have shown in Section 3.1 that the adversarial

examples generated by the ensemble whose mem-

bers are carefully selected can strongly transfer to

other models. We hypothesize that if we can distill

the ensemble attack into some word replacement

rules, the adversarial examples crafted by applying

the distilled rules to perturb input texts also can

transfer well across different models. In this sec-

tion, we want to discover such word replacement

rules using an ensemble model, and those rules are

expected to be used to generate the model-agnostic

examples of transferable hostility. Besides, such

Inputs:
D: a set of training examples.
Z: a set of class labels.
g: an ensemble model that outputs a logit for each class

z ∈ Z .

Output: a set of word replacement rules as well as their
salience.

Algorithm:

1: for each training instance (x, y) in D
2: for each word wi in the input text x
3: for each word ŵi that can be used to replace wi

4: x̂i = replace wi with ŵi in x.

6: c(y, wi → ŵi) = c(y, wi → ŵi) + 1.

5: for each label z ∈ Z
7: if z = y then

8: h(y, wi → ŵi) = h(y, wi → ŵi)+
g(xi; z)− g(x̂i; z).

9: else

10: h(y, wi → ŵi) = h(y, wi → ŵi)+
g(x̂i; z)− g(xi; z).

11: for each word replacement rule

12: h(z, w → ŵ) = h(z, w → ŵ)/c(z, wi → ŵi).

Figure 3: An algorithm to discover highly-transferable

adversarial word replacement rules.

rules (if any) also can help us to understand and

identify dataset biases “unknowingly” exploited by

the models for prediction.

A word replacement rule is defined as a pair

(z, w → ŵ), where z is a class label, and w → ŵ
means to replace the original word w with ŵ
when the gold label is z. Each rule is associated

with a salience h(z, w → ŵ) specifying the pri-

ority of the rule, and a higher number denotes a

higher priority. We propose an algorithm to dis-

cover Highly-transferable Adversarial Word Re-

placement (HAWR) rules (see Figure 3). The idea

behind this algorithm is to estimate the changes in
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log-likelihood caused by the word replacements.

Once such rules are obtained, they can be used to

generate adversarial examples as follows: given an

input sentence x and its label y, we find a word

wi in x which has the highest value of h(y, wi, ŵi)
and replace wi with ŵi in x; for all the remaining

words in x we repeat the above step until the per-

centage of words that can be altered reach a given

threshold. Note that such adversarial examples can

be generated without access to target models.

We report the attack success rates of the adversar-

ial examples generated by applying HAWR rules in

Table 5. The attacks based on HAWR rules are com-

parable to PWWS and GA algorithms that require a

large number of queries to the victim model, while

the attackers using HAWR do not need to access

the victim models. We use the ensemble consisting

of six models founded by our genetic algorithm to

discover these HAWR rules in this experiment. We

list five adversarial word replacement rules each

for the positive and negative categories discovered

from MR dataset in Table 6.

To understand these adversarial word replace-

ment rules, we analyze their pointwise mutual in-

formation (PMI) between words and class label be-

fore and after the replacements. The PMI of a pair

of discrete random variables quantifies the discrep-

ancy between the probability of their coincidence

given their joint distribution and their individual

distributions. In this case, it is used to find collo-

cations and associations between words and labels,

and the PMI of a word w and a label z ∈ Z can

be computed as PMI(w, z) = p(w, z)/p(w)p(z),
where p(·) assigns a probability to each possible

value. The results show that the PMI are signifi-

cantly different for the word and its replacement

even though they are synonyms. This demonstrates

the data bias in the training data.

We obtain similar word replacement rules by

ranking all the hypothesis words according to their

PMI with each label from a training set. For each

label z ∈ Z and a possible word replacement w →
ŵ, the similar salience of h(z, w → ŵ) can be

computed as follows:

h(z, w → ŵ) = [PMI(w, z)− PMI(ŵ, z)]

+
∑

z′∈Z,z′ 6=z

[

PMI(ŵ, z′)− PMI(w, z′)
]

.
(2)

We also report the attack success rates of the adver-

sarial examples generated by the word replacement

rules obtained using PMI only in Table 5. The

adversarial examples produced by HAWR rules

achieved stronger transferability than those by PMI

rules. We believe that it is because HAWR rules

are distilled using the logits predicted by models,

and the changes in the logits reflect both the char-

acteristics of neural networks and the contexts in

which those word replacements are applied.

3.3 Case Study: Natural Language Inference

To evaluate the generalizability of the proposed

method, we redo the entire process (illustrated in

Figure 1) on a new task of natural language infer-

ence (NLI) as a case study. We conducted the exper-

iments of this task on Stanford Natural Language

Inference (SNLI) (Bowman et al., 2015) dataset.

The HAWR rules generated by our algorithm were

tested on three models (ESIM, DecompAtt and XL-

Net listed in Table 7) that are unseen during the

process of finding these rules, and compared to a re-

cently proposed attack algorithm, called TextFooler

(Jin et al., 2020), which has not been used.

We reuse 63 different neural models for text clas-

sification (see Appendix A.1) to create a model

pool for this task. To perform NLI task, each model

in the pool encodes the premise and hypothesis sep-

arately and then feeds the concatenation of these

encodings to a two-layer feedforward network. We

use the ensemble with six models (see Appendix

A.5) identified by our generic algorithm to discover

HAWR rules based on the adversarial transferabil-

ity rates between any pair of models in the pool.

As shown in Table 7, the attacks based on HAWR

rules are comparable to TextFooler that requires

many queries to the victim models.

4 Related Work

Transfer-based Attacks Observing that adver-

sarial examples often transfer across different mod-

els (Szegedy et al., 2013), the attackers run standard

white-box attacks on local surrogate models to find

adversarial examples that are expected to transfer

to the target models. Unfortunately, such a straight-

forward strategy often suffers from overfitting to

specific weaknesses of local models and transfer-

based attacks typically have much lower success

rates than the attacks directly launched on the target

models. To resolve this problem, many methods

have been proposed to improve the transfer success

rate of adversarial examples on the target models

by perturbing mid-layer activations (Zhou et al.,

2018; Huang et al., 2019; Inkawhich et al., 2020;

Wu et al., 2020), adding regularization terms to

the example generation process (Dong et al., 2018;
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Table 5: Attack success rates of the adversarial examples generated by applying the word replacement rules found

by our algorithm (HAWR) and pointwise mutual information (PMI) on all 63 and three representative models with

AGNEWS and MR datasets, comparing to PWWS and GA attack algorithms. “Succ%” denotes the attack success

rate in terms of the number of sentences, and “Qry#” the average number of queries to the victim model required

by the attack algorithms. The maximum percentage of words that are allowed to be perturbed was set to 30%.

Success
Rate

AGNEWS MR
HAWR PMI PWWS GA HAWR PMI PWWS GA

Succ% Qry# Succ% Qry# Succ% Qry# Succ% Qry# Succ% Qry# Succ% Qry# Succ% Qry# Succ% Qry#

ALL 69.0 0.0 39.6 0.0 69.1 175.6 82.4 380.6 87.7 0.0 79.0 0.0 92.0 97.6 95.8 130.5
LSTM 75.9 0.0 45.1 0.0 64.1 175.7 80.7 368.3 95.3 0.0 87.3 0.0 95.2 97.2 97.4 104.3
CNN 75.1 0.0 39.7 0.0 76.1 174.7 88.7 316.6 89.1 0.0 84.3 0.0 93.5 97.2 96.6 100.2
BERT 33.0 0.0 19.7 0.0 33.2 178.2 65.5 498.2 58.3 0.0 45.1 0.0 78.5 98.2 92.8 167.4

Table 6: Five adversarial word replacement rules discovered from MR dataset each for the positive and negative

categories as well as their changes in the pointwise mutual information (PMI).

Class Word Substitution PMI(Word; Positive) PMI(Word; Negative)

P
o

si
ti

v
e

flaws → flaw 6.408 → 2.086 (4.392 ↓) 0.000 → 6.478 (6.408 ↑)
average → mediocre 5.741 → 2.086 (3.655 ↓) 5.004 → 6.408 (1.404 ↑)
glorious → splendiferous 6.478 → 0.000 (6.478 ↓) 0.000 → 0.000 (0.000 ↑)
web → network 6.478 → 0.000 (6.478 ↓) 0.000 → 6.478 (6.478 ↑)
brilliant → brainy 6.168 → 0.000 (6.168 ↓) 4.109 → 6.478 (2.369 ↑)

N
eg

a
ti

v
e toilet → bathroom 0.000 → 6.478 (6.478 ↑) 6.478 → 0.000 (6.478 ↓)

excellent → splendid 6.013 → 6.478 (0.466 ↑) 4.620 → 0.000 (4.620 ↓)
bizarre → outlandish 5.478 → 6.478 (1.000 ↑) 5.478 → 0.000 (5.478 ↓)
excruciating → harrowing 0.000 → 6.256 (6.256 ↑) 6.478 → 3.671 (2.807 ↓)
routine → everyday 2.230 → 6.478 (4.248 ↑) 6.400 → 0.000 (6.400 ↓)

Table 7: Attack success rates on SNLI. “Succ%” and

“Qry#” have the same meaning as Tabel 5. The maxi-

mum percentage of words perturbed was set to 30%.

Success Rate
HAWR TextFooler

Succ% Qry# Succ% Qry#

ESIM (Chen et al., 2017) 72.4 0.0 72.9 24.8
DecomAtt (Parikh et al., 2016) 73.8 0.0 75.8 23.7
XLNet (Jin et al., 2020) 68.4 0.0 67.7 24.4

Huang et al., 2019), or ensembling multiple local

models (Wu et al., 2018; Tramèr et al., 2018; Liu

et al., 2017; Wallace et al., 2019).

The proposed ensemble-based methods resem-

ble to Liu et al. (2017), which hypothesized that

if an adversarial example remains adversarial for

multiple models, then it is more likely to transfer

to other models as well. Wu et al. (2018) found

that the local non-smoothness of loss surface harms

the transferability of adversarial examples, and pro-

posed a variance-reduced attack to enhance the

transferability by applying the locally averaged gra-

dient to reduce the local oscillation of loss surface.

The existing studies on the ensemble-based transfer

attacks are mainly conducted in the image domain

(Wu et al., 2018; Tramèr et al., 2018; Liu et al.,

2017), transfer-based attacks for NLP models are

relatively much underexplored.

Discovering Adversarial Word Replacement

Rules Ribeiro et al. (2018) presented semantic-

preserving perturbations that cause models to

change their predictions by the paraphrases gener-

ated using back-translation, and generalized these

perturbations into universal replacement rules that

induce adversaries on many text instances. They

use the word “universal” to mean that their replace-

ment rules can be used to any input text if the rules

are matched with the input and these rules were gen-

eralized across some specific models. With a dif-

ferent goal, we aim to find the highly-transferable

adversarial replacement rules by which the crafted

adversarial examples can fool almost all models.

Besides, the number of their replacement rules is

relatively small compared to ours.

5 Conclusion

We investigated four critical factors of NLP neu-

ral models, including network architectures, tok-

enization schemes, embedding types, and model

capacities and how they impact the transferability

of text adversarial examples with more than sixty

different models. We also proposed a genetic al-

gorithm to find an optimal ensemble of very few

models that can be used to generate adversarial

examples that transfer well to all the other mod-
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els. Then, we described a algorithm to discover

highly-transferable adversarial word replacement

rules that can be applied to craft adversarial ex-

amples with strong transferability across various

neural models without access to any of them. Fi-

nally, since those adversarial examples are model-

agnostic, they provide an analysis of global model

behavior and help to identify dataset biases.
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Appendix

A.1 All Neural Models under Investigation

We systematically investigated many popular archi-

tectures of neural models with different configura-

tions. Specifically, we consider various network

architectures (LSTM, BiLSTM, CNN, or BERT),

tokenization schemes (Word, character, or word

+ character, denoted by “W”, “C”, “WC” respec-

tively), word embeddings (randomly-initialized,

GloVe, word2vec, or fastText), and model capaci-

ties (various numbers of layers). All models under

investigation are listed in Table 8, and we believe

that they cover the popular neural networks that

have been used for text classification tasks in NLP

literature.

Table 8: All neural models under investigation.

ID Model ID Model

[1] LSTM-W-Random-1 [2] LSTM-W-GloVe-1
[3] LSTM-W-word2vec-1 [4] LSTM-W-fastText-1
[5] LSTM-C-Random-1 [6] LSTM-WC-ELMo-1
[7] LSTM-W-Random-2 [8] LSTM-W-GloVe-2
[9] LSTM-W-word2vec-2 [10] LSTM-W-fastText-2
[11] LSTM-C-Random-2 [12] LSTM-WC-ELMo-2
[13] LSTM-W-Random-4 [14] LSTM-W-GloVe-4
[15] LSTM-W-word2vec-4 [16] LSTM-W-fastText-4
[17] LSTM-C-Random-4 [18] LSTM-WC-ELMo-4
[19] BiLSTM-W-Random-1 [20] BiLSTM-W-GloVe-1
[21] BiLSTM-W-word2vec-1 [22] BiLSTM-W-fastText-1
[23] BiLSTM-C-Random-1 [24] BiLSTM-WC-ELMo-1
[25] BiLSTM-W-Random-2 [26] BiLSTM-W-GloVe-2
[27] BiLSTM-W-word2vec-2 [28] BiLSTM-W-fastText-2
[29] BiLSTM-C-Random-2 [30] BiLSTM-WC-ELMo-2
[31] BiLSTM-W-Random-4 [32] BiLSTM-W-GloVe-4
[33] BiLSTM-W-word2vec-4 [34] BiLSTM-W-fastText-4
[35] BiLSTM-C-Random-4 [36] BiLSTM-WC-ELMo-4
[37] CNN-W-Random-1 [38] CNN-W-GloVe-1
[39] CNN-W-word2vec-1 [40] CNN-W-fastText-1
[41] CNN-C-Random-1 [42] CNN-WC-ELMo-1
[43] CNN-W-Random-2 [44] CNN-W-GloVe-2
[45] CNN-W-word2vec-2 [46] CNN-W-fastText-2
[47] CNN-C-Random-2 [48] CNN-WC-ELMo-2
[49] CNN-W-Random-4 [50] CNN-W-GloVe-4
[51] CNN-W-word2vec-4 [52] CNN-W-fastText-4
[53] CNN-C-Random-4 [54] CNN-WC-ELMo-4
[55] CNN-W-Random-6 [56] CNN-W-GloVe-6
[57] CNN-W-word2vec-6 [58] CNN-W-fastText-6
[59] CNN-C-Random-6 [60] CNN-WC-ELMo-6
[61] BERT [62] RoBERTa
[63] ALBERT

A.2 Transferability among Different

Neural Models

We show in Figure 4 the transferability rate among

all neural models in the model pool. The column

and row headers indicate the IDs of source and

target models respectively. The mapping of IDs

and the corresponding models is shown in Figure

8. We generate adversarial examples by attacking

a source model, and report the transferability rates

on a target (or victim) model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 .71 .50 .68 .66 .21 .30 .50 .39 .48 .48 .22 .27 .51 .49 .57 .50 .21 .29 .44 .38

2 .55 .63 .58 .59 .21 .33 .46 .47 .46 .48 .20 .31 .49 .59 .52 .50 .18 .30 .45 .47

3 .68 .53 .70 .70 .22 .28 .49 .41 .50 .48 .21 .26 .52 .50 .58 .55 .20 .27 .44 .41

4 .66 .60 .68 .73 .24 .31 .49 .45 .51 .49 .23 .28 .58 .56 .63 .59 .21 .29 .48 .46

5 .27 .23 .28 .29 .43 .29 .27 .23 .28 .27 .40 .28 .27 .25 .28 .27 .41 .28 .26 .23

6 .44 .39 .42 .44 .28 .89 .42 .37 .38 .41 .26 .74 .43 .40 .45 .44 .29 .82 .39 .38

7 .47 .39 .47 .46 .21 .30 .62 .44 .51 .56 .23 .30 .42 .39 .43 .43 .20 .29 .48 .42

8 .48 .56 .51 .52 .23 .31 .52 .63 .56 .55 .21 .30 .48 .49 .52 .47 .21 .27 .53 .55

9 .46 .44 .48 .48 .21 .28 .57 .47 .56 .63 .22 .29 .46 .45 .49 .45 .20 .27 .50 .44

10 .49 .46 .49 .50 .22 .28 .57 .49 .55 .65 .23 .30 .44 .44 .46 .45 .21 .27 .47 .48

11 .25 .25 .28 .28 .40 .30 .28 .25 .28 .28 .44 .29 .26 .24 .29 .28 .38 .26 .30 .24

12 .44 .43 .44 .46 .28 .71 .44 .39 .43 .42 .28 .82 .43 .39 .43 .43 .27 .63 .44 .39

13 .57 .50 .57 .61 .23 .36 .49 .45 .50 .47 .22 .35 .63 .56 .63 .63 .21 .33 .50 .45

14 .58 .66 .63 .67 .24 .34 .50 .53 .54 .56 .24 .31 .57 .67 .63 .60 .23 .30 .51 .56

15 .56 .45 .56 .58 .24 .30 .45 .41 .46 .46 .21 .26 .63 .50 .67 .59 .21 .26 .44 .39

16 .59 .52 .57 .63 .25 .31 .50 .43 .47 .47 .22 .31 .65 .54 .73 .65 .21 .28 .47 .45

17 .27 .25 .30 .29 .45 .31 .28 .21 .26 .28 .43 .31 .29 .26 .29 .29 .48 .30 .28 .23

18 .43 .42 .42 .43 .28 .86 .40 .40 .40 .42 .27 .75 .43 .41 .47 .45 .27 .83 .41 .40

19 .47 .42 .46 .46 .25 .30 .53 .41 .51 .49 .24 .31 .46 .40 .48 .47 .23 .31 .56 .45

20 .53 .60 .57 .59 .26 .33 .57 .65 .61 .61 .26 .33 .54 .57 .58 .55 .25 .31 .58 .66

21 .48 .43 .46 .47 .23 .30 .57 .46 .57 .54 .22 .30 .45 .42 .45 .45 .21 .27 .66 .46

22 .50 .46 .52 .52 .25 .29 .58 .53 .61 .60 .24 .29 .48 .46 .52 .51 .23 .27 .57 .51

23 .28 .26 .28 .28 .42 .30 .29 .25 .28 .30 .47 .28 .27 .24 .28 .30 .42 .26 .29 .26

24 .42 .37 .40 .41 .26 .74 .40 .38 .39 .41 .24 .79 .40 .37 .40 .40 .24 .67 .40 .36

25 .61 .54 .58 .64 .29 .35 .53 .49 .53 .54 .24 .33 .68 .55 .71 .64 .25 .33 .53 .48

26 .60 .64 .61 .68 .24 .36 .52 .49 .53 .55 .19 .32 .60 .66 .68 .66 .22 .32 .52 .49

27 .57 .51 .57 .60 .27 .32 .48 .47 .48 .48 .23 .31 .69 .56 .69 .66 .23 .33 .49 .46

28 .60 .52 .57 .62 .26 .36 .52 .48 .50 .51 .24 .34 .66 .57 .67 .67 .24 .35 .49 .50

29 .29 .26 .28 .30 .49 .33 .29 .25 .29 .28 .47 .31 .27 .26 .29 .30 .49 .28 .28 .25

30 .45 .40 .44 .45 .31 .79 .40 .38 .40 .41 .29 .72 .44 .41 .45 .45 .27 .77 .39 .39

31 .42 .39 .44 .45 .23 .30 .53 .42 .50 .46 .23 .31 .46 .40 .48 .46 .21 .28 .54 .41

32 .53 .53 .54 .58 .24 .32 .53 .59 .57 .56 .24 .32 .52 .54 .56 .53 .24 .31 .54 .62

33 .44 .41 .47 .47 .24 .31 .56 .45 .51 .52 .24 .31 .50 .43 .52 .50 .23 .30 .58 .45

34 .48 .48 .51 .53 .27 .34 .56 .53 .59 .55 .25 .36 .51 .47 .55 .50 .24 .32 .63 .50

35 .28 .23 .30 .29 .48 .32 .29 .22 .28 .29 .50 .30 .29 .24 .30 .29 .45 .30 .30 .25

36 .40 .39 .41 .39 .29 .70 .38 .38 .38 .40 .26 .78 .41 .37 .42 .42 .26 .65 .39 .35

37 .32 .28 .32 .32 .18 .27 .30 .27 .28 .31 .16 .24 .31 .29 .36 .34 .16 .24 .29 .28

38 .44 .42 .43 .47 .21 .32 .41 .41 .42 .44 .21 .29 .44 .44 .45 .44 .19 .29 .39 .38

39 .34 .30 .32 .35 .17 .27 .34 .29 .34 .34 .19 .25 .34 .31 .35 .36 .15 .25 .32 .30

40 .39 .34 .37 .39 .19 .30 .37 .34 .37 .36 .18 .27 .39 .36 .39 .40 .17 .27 .36 .33

41 .27 .23 .27 .28 .37 .31 .28 .23 .25 .27 .36 .28 .30 .25 .29 .29 .37 .28 .27 .25

42 .41 .36 .40 .41 .24 .57 .38 .36 .38 .41 .24 .50 .40 .38 .41 .43 .24 .49 .37 .35

43 .39 .35 .40 .41 .17 .30 .37 .33 .37 .39 .19 .26 .40 .36 .42 .39 .19 .26 .36 .33

44 .44 .43 .45 .46 .21 .31 .46 .42 .44 .47 .19 .29 .48 .46 .51 .49 .19 .29 .41 .41

45 .43 .39 .41 .45 .19 .30 .43 .37 .41 .44 .20 .27 .43 .40 .46 .47 .17 .27 .42 .39

46 .43 .39 .43 .45 .18 .33 .43 .38 .40 .43 .21 .28 .43 .42 .42 .44 .19 .29 .40 .40

47 .24 .19 .24 .22 .32 .26 .23 .21 .24 .23 .30 .26 .25 .20 .25 .25 .31 .25 .24 .20

48 .42 .39 .43 .43 .24 .58 .42 .37 .38 .41 .24 .53 .42 .40 .43 .43 .22 .52 .39 .35

49 .37 .36 .38 .37 .18 .27 .36 .33 .34 .39 .20 .24 .37 .33 .38 .39 .18 .25 .36 .33

50 .43 .41 .43 .46 .20 .33 .43 .40 .44 .48 .22 .30 .44 .45 .46 .46 .18 .29 .41 .40

51 .44 .42 .46 .44 .21 .31 .42 .36 .42 .44 .21 .30 .44 .41 .46 .43 .19 .29 .44 .39

52 .44 .40 .45 .47 .20 .32 .45 .42 .43 .49 .21 .30 .47 .43 .48 .48 .20 .30 .42 .41

53 .25 .22 .27 .27 .31 .27 .28 .22 .25 .24 .33 .26 .25 .23 .25 .25 .32 .27 .26 .23

54 .45 .39 .43 .45 .23 .59 .41 .39 .41 .42 .24 .56 .44 .40 .45 .44 .25 .51 .38 .38

55 .39 .38 .40 .40 .19 .29 .38 .35 .37 .43 .20 .25 .41 .37 .40 .43 .17 .25 .40 .36

56 .44 .45 .45 .47 .22 .32 .44 .45 .48 .47 .22 .32 .48 .47 .49 .48 .19 .30 .45 .43

57 .43 .39 .42 .43 .22 .29 .42 .38 .38 .43 .22 .28 .44 .39 .44 .44 .19 .28 .39 .38

58 .41 .41 .43 .42 .21 .31 .41 .40 .39 .45 .21 .29 .44 .40 .44 .44 .17 .27 .41 .39

59 .26 .22 .27 .27 .32 .27 .26 .23 .24 .28 .36 .27 .28 .22 .29 .28 .33 .27 .25 .22

60 .44 .39 .42 .44 .25 .57 .41 .37 .40 .43 .23 .53 .43 .41 .45 .45 .25 .50 .39 .37

61 .36 .36 .37 .37 .32 .40 .35 .32 .36 .37 .32 .38 .35 .33 .31 .35 .32 .37 .34 .33

62 .41 .38 .42 .42 .41 .51 .41 .37 .41 .42 .40 .48 .44 .41 .40 .43 .41 .49 .39 .40

63 .29 .28 .30 .31 .28 .34 .27 .26 .28 .29 .25 .32 .31 .29 .31 .30 .27 .33 .29 .27

Figure 4: Transferability among neural models (part 1).
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21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
1 .45 .44 .21 .26 .46 .43 .46 .44 .21 .26 .44 .38 .40 .43 .24 .28 .36 .34 .35 .35 .22 .35 .38 .33 .36 .36 .23 .33 .37 .31 .36 .36 .20 .35 .35 .31 .35 .33 .24 .33 .12 .18 .21

2 .44 .44 .18 .28 .44 .55 .44 .46 .19 .26 .44 .42 .43 .43 .21 .29 .34 .33 .35 .36 .20 .33 .39 .34 .34 .32 .23 .35 .37 .32 .33 .32 .20 .36 .36 .30 .34 .33 .20 .36 .12 .16 .22

3 .45 .43 .21 .26 .46 .47 .45 .45 .21 .25 .45 .38 .42 .45 .22 .28 .38 .39 .39 .38 .23 .32 .40 .35 .37 .35 .23 .33 .37 .34 .37 .35 .19 .35 .36 .34 .35 .34 .23 .33 .12 .16 .20

4 .48 .47 .21 .31 .49 .51 .48 .49 .21 .26 .43 .42 .46 .42 .24 .31 .40 .37 .37 .39 .22 .34 .37 .36 .38 .36 .21 .35 .39 .34 .38 .36 .22 .36 .37 .35 .36 .37 .22 .36 .12 .18 .23

5 .25 .24 .37 .27 .26 .23 .27 .27 .38 .28 .27 .22 .26 .24 .37 .28 .24 .23 .25 .26 .33 .31 .24 .23 .25 .23 .31 .31 .25 .20 .23 .24 .33 .34 .22 .21 .23 .23 .34 .32 .14 .18 .22

6 .43 .40 .26 .70 .44 .38 .43 .43 .27 .74 .43 .38 .40 .42 .27 .73 .39 .36 .37 .40 .28 .62 .37 .35 .37 .36 .30 .68 .38 .35 .36 .37 .27 .67 .38 .35 .39 .37 .29 .67 .17 .23 .30

7 .47 .45 .23 .29 .37 .39 .38 .38 .20 .28 .46 .35 .44 .46 .23 .28 .37 .33 .33 .35 .22 .33 .33 .33 .33 .32 .22 .34 .36 .29 .34 .32 .20 .35 .32 .30 .31 .32 .21 .34 .13 .19 .19

8 .49 .54 .21 .30 .43 .49 .46 .45 .20 .28 .47 .49 .49 .54 .24 .28 .36 .35 .36 .36 .22 .36 .39 .35 .37 .35 .23 .36 .37 .33 .37 .36 .20 .38 .36 .36 .36 .35 .24 .35 .14 .17 .21

9 .47 .48 .20 .28 .42 .43 .44 .43 .21 .26 .45 .41 .47 .46 .24 .27 .35 .35 .33 .34 .23 .31 .36 .35 .33 .32 .23 .34 .35 .30 .34 .33 .21 .34 .33 .31 .34 .32 .22 .34 .12 .17 .19

10 .46 .46 .23 .30 .42 .42 .41 .41 .22 .26 .46 .42 .46 .48 .23 .29 .37 .36 .35 .37 .23 .31 .37 .36 .37 .35 .24 .35 .37 .35 .36 .34 .22 .36 .39 .35 .35 .32 .22 .34 .12 .18 .19

11 .26 .25 .40 .28 .27 .25 .26 .25 .38 .27 .29 .23 .27 .26 .41 .28 .24 .25 .25 .25 .35 .32 .25 .24 .25 .23 .33 .32 .25 .21 .23 .23 .32 .33 .23 .22 .23 .24 .32 .33 .13 .19 .21

12 .42 .41 .25 .75 .44 .39 .40 .42 .26 .60 .41 .40 .40 .43 .27 .71 .36 .36 .35 .37 .27 .56 .37 .35 .36 .36 .25 .63 .37 .34 .36 .37 .27 .62 .35 .36 .36 .35 .26 .63 .16 .23 .26

13 .51 .50 .22 .34 .58 .51 .57 .59 .22 .32 .48 .46 .49 .50 .24 .33 .43 .40 .43 .40 .24 .37 .42 .39 .41 .38 .22 .39 .42 .39 .40 .39 .21 .41 .40 .36 .38 .39 .23 .39 .14 .17 .23

14 .53 .52 .22 .32 .51 .63 .55 .55 .22 .30 .49 .50 .51 .51 .24 .33 .41 .41 .40 .41 .24 .36 .43 .41 .39 .42 .23 .36 .41 .35 .39 .40 .20 .39 .42 .38 .40 .41 .23 .37 .14 .16 .23

15 .45 .45 .21 .28 .53 .48 .50 .53 .21 .26 .47 .38 .48 .43 .23 .28 .35 .38 .36 .38 .23 .32 .41 .35 .39 .35 .23 .34 .39 .35 .33 .36 .20 .36 .38 .33 .36 .36 .23 .33 .12 .18 .21

16 .48 .47 .22 .31 .56 .57 .56 .55 .20 .30 .49 .44 .48 .48 .24 .31 .41 .41 .40 .42 .22 .37 .40 .40 .41 .40 .24 .35 .42 .37 .37 .41 .22 .37 .39 .39 .40 .40 .23 .37 .13 .17 .21

17 .25 .26 .44 .28 .26 .26 .28 .26 .44 .28 .29 .23 .24 .28 .40 .29 .26 .25 .25 .26 .38 .34 .26 .23 .24 .22 .35 .35 .26 .24 .22 .23 .33 .37 .24 .22 .23 .24 .35 .36 .15 .23 .22

18 .43 .40 .28 .73 .45 .42 .44 .44 .27 .76 .45 .39 .41 .43 .29 .72 .38 .36 .38 .38 .30 .59 .38 .34 .37 .37 .30 .64 .38 .36 .36 .37 .27 .66 .37 .34 .37 .36 .27 .65 .18 .23 .31

19 .53 .48 .25 .30 .43 .41 .44 .43 .24 .29 .54 .40 .46 .54 .25 .32 .36 .37 .38 .37 .23 .35 .38 .37 .38 .34 .25 .37 .38 .33 .34 .33 .23 .38 .37 .33 .34 .34 .24 .37 .13 .19 .20

20 .59 .60 .25 .33 .52 .54 .50 .54 .23 .30 .56 .62 .58 .58 .27 .34 .41 .41 .39 .43 .23 .35 .43 .41 .43 .43 .26 .36 .44 .38 .41 .44 .22 .38 .45 .40 .43 .42 .26 .37 .14 .20 .23

21 .58 .64 .21 .29 .44 .40 .44 .40 .21 .27 .55 .43 .56 .56 .22 .30 .36 .35 .38 .39 .24 .34 .38 .35 .40 .36 .23 .36 .38 .32 .35 .35 .23 .37 .37 .35 .36 .35 .23 .34 .12 .17 .20

22 .54 .53 .24 .29 .45 .45 .45 .46 .23 .24 .52 .46 .49 .56 .26 .29 .40 .37 .38 .40 .25 .33 .39 .36 .40 .39 .27 .34 .40 .35 .38 .37 .24 .36 .40 .35 .38 .38 .25 .35 .11 .18 .20

23 .28 .27 .44 .26 .27 .24 .28 .26 .34 .26 .28 .24 .28 .27 .44 .27 .25 .25 .26 .27 .33 .30 .23 .23 .25 .24 .33 .30 .26 .23 .26 .23 .32 .31 .24 .23 .22 .26 .34 .30 .15 .20 .22

24 .42 .40 .21 .78 .40 .37 .39 .38 .24 .62 .42 .37 .38 .41 .25 .77 .34 .33 .34 .34 .27 .53 .36 .31 .35 .34 .25 .63 .36 .32 .34 .34 .25 .64 .33 .33 .34 .32 .24 .62 .17 .22 .25

25 .54 .52 .26 .32 .62 .57 .67 .67 .24 .34 .55 .47 .52 .52 .27 .35 .40 .44 .44 .45 .25 .38 .45 .43 .43 .44 .24 .41 .45 .39 .41 .43 .23 .42 .43 .40 .42 .42 .25 .40 .13 .20 .25

26 .54 .54 .22 .33 .55 .66 .58 .61 .22 .34 .52 .53 .52 .53 .23 .35 .41 .43 .41 .40 .22 .36 .44 .43 .45 .42 .23 .38 .44 .40 .41 .42 .20 .40 .43 .41 .42 .43 .23 .37 .12 .18 .21

27 .55 .48 .24 .31 .64 .55 .66 .63 .24 .33 .54 .47 .51 .48 .26 .34 .45 .46 .44 .47 .24 .40 .46 .43 .45 .43 .24 .38 .45 .40 .42 .43 .23 .41 .44 .43 .42 .44 .26 .38 .13 .19 .25

28 .52 .48 .24 .33 .61 .56 .67 .69 .26 .35 .52 .49 .51 .54 .26 .35 .41 .43 .44 .44 .27 .39 .44 .41 .46 .44 .26 .40 .46 .40 .41 .42 .24 .40 .41 .39 .41 .41 .27 .38 .13 .20 .25

29 .27 .25 .43 .30 .27 .26 .27 .28 .49 .30 .31 .24 .27 .28 .44 .30 .25 .25 .26 .25 .42 .34 .27 .25 .25 .23 .40 .36 .28 .23 .24 .25 .38 .36 .25 .24 .24 .26 .42 .35 .15 .19 .24

30 .42 .39 .27 .74 .44 .42 .43 .45 .28 .78 .42 .39 .41 .42 .26 .78 .35 .36 .36 .38 .30 .59 .37 .36 .38 .36 .29 .65 .37 .35 .36 .35 .26 .66 .36 .35 .39 .37 .27 .65 .21 .25 .31

31 .59 .52 .24 .30 .45 .40 .44 .42 .21 .27 .58 .41 .52 .56 .24 .30 .34 .35 .32 .35 .23 .34 .37 .34 .35 .35 .25 .35 .35 .32 .34 .33 .22 .35 .34 .31 .32 .33 .24 .35 .12 .18 .21

32 .58 .62 .24 .31 .47 .53 .49 .50 .23 .28 .55 .61 .55 .59 .27 .32 .39 .40 .38 .37 .23 .35 .45 .40 .41 .38 .24 .36 .44 .36 .40 .39 .22 .38 .41 .37 .39 .37 .25 .36 .13 .18 .24

33 .64 .54 .25 .30 .46 .42 .47 .46 .23 .29 .64 .44 .59 .60 .24 .31 .39 .37 .40 .38 .25 .36 .41 .35 .40 .37 .25 .36 .40 .35 .37 .37 .23 .36 .39 .34 .37 .37 .24 .36 .13 .19 .22

34 .64 .67 .25 .34 .50 .48 .48 .47 .24 .31 .57 .48 .66 .64 .26 .35 .39 .38 .39 .40 .24 .38 .42 .38 .39 .36 .26 .39 .41 .37 .38 .37 .24 .39 .40 .37 .40 .38 .24 .39 .12 .20 .23

35 .28 .27 .46 .30 .26 .24 .28 .25 .44 .28 .31 .24 .27 .27 .47 .31 .25 .25 .25 .27 .38 .34 .26 .23 .25 .23 .38 .35 .27 .26 .24 .25 .35 .35 .23 .22 .23 .26 .34 .35 .17 .22 .24

36 .41 .39 .25 .77 .41 .38 .39 .39 .27 .66 .41 .37 .37 .42 .28 .81 .36 .35 .36 .36 .26 .54 .36 .35 .35 .37 .27 .62 .39 .35 .36 .36 .26 .64 .35 .34 .37 .35 .25 .63 .18 .22 .26

37 .31 .30 .15 .24 .30 .29 .30 .31 .16 .21 .31 .26 .32 .30 .18 .24 .62 .45 .53 .50 .19 .32 .42 .35 .44 .38 .19 .34 .44 .33 .38 .38 .18 .36 .42 .33 .41 .35 .20 .33 .10 .15 .17

38 .45 .44 .18 .28 .44 .43 .42 .44 .20 .28 .40 .38 .42 .45 .21 .30 .65 .77 .66 .65 .23 .39 .55 .63 .61 .55 .22 .40 .55 .57 .56 .56 .20 .42 .57 .60 .54 .53 .21 .42 .12 .17 .22

39 .35 .34 .17 .26 .35 .32 .32 .30 .16 .24 .34 .28 .31 .36 .18 .26 .64 .52 .63 .58 .20 .35 .48 .39 .49 .44 .18 .35 .46 .37 .44 .43 .17 .38 .45 .39 .45 .42 .19 .34 .11 .15 .19

40 .38 .36 .17 .27 .39 .35 .36 .36 .16 .23 .37 .30 .36 .36 .19 .26 .65 .58 .62 .69 .20 .38 .51 .47 .55 .51 .20 .37 .48 .42 .50 .48 .19 .39 .51 .45 .48 .50 .21 .37 .10 .15 .22

41 .27 .26 .32 .28 .27 .25 .27 .26 .35 .27 .28 .25 .26 .27 .34 .28 .26 .24 .28 .27 .46 .34 .28 .23 .27 .26 .46 .37 .26 .23 .25 .24 .42 .37 .25 .23 .24 .25 .43 .34 .13 .19 .21

42 .39 .38 .20 .50 .40 .37 .38 .40 .21 .47 .40 .36 .36 .40 .23 .52 .42 .42 .42 .43 .25 .84 .41 .40 .41 .39 .25 .86 .40 .37 .38 .39 .26 .81 .37 .38 .38 .37 .26 .85 .16 .19 .25

43 .41 .36 .17 .27 .37 .36 .39 .37 .18 .24 .37 .31 .38 .36 .19 .27 .55 .47 .51 .50 .21 .35 .65 .44 .60 .50 .21 .35 .64 .42 .56 .49 .21 .36 .60 .42 .54 .47 .20 .37 .12 .15 .20

44 .44 .44 .18 .27 .45 .44 .47 .44 .18 .27 .43 .39 .43 .44 .21 .31 .54 .66 .56 .58 .23 .38 .60 .71 .62 .57 .21 .40 .60 .63 .57 .61 .20 .42 .55 .63 .57 .57 .21 .39 .12 .15 .23

45 .43 .42 .18 .27 .42 .39 .43 .39 .18 .27 .41 .35 .40 .40 .21 .27 .57 .52 .56 .57 .22 .36 .69 .53 .68 .61 .21 .37 .66 .47 .66 .59 .22 .39 .61 .49 .66 .57 .22 .40 .12 .15 .20

46 .42 .42 .18 .28 .40 .38 .40 .40 .18 .28 .41 .35 .38 .42 .20 .30 .56 .53 .54 .59 .21 .38 .65 .54 .64 .65 .22 .37 .64 .50 .64 .68 .23 .40 .61 .53 .61 .62 .24 .40 .13 .16 .19

47 .22 .21 .31 .25 .22 .21 .23 .22 .28 .25 .24 .19 .21 .23 .30 .25 .22 .21 .22 .22 .42 .30 .23 .21 .22 .21 .43 .32 .24 .21 .20 .21 .40 .32 .22 .21 .20 .22 .40 .30 .13 .18 .20

48 .40 .38 .20 .51 .43 .39 .40 .41 .22 .49 .39 .35 .38 .41 .24 .54 .42 .41 .40 .44 .25 .77 .44 .41 .45 .44 .24 .89 .43 .39 .42 .41 .24 .88 .39 .39 .42 .41 .25 .89 .16 .19 .22

49 .37 .35 .17 .26 .37 .33 .36 .33 .17 .23 .37 .29 .36 .35 .20 .26 .50 .44 .49 .49 .21 .34 .65 .45 .61 .50 .21 .34 .64 .41 .57 .50 .19 .35 .61 .42 .57 .48 .21 .35 .12 .15 .18

50 .44 .46 .19 .30 .43 .44 .43 .41 .19 .29 .43 .42 .42 .45 .20 .32 .54 .64 .54 .55 .23 .39 .56 .71 .61 .58 .25 .38 .61 .66 .58 .58 .22 .41 .57 .66 .58 .58 .23 .41 .11 .17 .24

51 .43 .42 .18 .31 .43 .40 .43 .40 .21 .26 .41 .38 .41 .42 .22 .30 .56 .54 .58 .56 .23 .39 .68 .54 .69 .63 .22 .39 .69 .51 .67 .64 .22 .41 .64 .52 .67 .61 .22 .42 .12 .15 .21

52 .45 .42 .18 .29 .42 .43 .43 .41 .19 .29 .45 .37 .42 .44 .21 .30 .55 .55 .53 .62 .23 .38 .64 .61 .69 .68 .23 .41 .65 .55 .69 .74 .22 .43 .63 .56 .66 .67 .24 .43 .14 .17 .19

53 .26 .25 .30 .27 .24 .24 .25 .24 .29 .25 .25 .21 .25 .25 .32 .25 .24 .25 .25 .24 .40 .32 .25 .25 .25 .25 .40 .33 .25 .23 .23 .24 .41 .32 .24 .22 .22 .25 .44 .32 .13 .19 .21

54 .44 .40 .20 .52 .44 .40 .41 .44 .20 .47 .42 .38 .41 .43 .26 .53 .43 .43 .41 .41 .25 .75 .44 .42 .45 .42 .24 .91 .46 .40 .42 .43 .24 .89 .39 .41 .41 .40 .24 .90 .15 .18 .22

55 .41 .38 .19 .26 .40 .35 .39 .37 .18 .24 .40 .34 .36 .38 .20 .25 .57 .47 .52 .54 .21 .36 .63 .47 .62 .53 .21 .36 .68 .43 .58 .54 .20 .38 .63 .45 .60 .52 .23 .37 .12 .16 .18

56 .46 .47 .19 .30 .44 .44 .47 .43 .20 .29 .43 .41 .43 .44 .22 .31 .59 .70 .57 .59 .22 .39 .60 .74 .62 .59 .23 .40 .58 .67 .58 .63 .22 .43 .58 .72 .60 .57 .23 .42 .12 .17 .24

57 .43 .39 .19 .28 .42 .39 .41 .37 .20 .27 .40 .35 .39 .40 .22 .29 .56 .51 .57 .59 .25 .39 .67 .53 .67 .59 .23 .38 .66 .51 .66 .64 .23 .40 .60 .49 .64 .59 .23 .41 .13 .16 .21

58 .42 .42 .18 .28 .42 .41 .42 .38 .19 .27 .43 .37 .39 .42 .20 .30 .56 .57 .55 .59 .21 .39 .64 .55 .69 .66 .21 .40 .64 .56 .64 .69 .20 .43 .61 .57 .66 .68 .23 .43 .13 .18 .21

59 .25 .25 .30 .25 .23 .22 .26 .25 .33 .26 .26 .23 .25 .25 .32 .27 .25 .25 .25 .27 .44 .33 .24 .23 .24 .22 .43 .33 .24 .23 .24 .24 .43 .34 .23 .23 .22 .25 .43 .33 .13 .19 .23

60 .42 .41 .18 .53 .44 .38 .43 .42 .20 .45 .42 .38 .39 .42 .23 .52 .45 .43 .42 .42 .26 .75 .46 .44 .47 .44 .24 .90 .46 .39 .43 .43 .25 .88 .41 .42 .41 .41 .25 .89 .15 .20 .25

61 .35 .34 .32 .36 .35 .31 .34 .35 .29 .38 .35 .31 .32 .36 .32 .38 .35 .34 .31 .33 .32 .39 .34 .33 .32 .33 .33 .40 .34 .33 .32 .32 .33 .41 .34 .33 .34 .35 .32 .40 .49 .33 .39

62 .42 .42 .38 .46 .41 .40 .43 .41 .40 .47 .42 .38 .41 .43 .39 .50 .43 .38 .42 .41 .39 .50 .39 .37 .40 .39 .38 .51 .39 .37 .40 .38 .39 .49 .39 .38 .40 .40 .40 .51 .33 .51 .49

63 .28 .27 .25 .31 .31 .29 .30 .31 .26 .31 .30 .25 .26 .28 .27 .34 .30 .29 .28 .29 .28 .37 .28 .27 .28 .27 .28 .38 .27 .26 .28 .27 .26 .38 .27 .27 .26 .27 .28 .36 .21 .26 .55

Figure 4: Transferability among neural models (part 2).
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00
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0.02 0.00 0.01 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

0.02 0.00 0.02 0.00 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.68 -0.05 0.13 0.03 2.08 -0.05 0.15 -0.03 0.00 -0.05 -0.05 -0.04 -0.03 -0.02 -0.02 0.00 0.00 -0.02 -0.04 -0.01 -0.03 0.03 -0.03 -0.01 0.02 0.03 -0.05 0.16

0.04 -0.01 0.01 -0.01 0.03 -0.01 0.00 -0.01 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.01 0.14 0.00 0.06 -0.03 -0.02 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 -0.01 0.01 -0.01 -0.01 0.00 0.00 0.00 0.00

0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.08 0.00 0.16 0.00 0.29 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.58 -0.05 0.81 0.00 0.59 -0.06 -0.04 -0.07 -0.03 -0.05 -0.02 -0.01 0.01 0.00 -0.01 -0.05 0.00 -0.03 0.01 0.01 0.06 0.07 -0.04 0.01 -0.02 -0.06 -0.05 -0.06
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Figure 6: Importance of original words.

A.3 Heatmap of Word Importance

To study how each word in the sentence impacts the

prediction of the model, we define word importance

as follows:

• For an original word, its importance is calcu-

lated as the difference between the log likeli-

hood of a gold label before and after the origi-

nal word is replaced with a special “unknown”

symbol (<unk>).

• For a substitute word, its importance is esti-

mated as the difference between the log like-

lihood of a gold label predicted by the model

before and after the original word is replaced

with the substitute one.

Figure 6 and 7 show the importance of original

and substitute words for different models. We here

only consider the models (with one hidden layer)

listed in Figure 8 and take the following sentence

as an example input:

Storage, servers bruise HP earnings update

Earnings per share rise compared with a year ago,

but company misses analysts’ expectations by a

long shot.

We observed that different models generally

show similar behavior: for the original words, most

of the models mainly focus on three words, namely

“Storage”, “servers” and “HP”; for the substitute

words, the attentions have been given to the word

“depot” for most of the models. Thanks to such a

similarity, it is possible to generate the adversarial
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Figure 7: Importance of the words used to replace an

original word “Storage” (the first word in the sentence).

examples using one model, which strongly transfer

to the others.

However, the models from BERT family show

much more robust to transfer adversarial attacks.

They tend to distribute their “attention” over more

words both for original words and substitute words.

As to character-based models, they also distribute

their attention in a way that is clearly different from

the other models. These differences can explain

the lower transferability rates achieved by the ad-

versarial examples generated by using BERTs and

character-based models.
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Table 9: Different ensembles selected by human expert and algorithm on text classification task.

H
u

m
a
n

2 LSTM-W-Random-1, CNN-C-Random-1
3 LSTM-W-Random-1, CNN-C-Random-1, LSTM-WC-ELMo-1
4 LSTM-W-Random-1, CNN-C-Random-1, LSTM-WC-ELMo-1, BERT
5 LSTM-W-Random-1, CNN-C-Random-1, LSTM-WC-ELMo-1, BERT, CNN-W-Random-1
6 LSTM-W-Random-1, CNN-C-Random-1, LSTM-WC-ELMo-1, BERT, CNN-W-Random-1, LSTM-C-Random-1
7 LSTM-W-Random-1, CNN-C-Random-1, LSTM-WC-ELMo-1, BERT, CNN-W-Random-1, LSTM-C-Random-1, CNN-WC-ELMo-1

A
lg

o
ri

th
m

AGNEWS (PWWS)

2 LSTM-WC-ELMo-4, CNN-W-GloVe-6
3 BiLSTM-W-GloVe-2, LSTM-WC-ELMo-4, CNN-W-fastText-4
4 LSTM-WC-ELMo-1, BiLSTM-W-GloVe-2, CNN-W-fastText-4, RoBERTa
5 LSTM-WC-ELMo-1, BiLSTM-W-GloVe-2, LSTM-W-Random-4, CNN-W-fastText-4, RoBERTa
6 LSTM-WC-ELMo-2, BiLSTM-W-GloVe-2, LSTM-W-Random-4, CNN-W-fastText-4, CNN-WC-ELMo-4, RoBERTa
7 LSTM-WC-ELMo-2, BiLSTM-W-GloVe-2, LSTM-W-Random-4, CNN-W-fastText-4, CNN-WC-ELMo-4, CNN-W-GloVe-6, RoBERTa

AGNEWS (GA)

2 LSTM-WC-ELMo-1, CNN-WC-ELMo-1
3 LSTM-WC-ELMo-1, CNN-C-Random-1, CNN-WC-ELMo-1
4 BiLSTM-WC-ELMo-4, CNN-C-Random-1, CNN-WC-ELMo-1, CNN-WC-ELMo-6
5 BiLSTM-WC-ELMo-4, CNN-C-Random-1, CNN-WC-ELMo-1, CNN-WC-ELMo-6, RoBERTa
6 LSTM-WC-ELMo-4, BiLSTM-WC-ELMo-4, CNN-C-Random-1, CNN-WC-ELMo-1, CNN-WC-ELMo-6, RoBERTa
7 LSTM-WC-ELMo-4, BiLSTM-WC-ELMo-4, CNN-C-Random-1, CNN-WC-ELMo-1, CNN-WC-ELMo-2, CNN-WC-ELMo-6, RoBERTa

MR (PWWS)

2 LSTM-C-Random-4, CNN-WC-ELMo-6
3 LSTM-C-Random-4, BiLSTM-W-GloVe-4, CNN-WC-ELMo-2
4 LSTM-C-Random-4, BiLSTM-W-GloVe-4, CNN-W-fastText-2, CNN-WC-ELMo-2
5 LSTM-W-word2vec-1, LSTM-C-Random-4, CNN-W-fastText-2, CNN-WC-ELMo-2, CNN-W-GloVe-6
6 LSTM-W-word2vec-1, LSTM-C-Random-4, CNN-W-fastText-2, CNN-WC-ELMo-2, CNN-W-GloVe-6, RoBERTa
7 LSTM-W-word2vec-1, LSTM-C-Random-4, BiLSTM-W-GloVe-4, CNN-WC-ELMo-2, CNN-W-GloVe-6, CNN-W-word2vec-6, RoBERTa

MR (GA)

2 BiLSTM-W-GloVe-4, RoBERTa
3 LSTM-C-Random-4, BiLSTM-W-GloVe-4, RoBERTa
4 LSTM-W-Random-1, LSTM-C-Random-4, CNN-W-GloVe-1, RoBERTa
5 LSTM-W-Random-1, LSTM-C-Random-4, BiLSTM-W-GloVe-4, CNN-W-GloVe-1, RoBERTa
6 LSTM-W-Random-1, LSTM-C-Random-4, BiLSTM-W-GloVe-4, BiLSTM-C-Random-4, CNN-W-GloVe-1, RoBERTa
7 LSTM-W-Random-1, LSTM-W-word2vec-1, LSTM-C-Random-4, BiLSTM-W-GloVe-4, BiLSTM-C-Random-4, CNN-W-GloVe-1, RoBERTa

Table 10: Different ensembles selected by genetic algorithm on natural language inference task.

E
n

se
m

b
le

S
iz

e 2 BiLSTM-W-GloVe-2, BiLSTM-WC-ELMo-2
3 RoBERTa, BiLSTM-W-GloVe-2, BiLSTM-WC-ELMo-2
4 RoBERTa, LSTM-W-GloVe-2, CNN-W-fastText-1, BiLSTM-WC-ELMo-2
5 RoBERTa, LSTM-W-GloVe-2, CNN-W-fastText-1, BiLSTM-WC-ELMo-2, BiLSTM-W-GloVe-2
6 RoBERTa, LSTM-W-GloVe-4, CNN-W-fastText-1, BiLSTM-WC-ELMo-2, BiLSTM-W-GloVe-2, LSTM-W-fastText-2
7 RoBERTa, BiLSTM-W-GloVe-2, CNN-W-fastText-1, BiLSTM-WC-ELMo-2, BiLSTM-C-Random-2, LSTM-W-fastText-2, CNN-WC-ELMo-1

A.4 The Ensembles of Text Classification

Task

Table 9 shows the ensemble models selected by the

proposed genetic algorithm and human expert of

AGNEWS and MR datasets.

A.5 The Ensembles of Natural Language

Inference Task

Table 10 shows the ensemble models selected by

the proposed genetic algorithm on SNLI dataset.


