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Abstract 

High-performance neural language models 

have obtained state-of-the-art results on a 

wide range of Natural Language 

Processing (NLP) tasks. However, results 

for common benchmark datasets often do 

not reflect model reliability and robustness 

when applied to noisy, real-world data. In 

this study, we design and implement 

various types of character-level and word-

level perturbation methods to simulate 

realistic scenarios in which input texts may 

be slightly noisy or different from the data 

distribution on which NLP systems were 

trained. Conducting comprehensive 

experiments on different NLP tasks, we 

investigate the ability of high-performance 

language models such as BERT, XLNet, 

RoBERTa, and ELMo in handling different 

types of input perturbations. The results 

suggest that language models are sensitive 

to input perturbations and their 

performance can decrease even when small 

changes are introduced. We highlight that 

models need to be further improved and 

that current benchmarks are not reflecting 

model robustness well. We argue that 

evaluations on perturbed inputs should 

routinely complement widely-used 

benchmarks in order to yield a more 

realistic understanding of NLP systems’ 

robustness. 

1 Introduction 

High-performance deep neural language models 

such as BERT (Devlin et al., 2018), XLNet (Z. 

                                                           
1 https://rajpurkar.github.io/SQuAD-
explorer/ 

Yang et al., 2019), and GPT-2 (Radford et al., 

2019) have brought breakthroughs to a wide range 

of Natural Language Processing (NLP) tasks 

including text classification, sentiment analysis, 

textual entailment, natural language inference, 

machine translation, and question answering. Their 

immense ability in capturing various linguistic 

properties has led these state-of-the-art language 

models to master different NLP tasks, even 

surpassing human accuracy on some benchmarks 

such as SQuAD1. 

However, recent studies have revealed that there 

is a gap between performing well on benchmarks 

and actually working under real-world situations 

(Belinkov and Bisk, 2018; Ribeiro et al., 2020). 

Even a well-trained, high-performance deep 

language model can be sensitive to negligible 

changes in the input that cause the model to make 

erroneous decisions (M. Sun et al., 2018). This 

raises serious concerns regarding the 

robustness/reliability of neural language models 

utilized in real-world applications. The terms 

‘robustness’ and ‘reliability’ refer to the ability of a 

system to perform consistently well in situations 

where changes to input should not cause a change 

in the system’s output, or the system is expected to 

properly reflect the change and produce a correct 

outcome. 

Applying automatic or human-controlled 

perturbations to textual inputs has been shown to 

be effective for evaluating the robustness of NLP 

systems, investigating their vulnerabilities, and 

finding their bugs. Recently, CheckList (Ribeiro et 

al., 2020) provided a framework for behavioral 

testing of NLP systems inspired by black-box 
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testing in software engineering. CheckList enabled 

generating new (perturbed) test samples through 

abstracting different test types aimed at testing 

linguistic capabilities. Other studies focused on 

evaluating robustness to perturbed inputs for 

machine translation (Belinkov and Bisk, 2018; Niu 

et al., 2020), perturbation sensitivity analysis for 

detecting unintended model biases (Prabhakaran et 

al., 2019), or robustness to adversarial 

perturbations (Alshemali and Kalita, 2020; 

Ebrahimi et al., 2018; Liang et al., 2018). However, 

a comprehensive methodology for evaluating the 

performance of NLP models under real-world 

conditions is still missing. 

In a realistic scenario, the input text may contain 

typos and misspellings that should not cause any 

changes in the NLP system’s outcome. Minor 

grammatical errors may appear in the text, but the 

semantics is still preserved, therefore, the NLP 

system is expected to treat the input as it was error-

free. Some deliberate or unintentional changes may 

modify the semantics, and the NLP model is 

expected to reflect the changes in the outcome. 

These are only few examples of natural noise in 

text data that NLP systems should have the ability 

to properly deal with.  

In this paper, we design and implement a wide 

range of character-level and word-level systematic 

perturbations to textual inputs in order to simulate 

different types of noise that a NLP system may face 

in real-world use cases. Conducting extensive 

experiments on various NLP tasks, we investigated 

the ability of four neural language models, i.e. 

BERT, RoBERTa, XLNet, and ELMo, in handling 

slightly perturbed inputs. The results reveal that the 

neural models are unstable to small changes that 

can be easily handled by humans, e.g. misspellings, 

missing words, repeated words, synonyms, etc. 

The systematic input perturbations can expose the 

vulnerabilities of NLP systems and bring more 

insights into how high-performance models 

behave when they encounter noisy yet 

understandable inputs. This study suggests that the 

performance of NLP models should not be 

overestimated by only relying on accuracy scores 

obtained on benchmark datasets. 

Similar to CheckList, our perturbation 

framework treats NLP systems as black-boxes. 

This facilitates comparison of different models, 

without needing to know the model structure and 

internals. CheckList focuses on testing linguistic 

capabilities of NLP systems, e.g. handling 

coreferences, identifying named entities, semantic 

role labeling, and vocabulary. On the other hand, 

our perturbation methods aim at evaluating the 

robustness of NLP systems to noisy inputs. Our 

input perturbation framework can act as a 

complement to the CheckList testing methodology. 

In CheckList, many test types rely on creating 

synthetic samples from scratch by the user, which 

is a time-consuming task, and needs much 

creativity and effort. Moreover, synthetic samples 

may suffer from low coverage (Ribeiro et al., 

2020). However, most of the perturbation methods 

introduced in this paper do not need human 

intervention; they can automatically generate 

perturbed samples that still preserve the semantics 

and are sufficiently meaningful to users. 

Some types of perturbation utilized in this work 

were already tested in previous work on adversarial 

attacks on NLP systems (Zeng et al., 2020; Zhang 

et al., 2020). However, adversarial perturbations 

are considered worst-case scenarios that do not 

occur frequently in real-world situations, 

representing a very specific type of noise (Fawzi et 

al., 2016). In order to generate effective adversarial 

examples, most attack methods need to have access 

to the NLP model structure, internal weights, and 

hyperparameters, which may not be possible in 

every testing scenario (Zhang et al., 2020). 

Furthermore, adversarial perturbations should not 

be perceived by humans (Liang et al., 2018). This 

is a serious challenge, since even small changes to 

a text may be easily recognized by the user. 

To the best of our knowledge, this paper is the 

first study that presents empirical results achieved 

with a comprehensive set of non-adversarial 

perturbation methods for testing robustness of NLP 

systems on non-synthetic text. An important 

contribution of this work is to evaluate the 

robustness of several high-performance language 

models on various NLP tasks using different types 

of character-level and word-level input 

perturbations. Moreover, to ascertain the 

usefulness of the perturbations (i.e. how effectively 

they can be used to automatically generate 

meaningful and understandable perturbed 

samples), we conducted an extensive user study. 

2 NLP tasks 

In our experiments, we used five datasets covering 

five different NLP tasks. Table 1 summarizes some 

statistics of the datasets. A short description of the 

datasets is given in the following. 
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TREC (Li and Roth, 2002) is a Text 

Classification (TC) dataset containing more than 

6,000 questions and 50 different class labels that 

specify the type of questions. 

Stanford Sentiment Treebank (SST) (Socher 

et al., 2013) is a Sentiment Analysis (SA) dataset 

containing more than 11,000 movie reviews from 

‘Rotten Tomatoes’. Every review is classified into 

one of the five classes: very positive, positive, 

neutral, negative, and very negative. 

CoNLL-20032  is a Named Entity Recognition 

(NER) dataset containing news stories from the 

Reuters corpus with more than 200K tokens 

annotated as Person, Organization, Location, 

Miscellaneous, or Other. 

STS benchmark (Cer et al., 2017) is a Semantic 

Similarity (SS) dataset comprising of more than 8K 

text pairs extracted from image captions, news 

headlines, and user forums. Each pair of sentences 

is assigned a similarity score between 0 and 5. 

WikiQA (WQA) (Y. Yang et al., 2015) is a 

Question Answering (QA) dataset composed of 

more than 3,000 questions and 29,000 sentences as 

answers extracted from Wikipedia.  

3 Language models 

In our experiments, we utilized four neural 

language models shown to be effective in learning 

bidirectional contexts and obtained state-of-the-art 

results during recent years: 

BERT (Devlin et al., 2018) is composed of deep 

encoder transformer layers and uses two 

pretraining objectives, i.e. masked language 

modelling and next sentence prediction. We used 

the BERTLARGE architecture (along with the cased 

model) containing 24 transformer layers, 1024 

hidden units per layer, 16 attention heads per 

hidden unit, and 340 million parameters. 

RoBERTa (Liu et al., 2019) uses a model 

architecture similar to BERT, but adopts an 

optimized pretraining approach. It was pretrained 

on more data, with bigger batch sizes and longer 

sequences than BERT. Furthermore, the next 

sentence prediction objective was removed and a 

dynamic masking strategy replaced the basic 

masking method. We used RoBERTaLARGE that 

further optimizes the same model as BERTLARGE. 

XLNet (Z. Yang et al., 2019) utilizes decoder 

transformers and adopts a permutation language 

                                                           
2https://github.com/synalp/NER/tree/mast

er/corpus/CoNLL-2003 

modelling approach along with generalized 

autoregressive pretraining. We used the 

XLNetLARGE model, with the same architecture 

hyperparameters and model size as BERTLARGE.  

ELMo (Peters et al., 2018) is a contextualized 

word representation method that utilizes character 

convolutions along with shallow concatenation of  

backward and forward LSTMs to implement 

bidirectional language modeling. We used the 

original ELMo model composed of two highway 

layers with an LSTM hidden size of 4096, output 

size of 512, and a total parameters of 93.6 million. 

The contextualized embeddings computed by 

ELMo were fed into a dense layer containing 128 

hidden units followed by an output layer with a 

softmax activation in the TC and QA tasks, a linear 

activation in the SA and SS tasks, and CRF layer 

with a linear activation in the NER task.  

We retrieved the pretrained models, fine-tuned 

them separately on each downstream task using the 

training and development sets, and tested them on 

the test sets. We utilized the Huggingface 

transformers (Wolf et al., 2020) and FARM 3 

libraries to implement the transformer-based 

models. A complete list of hyperparameter values 

is presented in Appendix A. 

4 Perturbation methods 

We designed and implemented various character-

level and word-level perturbation methods that 

simulate different types of noise an NLP system 

may encounter in real-world situations. The 

perturbations can be produced for every dataset 

regardless of the underlying language model or 

NLP system being tested. Table 2 presents an 

example for every perturbation method. The 

perturbation methods were implemented in Python 

using the NLTK library. The source code is 

available at https://github.com/mmoradi-

iut/NLP-perturbation. 

3https://github.com/deepset-ai/FARM 

Dataset Task Train Dev Test Eval. Measure 

TREC TC 5,000 452 500 Micro F1-score 

SST SA 8,544 1,101 2,210 Accuracy 

CoNLL NER 14,041 3,250 3,453 F1-score 

STS SS 5,749 1,500 1,379 Pearson 

WQA QA 2,117 296 630 F1-score 

Table 1:  The main statistics of the datasets used to 

conduct the perturbation experiments. 

 

 

https://github.com/mmoradi-iut/NLP-perturbation
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Almost all the character-level perturbations 

presented here were already tested in adversarial 

attack scenarios (Heigold et al., 2018; Zeng et al., 

2020; Zhang et al., 2020), but were not yet 

implemented in a non-adversarial testing 

framework, except the misspelling perturbation 

implemented by CheckList. Among the word-level 

perturbations, Deletion, Repetition, 

Singular/plural verbs, Word order, and Verb tense 

were not already used to test the robustness. 

However, Negation was included in CheckList, 

and Replacement with Synonyms was used for 

adversarial attack (Dong et al., 2020; Ren et al., 

2019).  

4.1 Character-level perturbation 

These perturbation methods randomly select a 

word, denoted as Wordi, and apply perturbations to 

its characters. They are described in the following. 

Insertion. A character is randomly selected and 

inserted in a random position (except the first and 

last position) if Wordi contains at least three 

characters. 

Deletion. A character is randomly selected and 

deleted if Wordi contains at least three characters. 

The last and first characters of Wordi are never 

deleted. 

Replacement. A character is randomly selected 

and is replaced by an adjacent character on the 

keyboard. 

                                                           
4https://en.wikipedia.org/wiki/Wikipedia

:Lists_of_common_misspellings/For_machin

es/ 

Swapping. A character is randomly selected and 

swapped with the adjacent right or left character in 

Wordi. 

Repetition. A character in a random position 

(except the first and last position) is selected and a 

copy of it is inserted right after the selected 

character. 

Common misspelled words. If a word in the 

input text appears in the Wikipedia corpus of 

common misspelled words4 , it is replaced by its 

misspelling. 

Letter case changing toggles the letter case, i.e. 

converts a lower case character to its upper case 

form and vice versa. The letter case changing is 

done for either the first or all the characters of 

Wordi. The type of letter case changing is specified 

in a random manner.  

4.2 Word-level perturbation 

Deletion randomly selects a word from the input 

sample and removes it.  

Repetition selects a random word, makes a 

copy of it, and inserts it right after the selected 

word. 

Replacement with synonyms replaces words 

contained in the sample by their synonyms 

extracted from the WordNet lexical database 

(Miller, 1995). 

Negation. It identifies verbs in the sample, then 

injects negations by converting positive verbs to 

negative, or removes negation by converting 

negative verbs to positive. The goal is to 

Perturbation  Original text Perturbed text 

Character-level 

Insertion Who was the first governor of Alaska? Who was the firsdt governor of Alaska? 

Deletion Mercury, what year was it discovered? Mercury, what year was it discovred? 

Replacement Who is the Prime Minister of Canada? Who is the Prime Monister of Canada? 

Swapping What is the primary language in Iceland? What is the primary lnaguage in Iceland? 

Repetition How many hearts does an octopus have? How many heartts does an octopus have? 

CMW What kind of gas is in a fluorescent bulb? What kind of gas is in a florescent bulb? 

LCC How many hearts does an octopus have? How many hearts does an OCTOPUS have? 

Word-level 

Deletion How much was a ticket for the Titanic? How much a ticket for the Titanic? 

Repetition What is another name for vitamin B1? What is another name name for vitamin B1? 

RWS What precious stone is a form of pure carbon? What valued rock is a form of pure carbon? 

Negation What planet is known as the “red” planet? What planet is not known as the “red” planet? 

SPV What does a barometer measure? What do a barometer measure? 

Verb tense Why in tennis are zero points called love? Why in tennis were zero points called love? 

Word order What is the most common eye color? What is the common most color eye? 

Table 2:  Character-level and word-level perturbation examples from the TREC question classification dataset. 

CMW: Common Misspelled Words, LCC: Letter Case Changing, RWS: Replacement With Synonyms, SPV: 

Singular/Plural Verbs. 
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investigate the ability of the NLP system in 

adapting its outcome to reflect the injected or 

removed negation. 

This perturbation method operates based on a 

set of rules that assess verbs, subjects, and verb 

tenses based on POS tags, then applies an 

appropriate rule to construct the test sample. For 

example, if the POS tag of a verb is VBZ, the verb 

appears in the third person simple present form. 

Therefore, the verb is replace by [does not + VBP] 

where VBP is the basic form of the verb, in order 

to inject negation into the sample. 

Singular/plural verbs. It simulates a common 

error in real use cases, i.e. using plural form of a 

verb instead of the singular form, and vice versa, 

usually with a third-person subject. This 

perturbation does not usually change the text’s 

meaning in most NLP tasks if the task does not rely 

on the subject-verb agreement. Therefore the NLP 

system should treat the perturbed sample as an 

unperturbed text. 

Word order. It randomly selects M consecutive 

words from the sample and changes the order in 

which they appear in the text. The goal is to 

investigate whether the NLP system is sensitive to 

word ordering or it only decides based on the 

presence of words in the input. 

Verb tense. It converts present simple or 

continuous verbs to their corresponding past 

simple or continuous forms, or vice versa. The goal 

is to assess the sensitivity of the NLP system to 

changing the verb tense in tasks where the verb 

tense is not important to the output. In this case, the 

system’s output should not change after modifying 

the verb tense. This method first extracts POS tags 

to identify verbs and their subjects. It then converts 

the verb tense using the mlconjug3 package and 

reconstruct the sentence with the new verb tense.  

5 Experimental results 

All the experiments were performed on a computer 

with an Intel Core i5-9600K CPU at 3.70GHz, 32 

GB of RAM, and a GeForce RTX 2080 Ti graphic 

card (GPU) with 11 GB dedicated memory. 

Perturbation methods ran on CPU; fine-tuning on 

training sets, and evaluating on test sets and 

perturbed samples ran on GPU. 

5.1 Performance on perturbed inputs 

Since it has been proven that sentences that contain 

few typos, misspellings, or minor character-level 

errors can be still fully understandable to humans 

(Belinkov and Bisk, 2018; Xu and Du, 2020), 

character-level perturbations are not expected to 

change the text’s meaning in most cases. 

Therefore, they can be automatically produced and 

used for testing the robustness of NLP systems. 

On the other hand, some word-level 

perturbations may change the text’s meaning. 

Task LM Test set 

Character-level perturbation methods 

Insertion Deletion Replace Swap Repeat CMW LCC 

TC 

BERT 90.4 77.4 76.2 76.1 76.5 78.8 58.4 78.3 

RoBERTa 93.1 79.2 78.9 76.3 76.7 80.8 60.5 78.9 

XLNet 92.0 78.1 78.3 76.5 75.2 80.2 61.5 77.4 

ELMo 84.8 80.4 78.5 74.7 75.6 79.6 61.9 80.8 

SA 

BERT 92.2 77.1 75.6 75.5 78.3 77.9 62.0 76.7 

RoBERTa 94.0 79.3 76.8 75.1 76.2 79.3 64.0 78.3 

XLNet 93.1 78.3 78.7 75.9 73.8 81.1 65.6 78.9 

ELMo 87.6 79.7 79.0 76.2 78.1 78.4 64.1 79.1 

NER 

BERT 92.6 83.6 80.7 81.4 82.5 81.9 71.3 81.2 

RoBERTa 93.3 84.3 80.9 81.7 83.1 82.4 71.8 81.5 

XLNet 92.7 83.9 81.1 81.3 82.7 81.5 71.6 81.3 

ELMo 90.2 83.0 80.2 80.9 82.2 81.3 70.8 81.0 

SS 

BERT 82.5 72.9 71.5 73.0 74.3 74.2 68.6 73.8 

RoBERTa 83.9 73.5 72.8 73.6 75.1 74.7 69.5 74.9 

XLNet 83.3 73.3 72.0 73.2 74.6 74.1 67.9 74.4 

ELMo 80.7 71.1 70.9 72.3 73.8 72.5 67.0 72.6 

QA 

BERT 91.6 82.7 80.5 81.1 81.9 79.8 68.6 80.7 

RoBERTa 94.9 84.1 81.7 82.9 83.2 81.6 72.5 84.0 

XLNet 93.4 83.5 81.1 82.3 81.9 82.8 71.5 83.3 

ELMo 85.5 80.6 79.5 76.0 78.3 80.1 67.9 81.1 

Table 3:  Performance of the language models on the test sets and character-level perturbed samples of the 

downstream tasks. For every task and every perturbation method, the highest score is shown in bold face. 

CMW: Common Misspelled Words, LCC: Letter Case Changing. 
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Consequently, the perturbed samples should be 

monitored to make sure they are still meaningful 

with respect to the NLP task at hand, and are 

consistent with the original label in the dataset. 

Otherwise, they should not be used for testing the 

robustness, or the label should be changed to 

reflect the change and preserve the consistency. 

We separately applied every character-level 

perturbation method to all test samples in a dataset, 

and all the resulting perturbed samples were used 

to evaluate the robustness of the language models. 

A hyperparameter named Perturbation Per Sample 

(PPS) specified the maximum number of 

perturbations in a sample. 

We monitored and filtered perturbed samples 

resulted from three word-level perturbations that 

may change the text’s meaning. These 

perturbations are Deletion, Negation, and 

Replacement with synonym. For every sample 

whose meaning was changed by these three 

methods, and a change in the test set label was 

necessary to preserve consistency, we altered the 

label if it was applicable. If a proper label could not 

be assigned to the perturbed sample or the resulting 

text was no longer meaningful, we excluded the 

sample from the evaluations. Since monitoring and 

filtering every single perturbed sample was 

extremely time-consuming (such that 

approximately one minute was needed on average 

to check the meaningfulness of a perturbed sample 

and its consistency with the test set label), we 

corrected labels and filtered perturbed samples for 

the above three methods until 200 samples were 

collected for every dataset; then we used these 

samples to evaluate the models on perturbed 

inputs.  We performed this manual curation of 

perturbed samples for all values of PPS that we 

experimented, i.e. values in the range [1, 4]. 

Appendix B presents the number of perturbed 

samples checked in the manual curation procedure 

until reaching 200 test samples for every dataset 

and different values of PPS. The manual curation 

was performed by three annotators who had 

sufficient English language knowledge to properly 

judge about the meaningfulness and consistency of 

perturbed samples. 

Since the rest of word-level perturbations are not 

expected to change the text’s meaning with respect 

to the NLP tasks in our experiments, we did not 

monitor and filter them; they were produced and 

used automatically. Again, the PPS 

hyperparameter controlled the maximum number 

of perturbations in every sample.  

Table 3 and Table 4 present the performance of 

the language models on character-level and word-

level perturbed samples, respectively. These results 

are reported for PPS=1. The performance of the 

language models on original, unperturbed test sets 

Task LM Test set 

Word-level perturbation methods 

Deletion Repeat RWS Negation SPV VT WO 

TC 

BERT 90.4 75.1 89.3 65.7 89.1 88.2 89.0 74.5 

RoBERTa 93.1 76.2 88.7 73.2 90.3 89.5 89.4 78.5 

XLNet 92.0 76.2 87.5 72.7 89.4 89.0 89.6 83.1 

ELMo 84.8 72.9 82.8 75.1 83.5 83.6 81.2 62.9 

SA 

BERT 92.2 73.7 87.6 67.5 84.6 88.2 90.1 76.4 

RoBERTa 94.0 74.5 90.1 74.2 83.9 88.7 88.6 77.5 

XLNet 93.1 74.7 88.5 74.1 82.3 88.6 89.3 83.8 

ELMo 87.6 72.0 80.6 73.1 75.4 84.6 82.9 65.9 

NER 

BERT 92.6 81.4 83.1 74.1 85.3 88.2 89.1 70.7 

RoBERTa 93.3 82.3 83.9 74.5 85.8 88.6 89.4 71.1 

XLNet 92.7 81.9 83.7 73.9 85.6 88.3 88.7 74.8 

ELMo 90.2 79.7 82.1 69.3 82.4 85.1 84.9 68.5 

SS 

BERT 82.5 72.6 74.1 69.4 68.5 75.2 75.6 72.0 

RoBERTa 83.9 74.1 74.8 70.0 69.2 75.7 76.7 73.9 

XLNet 83.3 73.3 74.5 69.8 68.7 75.8 76.2 75.3 

ELMo 80.7 69.8 71.7 67.4 66.0 73.2 72.8 72.6 

QA 

BERT 91.6 78.4 89.6 71.5 84.9 88.0 90.3 76.7 

RoBERTa 94.9 79.9 89.3 78.1 86.5 89.7 91.2 79.0 

XLNet 93.4 79.2 89.5 77.3 86.1 89.1 90.9 85.8 

ELMo 85.5 73.5 81.4 75.0 82.7 84.1 81.9 67.3 

Table 4:  Performance of the language models on the test sets and word-level perturbed samples of the 

downstream tasks. For every task and every perturbation method, the highest score is shown in bold face. For 

three perturbation methods, i.e. Deletion, Negation, and RWS, 200 perturbed samples were used in the 

experiments. RWS: Replacement With Synonyms, SPV: Singular/Plural Verbs, VT: Verb Tense, WO: Word 

Order. 
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is also reported in both tables for every NLP task. 

We performed five separate fine-tuning runs to test 

if the performance of the NLP models on the 

original test set and perturbed samples vary 

between individual runs. Since there was no 

statistically significant difference between multiple 

runs (with respect to a t-test with a significance 

level of p=0.05), we only report the results of the 

first fine-tuning and testing run. The language 

models were neither pretrained nor fine-tuned on 

perturbed samples. The perturbation methods were 

only applied to the test sets. As the results show, 

the language models are sensitive to the 

perturbations and their performance decreases 

when the input is slightly noisy. However, 

RoBERTa still performs better than the other 

models, and ELMo obtains the lowest scores in 

general.  

The results suggest that some language models 

can handle specific types of perturbation more 

effectively than other models. ELMo obtains 

higher scores than BERT and even performs on par 

with XLNet and RoBERTa on some character-

level perturbations. This can be due to its pure 

character-based representation that enables the 

model to use morphological clues, leading to a 

more robust model against character-level noises.  

XLNet is shown to handle perturbations to word 

ordering more efficiently than the others. This can 

be an effect of the permutation language modelling 

that may allow the model to still capture the 

context and perform more accurately when some 

context words appear in a different order. The 

results also suggest those models that were 

pretrained on larger corpora such as RoBERTa and 

XLNet are more robust when words are replaced 

by their synonyms. Furthermore, when the 

negation perturbation has more impact on the task 

at hand, e.g. sentiment analysis, the models are less 

stable and handle the noise less efficiently than on 

other tasks. Observing the results, we can also 

point out the LSTM-based model, i.e. ELMo, is 

more sensitive to the order of words in a sample 

than the transformer-based models.   

Table 5 presents the absolute decrease in the 

performance of the language models for different 

PPS values in the range [1, 4]. For every language 

model, the average of absolute decrease in 

performance is separately reported on character-

level and worl-level perturbations for every NLP 

task. As can be shown, the models are generally 

more sensitive to character-level perturbations than 

word-level ones. Perturbed inputs causes the 

models to make erronous outcomes on the 

sentiment analysis task more often than on the 

other tasks. On the other hand, the question 

answering task suffers less than the other tasks 

from noisy inputs.  

Figure 1 represents six examples for which 

perturbations to the input led the RoBERTa model 

Task LM 

Character-level perturbations  Word-level perturbations 

PPS=1 PPS=2 PPS=3 PPS=4 PPS=1 PPS=2 PPS=3 PPS=4 

TC 

BERT −15.8 −17.2 −18.0 −18.3  −8.8 −10.2 −13.1 −13.8 

RoBERTa −17.1 −17.9 −18.5 −18.9  −9.4 −11.0 −12.7 −13.3 

XLNet −16.6 −17.4 −19.2 −19.7  −8.0 −10.3 −12.4 −12.9 

ELMo −8.8 −10.0 −11.2 −11.8  −7.3 −9.1 −11.5 −13.2 

SA 

BERT −17.4 −18.9 −20.1 −21.3  −11.0 −13.5 −15.1 −16.7 

RoBERTa −18.4 −19.7 −21.2 −21.9  −11.5 −12.9 −14.2 −14.8 

XLNet −17.0 −19.4 −20.6 −21.7  −10.0 −12.4 −14.3 −15.6 

ELMo −11.2 −14.4 −16.0 −17.5  −11.2 −13.8 −14.9 −16.1 

NER 

BERT −12.2 −14.6 −16.3 −16.9  −10.8 −12.7 −14.0 −14.9 

RoBERTa −12.4 −14.0 −14.8 −16.7  −11.0 −12.5 −13.6 −14.3 

XLNet −12.2 −13.8 −14.5 −15.0  −10.2 −11.9 −13.1 −14.0 

ELMo −10.2 −12.5 −13.1 −13.8  −11.3 −13.0 −15.2 −16.1 

SS 

BERT −9.8 −11.3 −12.9 −13.6  −10.0 −12.2 −13.8 −14.5 

RoBERTa −10.4 −11.8 −13.0 −14.3  −10.4 −12.1 −13.2 −14.1 

XLNet −10.5 −12.0 −13.2 −14.1  −9.9 −11.4 −12.8 −13.3 

ELMo −9.2 −10.6 −11.7 −13.2  −10.2 −12.3 −13.9 −15.4 

QA 

BERT −12.2 −14.2 −15.0 −16.4  −8.8 −10.2 −12.5 −13.0 

RoBERTa −13.4 −15.1 −15.8 −16.5  −10.1 −11.0 −12.3 −13.5 

XLNet −12.4 −13.5 −16.4 −18.9  −7.9 −9.5 −11.2 −13.1 

ELMo −7.8 −9.7 −11.3 −12.0  −7.5 −10.1 −12.0 −13.9 

Table 5:  Absolute decrease in the performance of the language models, on different NLP tasks, for character-

level and word-level perturbations, and with different values of the hyperparameter Perturbation per Sample 

(PPS). For every task and every value of the hyperparameter PPS, the lowest decrease in the performance is 

shown in bold face. 
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to make wrong decisions, but the model made 

correct decisions on the respective original inputs. 

As can be seen, examples 1-3 contain minor 

character-level noise that causes the model make 

wrong decisions, however, the perturbed text still 

seems understandable. In example 4, ‘diameter’ 

was replaced by ‘diam’ and ‘golf’ was replaced by 

‘golf_game’, but the model failed to handle these 

changes. In example 5, two repetitive words led the 

model to estimate a lower similarity score, 

however, the semantic remained unchanged. 

Finally, example 6 shows how removing a single 

word led the model to choose a wrong answer.  

5.2 User study 

We conducted a user study with 20 participants to 

investigate how understandable the perturbed texts 

are to humans. We created a set of perturbations by 

randomly selecting perturbed samples from the 

datasets used in the experiments. The samples 

covered all types of character-level and word-level 

perturbations.  

In the first part of the study, each participant was 

given 30 perturbed samples from those 

perturbation methods that are not expected to 

change the text’s meaning with respect to the NLP 

tasks at hand. These are all the character-level 

perturbations and three word-level perturbations, 

i.e. Repetition, Singular/plural verbs, and Verb 

tense. The participants were also given the original 

text along with every perturbed sample, and were 

asked to judge if the perturbed text is 

understandable and still conveys the same 

meaning. Every sample contained one, two, or 

three perturbations.  

According to the user evaluations, on average, 

94% of the perturbed samples from this set were 

understandable and still conveyed the same 

meaning as the original text. These results are well 

in agreement with our discussion in Section 6.2, i.e. 

the majority of our proposed perturbations can be 

automatically produced and used without needing 

human supervision to ensure understandability and 

consistency.   

In the second part of the study, each participant 

was given 20 perturbed samples from those perturbation 

methods that may change the text’s meaning or 

result in meaningless text. They are the rest of 

word-level perturbations, i.e. Deletion, 

Replacement with synonyms, Negation, and Word 

order. The participants were also given the original 

text along with every perturbed sample, and were 

asked to judge (with respect to the task at hand) if 

the perturbed text is still meaningful and consistent 

with the test set label.  

According to the user evaluations, on average, 

39% of the perturbed samples from this set were 

still meaningful and consistent with the label, 12% 

 

Figure 1:  Six examples of input perturbations from the three NLP tasks for which the RoBERTa model made 

wrong decisions, but it made correct decisions on the respective original inputs. 
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of the perturbed samples were meaningful but the 

label should be changed, and 49% of the perturbed 

samples were no longer meaningful. These results 

imply that some perturbations need to be 

monitored, corrected, or filtered to make sure they 

are understandable, meaningful, and consistent 

with the test set label. This helps to fairly estimate 

the robustness of NLP systems to input 

perturbations. 

6 Related work 

Typical performance measures such as accuracy, 

precision, recall, etc. may not properly reflect how 

NLP systems behave in real-world use cases. This 

has motivated many studies to devise novel 

methods for investigating different capabilities and 

vulnerabilities of text processing systems. 

Behavioral testing introduces targeted changes to 

textual inputs to test linguistic capabilities of 

systems (Ribeiro et al., 2020). Explanations 

provide simplified representations of what a 

complex NLP model has learned (Moradi and 

Samwald, 2021a, b; Ribeiro et al., 2016). This can 

help to identify biases and errors in NLP models. 

Adversarial perturbations have been widely 

studied to assess the robustness of NLP systems 

against adversarial samples crafted to fool a model 

(Alshemali and Kalita, 2020; Ren et al., 2019; 

Zhang et al., 2020). However, adversarial samples 

resemble a very specific type of noise. Moreover, 

most of previous work on adversarial perturbation 

to NLP models focused on misspelling attacks 

(Jones et al., 2020; Pruthi et al., 2019; L. Sun et al., 

2020). The perturbation methods implemented in 

this paper represented a wide range of noises that 

an NLP system may face in real-world situations. 

Introducing noise and changing textual inputs 

were already adopted to assess the ability of 

models in capturing specific linguistic features 

such as learning syntax-sensitive dependencies 

(Linzen et al., 2016), for specific NLP tasks such 

as machine translation (Belinkov and Bisk, 2018), 

for detecting biases in language models 

(Prabhakaran et al., 2019), or to identify 

susceptible entities in text documents (M. Sun et 

al., 2018). In this paper, we investigated the 

robustness on a wide range of tasks, and for various 

types of character-level and word-level noises in 

text. 

7 Conclusion 

In this paper, we introduced and implemented a set 

of non-adversarial perturbation methods that can 

be used to evaluate the robustness of NLP systems. 

We extensively investigated the robustness of 

high-performance neural language models to noisy 

input texts. The evaluations on various NLP tasks 

imply that these models are sensitive to different 

character-level and word-level perturbations to the 

input, and the models’ performance can decrease 

when the input contains slight noise. The results 

suggest that it may be too simplistic to only rely on 

accuracy scores obtained on benchmark datasets 

when evaluating the robustness of NLP systems. 

The proposed perturbations can be used, along 

with other methodologies such as CheckList, to 

test how robust and reliable NLP systems can 

operate in real-world settings. The experimental 

results demonstrated that the perturbation methods 

are effective tools for evaluating NLP systems 

against noisy data. The user study revealed that 

only few perturbation methods need to be 

monitored to make sure they produce meaningful 

and consistent samples. Most of the perturbation 

methods can be used automatically to produce 

noisy test samples. They can be also used as a 

baseline for evaluating adversarial attacks against 

non-adversarial perturbations. 

Future work may include helping users assess 

meaning preservation and grammatical correctness 

in a semi-automatic manner. Sentence encoders 

such as InferSent (Conneau et al., 2017), Universal 

Sentence Encoder (Cer et al., 2018), and BERT 

trained for semantic similarity (Reimers and 

Gurevych, 2019) can be used to give users clues 

how semantically similar the original and 

perturbed sentences are. Moreover, users can be 

provided with information about grammatical 

errors in the perturbed text using LanguageTool 

(Naber, 2003) or other grammar checking tools. 
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Appendix A. Fine-tuning hyperparameters 

 

Table 6, 7, 8, and 9 present the hyperparameter 

values of the BERT, RoBERTa, XLNet, and ELMo 

models, respectively, in the fine-tuning 

experiments on different NLP tasks. Those 

hyperparameters not included in the tables were 

used with their default values specified by the 

original models.  

  

Hyperparameter TC SA QA NER SS 

Max sequence length 64 64 256 64 64 

Batch size 12 12 2 12 12 

Learning rate 2e-5 1e-5 3e-5 1e-5 2e-5 

Num epochs 20 15 10 20 20 

Table 6:  Fine-tuning hyperparameters for the BERT language model on different tasks. TC: Text 

Classification, SA: Sentiment Analysis, QA: Question Answering, NER: Named Entity 

Recognition, SS: Semantic Similarity. 

 

 
Hyperparameter TC SA QA NER SS 

Max sequence length 64 64 256 64 64 

Batch size 12 12 2 12 12 

Learning rate 1e-5 1e-5 1.5e-5 2e-5 2e-5 

Weight decay 0.1 0.1 0.01 0.1 0.01 

Learning rate decay Linear Linear Linear Linear Linear 

Warmup ratio 0.06 0.06 0.06 0.05 0.05 

Num epochs 20 15 10 20 20 

Table 7:  Fine-tuning hyperparameters for the RoBERTa language model on different tasks. TC: 

Text Classification, SA: Sentiment Analysis, QA: Question Answering, NER: Named Entity 

Recognition, SS: Semantic Similarity. 

 

 Hyperparameter TC SA QA NER SS 

Max sequence length 128 128 256 128 128 

Batch size 8 8 2 8 8 

Learning rate 2e-5 2e-5 2.e-5 1e-5 1e-5 

Num steps 6K 6K 4K 6K 6K 

Learning rate decay Linear Linear Linear Linear Linear 

Table 8:  Fine-tuning hyperparameters for the XLNet language model on different tasks. TC: Text 

Classification, SA: Sentiment Analysis, QA: Question Answering, NER: Named Entity 

Recognition, SS: Semantic Similarity. 

 

 
Hyperparameter TC SA QA NER SS 

n_highway 2 2 2 2 2 

Droupout 0.2 0.2 0.2 0.2 0.2 

Batch size 128 128 256 128 128 

Projection dim 512 512 512 512 512 

Num epochs 20 20 10 20 20 

Table 9:  Fine-tuning hyperparameters for the ELMo language model on different tasks. TC: Text 

Classification, SA: Sentiment Analysis, QA: Question Answering, NER: Named Entity 

Recognition, SS: Semantic Similarity. 
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Appendix B. Manual curation of perturbed 

samples  

 

Table 10 shows how many perturbed samples 

(word-level deletion) were checked in the manual 

curation procedure until reaching 200 test samples 

for every dataset and different values of 

Perturbation Per Sample (PPS). Table 11 and Table 

12 show the same statistics for word-level negation 

and word-level replacement with synonym, 

respectively.  

 

Dataset 
Perturbation Per Samples 

PPS=1 PPS=2 PPS=3 PPS=4 

TREC 221 269 341 435 

SST 238 301 345 452 

CoNLL 261 327 394 468 

STS 240 281 354 409 

WQA 219 248 283 351 

Table 10:  The number of perturbed samples (word-level deletion) 

checked in the manual curation procedure until reaching 200 test 

samples for every dataset and different values of Perturbation Per 

Sample (PPS). 

 

 Dataset 
Perturbation Per Samples 

PPS=1 PPS=2 PPS=3 PPS=4 

TREC 235 251 268 268 

SST 291 317 325 325 

CoNLL 209 218 226 226 

STS 253 269 291 291 

WQA 295 314 317 317 

Table 11:  The number of perturbed samples (word-level negation) 

checked in the manual curation procedure until reaching 200 test 

samples for every dataset and different values of Perturbation Per 

Sample (PPS). 

 

 Dataset 
Perturbation Per Samples 

PPS=1 PPS=2 PPS=3 PPS=4 

TREC 239 266 295 308 

SST 221 249 273 290 

CoNLL 213 228 236 251 

STS 230 251 284 303 

WQA 215 233 256 287 

Table 12:  The number of perturbed samples (word-level replacement 

with synonym) checked in the manual curation procedure until reaching 

200 test samples for every dataset and different values of Perturbation 

Per Sample (PPS). 

 

 


