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Abstract

Model robustness to bias is often determined
by the generalization on carefully designed
out-of-distribution datasets. Recent debias-
ing methods in natural language understanding
(NLU) improve performance on such datasets
by pressuring models into making unbiased
predictions. An underlying assumption behind
such methods is that this also leads to the dis-
covery of more robust features in the model’s
inner representations. We propose a general
probing-based framework that allows for post-
hoc interpretation of biases in language mod-
els, and use an information-theoretic approach
to measure the extractability of certain biases
from the model’s representations. We exper-
iment with several NLU datasets and known
biases, and show that, counter-intuitively, the
more a language model is pushed towards a
debiased regime, the more bias is actually en-
coded in its inner representations.1

1 Introduction

State of the art neural language models such as
BERT (Devlin et al., 2019) usually work by pre-
training an encoder to learn universal word repre-
sentations, and then fine-tuning it on some classifi-
cation or regression task. From a robustness point
of view, such pretrain-and-fine-tune pipelines are
known to be prone to biases that are present in data
(Gururangan et al., 2018; Poliak et al., 2018; Mc-
Coy et al., 2019; Schuster et al., 2019). Various
methods were proposed to mitigate such biases in
a form of robust training, where a bias model is
trained to capture the bias and then used to relax
the predictions of a main model, so that it can focus
less on biased examples and more on the “hard”,
more challenging examples (Clark et al., 2019; Ma-
habadi et al., 2020; Utama et al., 2020b; Sanh et al.,

∗Supported by the Viterbi Fellowship in the Center for
Computer Engineering at the Technion.

1Our code and data are available at: https://github.
com/technion-cs-nlp/bias-probing.
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Figure 1: Amount of subsequence bias extracted from
different language models vs. the robustness of mod-
els to the bias. Robustness is measured as improve-
ment of the model on out-of-distribution examples,
while extractability is measured as the improvement of
the probe’s ability to extract the bias from a debiased
model, compared to the baseline.

2021, inter alia). Then, the resulting model is evalu-
ated on out-of-distribution (o.o.d) data, in the form
of challenge datasets containing “hard” examples
that were deliberately constructed to be anti-biased.
Examples of such datasets include HANS (McCoy
et al., 2019) for natural language inference (NLI)
and FEVER-Symmetric (Schuster et al., 2019) for
fact verification. An underlying assumption behind
this methodology is that better generalization out
of distribution also means that the model learned
more robust features. However, while evaluation
using challenge datasets only relays information
about the generalization of the model through pre-
dictions, it does not reveal what actually caused it
and how the internal representations were affected.

To assess whether bias has been removed from
the internal representations, we design probing
tasks targeting several known biases: lexical over-
lap biases and negative word bias. While probing is
usually concerned with simple linguistic properties
such as part-of-speech tags (Belinkov and Glass,

https://github.com/technion-cs-nlp/bias-probing
https://github.com/technion-cs-nlp/bias-probing
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2019), we instead define probing tasks with the pur-
pose of revealing bias in the representations. An
example of such probing task is to predict whether a
sentence-pair is lexically overlapping given only ac-
cess to their joint representation—a classifier which
is able to label the pair by this property conse-
quently must use information about the bias which
is encoded in the representation. We construct prob-
ing datasets for assessing bias in several natural
language understanding (NLU) datasets. Lastly,
we use information-theoretic probing (Voita and
Titov, 2020) to analyze the extractability of bias
from vanilla and debiased models using the probing
classifier.

We conduct experiments on two NLI datasets
and one fact verification dataset across a variety of
debiasing methods and bias types, and test whether
the bias removal is as successful as o.o.d evaluation
suggests. Surprisingly, we discover that making
models robust from the perspective of the down-
stream task, causes the inner representations to
encode more of the information about the specific
bias in question. Figure 1 shows an example of this
trend in NLI, where as robustness of the fine-tuned
model to biased predictions increases, so does the
ability of the probing classifier to extract bias.

To summarize, we make the following contribu-
tions:
• We present a general probing-based frame-

work to measure extractability of bias from
inner model representations.

• We use this framework to construct several
new probing tasks based on well-studied
dataset biases in NLU tasks.

• We show that pressuring a model into making
unbiased predictions actually makes biased
features more extractable from the model rep-
resentations.

2 Related Work

2.1 Dataset Biases

Deep neural models are prone to shortcut learn-
ing (Geirhos et al., 2020), by discovering and us-
ing idiosyncratic biases, heuristics, and statistical
cues in the data. For example, Poliak et al. (2018)
showed that the Stanford natural language infer-
ence dataset (SNLI; Bowman et al. 2015) contains
“give-away” words, i.e., wordsw which have a high
value of p (l | w) w.r.t a given label l. They no-
ticed that 4 out of the 10 words with the high-

est p (contradiction | w) are universal negation
words,2 suggesting that negation is strongly cor-
related with contradiction in the data. These clues
appeared in the hypothesis side, making them a
kind of hypothesis-only bias, where a classifier
receiving as input only the hypothesis is able to cor-
rectly predict the label (Poliak et al., 2018; Guru-
rangan et al., 2018). A similar type of bias, known
as claim-only bias, is found in the FEVER fact ver-
ification dataset (Thorne et al., 2018), and was also
associated with a strong correlation of negation
words with the labels in the dataset (Schuster et al.,
2019). Another kind of bias is the association of
entailment with cases of lexical overlap between
the premise and hypothesis. This bias leads to poor
performance of models on the HANS challenge
dataset (McCoy et al., 2019), where all samples
contain lexical overlap and non-entailed samples
are formed such that the bias does not entail the la-
bel. This suggests that models rely on features that
are cues for lexical overlap bias when predicting
the entailment of premise–hypothesis pairs.

2.2 Bias Mitigation and Robustness

Recent work on bias mitigation attempts to cre-
ate more robust models by training a combination
model, based on the main model. The main model,
parameterized by θm, is a non-robust language
model. The bias model, parameterized by θb, is
a weak model whose purpose is to model the biases
during training, by minimizing a loss Lb. The ob-
jective of the combination model is to minimize a
combined loss function Lc (θm, θb), such that the
main model leverages knowledge about bias in data,
obtained using the weak model. This pipeline is
general, and it allows models to be trained either
end-to-end, or step-by-step by first training the bias
model and then using its predictions to robustly
train the main model. Recent papers show that
such techniques are effective when evaluated on
challenge datasets specifically designed to target
known biases and hard examples (He et al., 2019;
Clark et al., 2019; Utama et al., 2020b,a; Sanh et al.,
2021; Mahabadi et al., 2020). However, this ap-
proach does not ensure that the model indeed learns
more robust features, nor does it shed light on ex-
actly how the feature detectors react to this change,
and how the bias is represented in the model.

2nobody, alone, no, empty.
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2.3 Probing

Probing was somewhat successfully used to ana-
lyze sentence embeddings and to show that such
models capture surface features such as sentence
length, word content, and the order of words (Adi
et al., 2017), or various syntactic and semantic
features (Conneau et al., 2018); see Belinkov and
Glass (2019) for a survey. In contrast, we focus
our analysis on biased features, and employ ad-
vances in probing methodology to analyze two
kinds of bias—lexical overlap and negation bias.
Designing probes to accurately interpret the desired
behavior is not trivial and measuring their accu-
racy is insufficient, since the probing classifiers are
prone to memorization and bias as well (Hewitt
and Liang, 2019), among other shortcomings (Be-
linkov, 2021). Recently, Voita and Titov (2020)
presented an information-theoretic approach for
evaluating probing classifiers, which accounts for
the complexity of the probing classifier by measur-
ing its minimum description length (MDL). MDL
measures how efficiently a model can extract infor-
mation about the labels from the inputs, and we use
it as a measure of extractability of certain biases
from model representations.

3 Methods

We lay down a general framework for interpreting
bias in inner model representations. Given a model
fθ : X → Y with learnable parameters θ, we
assume that it can be decoupled into two stages:

• A representation layer (or multiple layers)
with learnable parameters θ1, which we de-
note Rθ1 : X → Z, maps samples from the
input space to a latent space Z, the “represen-
tation”.

• A classification layer with learnable parame-
ters θ2, which we denote Fθ2 : Z → Y , maps
the latent representations to the final output.

We can thus re-define our classifier as

fθ (x) , Fθ2 (Rθ1 (x)) . (1)

For example, in NLI we assume that data sam-
ples are given as sentence pairs x = (p, h) where p
is a premise and h is a hypothesis. R (p, h) is the
joint representation of the two, and this representa-
tion is then used by F to produce a prediction.

In this work, we compare baseline models fine-
tuned on some down-stream task to models debi-
ased during the fine-tuning step. We produce repre-
sentations from both types of models and measure
the extractability of bias using a probing classifier.
Our probing tasks are defined in terms of “bias-
revealing” properties, which are based on a-priori
knowledge of the bias in question, and are able to
distinguish between biased and unbiased samples
from the original dataset. We next describe how
to construct such probing tasks and appropriate
datasets.

3.1 Probing Tasks and Datasets
We define a probing classifier as a classifier gΨ :
Z → YP with learnable parameters Ψ, which maps
inputs from a latent representation space Z to a
probing property space YP , where P : X → YP
is some real property of the original input, which
we call the probing property. Next, we define a
probing dataset for each probing task:

DP = {(Rθ (x) , P (x)) | x ∈ X} . (2)

Lastly, we train the probing classifier on the con-
structed dataset and evaluate its performance on
the probing task. We introduce two new probing
tasks that target the well researched types of bias
present in several datasets: lexical bias and nega-
tive word bias. For presentation purposes, consider
the NLI task, where data samples are given as sen-
tence pairs x = (p, h) where p is a premise and h
is a hypothesis. The extension to fact verification
and other pair relationship classification tasks is
straightforward.

NegWords To analyze negation bias in NLI and
fact verification, we define a list of negative words
V 3 and a sentence pair property

P Vneg (p, h) = 1 [V ∩ h 6= ∅] . (3)

That is, an example is positive if its hypothesis (in
the case of NLI) or claim (in the case of fact veri-
fication) contains at least one negative word from
the list. This method poses some limitations: For
example, we do not consider double negatives in
the hypothesis that affect its meaning, or the pres-
ence of negation in both premise and hypothesis.
However, our construction is consistent with prior
findings on negation bias (Gururangan et al., 2018;
Poliak et al., 2018; Schuster et al., 2019).

3In our experiments we use V = {no, not, nobody, never,
nothing, none, empty, neither, cannot}∪{Words that end with
n’t} for a total of |V | = 27 words.
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Overlap/Subsequence Based on the analysis of
McCoy et al. (2019), we define a class of probing
tasks for identifying the different lexical heuristics
in NLI. We focus on lexical overlap and subse-
quences4 and define two sentence pair properties:

Plex(p, h) = 1 [h ⊆ p] , (4)

where an example is positive if all the hypothesis
words are found in the premise (regardless of word
order), and

Psub(p, h) = 1 [h is a subsequence of p] , (5)

where an example is positive if the hypothesis is a
subsequence of the premise.

3.2 Data Processing
To alleviate issues of data balancing, we take
the following steps when processing the probing
datasets: First, we identify all the biased samples in
a given dataset, according to the probing property.
Since in all our datasets the positive class (biased
samples) is the minority class, we subsample the
same amount of samples from the remaining subset
(the majority class). We end up with a balanced
probing dataset. This ensures that when splitting
the data during online code training, and when
measuring performance on the entire dataset, the
process is unaffected by the bias evidence, that is,
the amount of bias in the original dataset.

The probing datasets are constructed from three
base NLU datasets: SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2018) and FEVER
(Thorne et al., 2018), following the original
train/validation/test splits.5 Inspired by previous
work on biases in NLU datasets (Section 2), we con-
struct NegWords probing datasets from all three
base NLU datasets and Overlap/Subsequence
probing datasets from SNLI and MNLI. The dataset
statistics are presented in Table 1.

3.3 Evaluation
We use a linear probe across all experiments. We
evaluate both the probe’s accuracy and its minimum
description length (MDL; Voita and Titov 2020),
to measure bias extractability. Formally, given a
dataset D = {(x1, y1) , . . . , (xn, yn)} and a prob-
abilistic model pθ (y | x), the description length

4We exclude the constituency heuristic since it is not fre-
quent enough in MNLI to construct a probing dataset.

5FEVER does not provide a test set, and we therefore
report results on the validation set, and do not perform any
type of hyperparameter tuning.

Task Dataset Train Valid Test

NegWords
SNLI 25104 484 456
MNLI 126232 3180 3246
FEVER 19874 2180 –

Overlap SNLI 35388 734 732
MNLI 18542 518 464

Sub. SNLI 4438 234 226
MNLI 5432 202 154

Table 1: Number of samples in all probing datasets cre-
ated from the different base datasets.

of the model is defined as the number of bits re-
quired to transmit the labels Y = (y1, . . . , yn),
given X = (x1, . . . , xn). We estimate MDL using
Voita and Titov’s online coding, and denote the
result Lonline. Given a uniform distribution over
the K labels, we get Lunif = |D| logK. Thus, the
compression is defined as C = Lunif

Lonline
and it holds

that 1 ≤ C ≤ C∗ where C∗ is the compression
given by a perfect model. We interpret a lower
MDL score (and consequently, a higher compres-
sion score) to mean that the probing property is
more extractable from the model representation.
The hyperparameters we use in the evaluation pro-
cess are outlined in Appendix A.1.

3.4 Debiasing Methods

To deploy our framework in the context of robust-
ness to bias, we examine several proposed strate-
gies for debiasing NLU models. In all cases, a
weak learner models the bias and is combined with
a main model to produce less biased predictions.

We note that there are three different criteria for
controlling the debiasing strategy: (1) Models may
be trained end-to-end by propagating errors to the
weak learner as well as the main model (Mahabadi
et al., 2020) or in a pipeline, where the weak learner
is trained first and frozen, such that only its pre-
dictions are used to tune the combination loss (He
et al., 2019; Clark et al., 2019; Sanh et al., 2021;
Utama et al., 2020a). (2) The bias model can accept
the bias either explicitly (by accepting only a set
of predefined biased features xb, as in most work)
or implicitly, by training it in a weak setting: Sanh
et al. (2021) train a small model (TinyBERT; Turc
et al. 2019) and rely on its limited size to adopt
biased representations, while Utama et al. (2020b)
train a BERT-size model on a small subset of the
training set, to allow it to capture weaker features
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of the data. (3) The objective function by which the
main and bias model are combined can vary. Below
we describe three common objective functions. We
test different combinations of all strategies where
they are feasible, resulting in a wide array of debi-
ased models.

3.4.1 Debiasing Objectives
Debiased Focal Loss (DFL) Focal loss was first
proposed by Lin et al. (2017) to encourage a classi-
fier to focus on the harder examples, for which the
model is less confident. This is achieved by weigh-
ing standard cross-entropy with (1− pm)γ , where
pm is the class probability and γ is the focusing
parameter. Mahabadi et al. (2020) propose DFL,
where the weighting is achieved by a bias-only
model’s class probability pb and the loss becomes:

− 1

N

N∑
i=1

(1− pb)γ log pm. (6)

We re-implement their model with two bias-only
models: a hypothesis-only model and a lexical bias
model that uses the same input features as Ma-
habadi et al. (2020), outlined in Appendix A.2

Product of Experts (PoE) Product of experts
(PoE) was first proposed by Hinton (2000) as a
method for training ensembles of models that are
experts at specific sub-spaces of the entire distri-
bution space. Each model can focus on an “area
of expertise” and their multiplied predictions form
the combination model. This idea was utilized in
several studies (He et al., 2019; Clark et al., 2019;
Mahabadi et al., 2020; Sanh et al., 2021) to train a
combination of models where the experts are weak
models. The combination model output becomes

Fc (x) = softmax (log pb + log pm) , (7)

and is trained with standard cross-entropy.

Confidence Regularization (ConfReg) In this
method, proposed by Utama et al. (2020a), a bias-
only/weak model and a teacher model are first in-
dependently trained on the target dataset. Then,
the predictions of the teacher model are down-
weighed by the predictions of the weak model. The
weighted loss is then used to distill knowledge (Hin-
ton et al., 2015) to a new main model, parameter-
ized in the same way as the teacher model (this is
known as self distillaion). We note that ConfReg
cannot be easily trained in an end-to-end setting, be-
cause it relies on an already trained teacher model
to down-weigh the predictions.

4 Experiments

4.1 Datasets

We use three English NLU datasets: SNLI, MNLI
and FEVER. They are used both for training base-
line and debiased models, and to create probing
datasets for our tasks, as described in Section 3.2.6

SNLI The SNLI dataset contains around 570k
premise-hypothesis pairs with three possible labels:
entailment if the premise entails the hypothesis,
contradiction if the premise contradicts the hy-
pothesis, or neutral if neither hold. We evaluate
on the hard subset (Gururangan et al., 2018), de-
signed to have fewer hypothesis-only biases.

MNLI The MNLI dataset is a multi-genre vari-
ant of SNLI which contains around 430k premise-
hypothesis pairs. We evaluate on a hard subset of
the dev matched set, provided by Mahabadi et al.
(2020), which was created by taking examples that
a hypothesis-only classifier failed to classify.

FEVER The Fact Extraction and VERification
(FEVER) dataset contains around 180k pairs of
claim–evidence pairs, where the task is to predict
one of three labels: either the evidence supports or
refutes the claim, or there is not enough informa-
tion. We evaluate on FEVER-Symmetric, which
was designed such that it cannot be predicted by a
claim-only classifier (Schuster et al., 2019).

4.2 Models

We test different models based on BERT, by remov-
ing the classification head and using the pooled
representation of the [CLS] token as input to our
probes. In settings where previous work compared
in-distribution and o.o.d performance, we use hy-
perparameters which are known to work well for
the task and dataset. For new settings which were
not reported in previous work, we sweep for the
best hyperparameters based on the in-distribution
accuracy on the validation set.7 All hyperparam-
eters are available in Appendix A.3. We train all
models with five random seeds and report means

6Our probing tasks contain examples from all original
labels of the datasets. A reviewer pointed out that one can
look at probing datasets where examples are drawn only from
a specific down-stream label, but our experiments found that
splitting per label does not reveal different trends than those
we observe here.

7In our experiments, some methods did not converge, no-
tably PoE and DFL using a model with subset sampling. This
method was used to train ConfReg models and is likely much
more sensitive to selection of the weak model.
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Overlap Subsequence

Bias Model C Acc. HANS− C Acc. HANS−

Random 1.4± 0.0 59.7± 2.7 – 1.4± 0.0 64.9± 4.5 –
Pretrained 1.9± 0.0 77.4± 0.2 – 1.9± 0.0 80.9± 0.6 –
Base 3.2± 0.2 88.8± 1.2 38.9± 18.8 3.2± 0.3 91.3± 3.6 6.5± 3.0

Explicit
DFLe2e 4.0± 0.5 92.6± 1.3 67.4± 9.7 4.4± 0.5 95.1± 2.6 28.4± 6.6
PoEe2e 4.0± 0.5 91.7± 0.7 65.3± 4.8 4.2± 0.5 92.5± 0.7 17.4± 1.8

Subset
ConfReg 4.6± 0.5 92.3± 1.6 53.2± 14.2 4.3± 0.4 93.4± 1.7 18.4± 5.9
DFL 4.1± 0.1 92.2± 0.7 57.1± 13.0 3.9± 0.2 93.5± 2.0 38.4± 16.4

Tiny

DFL 4.8± 0.3 93.6± 1.1 75.3± 4.8 4.6± 0.4 94.7± 1.9 45.9± 6.9
DFLe2e 4.9± 0.3 93.0± 1.0 74.0± 5.8 4.7± 0.2 95.1± 1.4 57.6± 9.6
PoE 3.6± 0.3 90.9± 1.1 63.5± 5.5 3.9± 0.5 93.3± 1.3 13.2± 4.2
PoEe2e 4.2± 0.1 92.0± 0.8 73.1± 6.6 4.3± 0.2 94.3± 2.3 27.2± 5.2

Table 2: Results of probing for Overlap and Subsequence on MNLI. C is the compression of the probing classifier
and Acc is the accuracy. HANS− identifies the performance of the original model on the relevant subset of non-
entailed samples in HANS: (1) the lexical overlap subset for Overlap, (2) the subsequence subset for Subsequence.
We report results for models with different bias models: (1) explicit bias-only model with lexical overlap features,
(2) implicit bias model with subsampling (Subset), and (3) implicit TinyBERT bias model (Tiny).

and standard deviations, to account for known vari-
ability of fine-tuned models, espeically when eval-
uated out of distribution (McCoy et al., 2020).

We reimplement all debiasing methods in a uni-
fied codebase to facilitate a fair comparison. Train-
ing details are available in Appendix A.4.

Baselines We use the standard base BERT im-
plementation of Wolf et al. (2020). We take the
pretrained model without further fine-tuning on
any downstream task (denoted as Pretrained) and
we also fine-tune the model on the target dataset
(Base). To obtain a lower bound on the perfor-
mance of these models, we take the same model
and randomly initialize its weights (Random).

5 Results

In this section, we first report our main finding—
the correlation between the robustness of models.
We then analyze each bias type and dataset in a
more fine-grained manner.

Table 3 shows the Pearson correlations (ρ) be-
tween robustness and bias extractability. Robust-
ness is measured as the difference between the per-
formance of a debiased model on a relevant o.o.d
dataset and that of a baseline model. Higher values
mean that the debiased model is more robust. Bias
extractability is measured as the compression score
using a probing classifier designed to target the bias.
In all but one case, we find positive correlations,

indicating that the more successful a method is in
debiasing model predictions, the more it makes the
bias accessible in the inner representations.

The only exception is NegWords bias on MNLI,
where we report a negative correlation. As we
analyze below, in this case some models do not
improve on o.o.d data, but their compression still
increases. This suggests that even though various
debiasing methods are not always successful on
different datasets and bias types, they still make
bias more accessible in the representations.

Bias Dataset M ρ

NegWords
SNLI 6 0.757
MNLI 7 −0.257
FEVER 7 0.289

Overlap SNLI 7 0.752
MNLI 8 0.358

Sub. SNLI 7 0.672
MNLI 8 0.626

Table 3: Correlation between bias extractability and ro-
bustness in various bias types and datasets. M = num-
ber of models over which the correlation is measured.

5.1 Lexical Bias
MNLI Table 2 shows results for the Over-
lap/Subsequence probing tasks, on MNLI. For each
model, we report compression (C) and accuracy of
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Overlap Subsequence

Bias Model C Acc. HANS− C Acc. HANS−

Random 1.4± 0.0 61.1± 2.1 – 1.4± 0.0 55.8± 3.9 –
Pretrained 2.2± 0.0 83.0± 0.1 – 2.2± 0.0 81.2± 0.2 –
Base 4.6± 0.4 93.8± 1.1 48.4± 6.3 5.4± 0.9 94.7± 2.3 2.4± 1.1

Explicit
DFLe2e 5.8± 0.6 94.6± 0.3 69.1± 9.7 6.7± 0.8 95.2± 2.1 21.0± 18.9
PoEe2e 4.9± 0.3 93.8± 0.7 65.0± 10.9 5.7± 0.5 95.0± 0.9 7.9± 4.4

Subset ConfReg 4.2± 0.3 93.4± 0.6 62.0± 10.3 4.4± 0.4 93.0± 0.9 14.9± 6.0

Tiny

DFL 4.1± 0.5 92.6± 1.6 55.7± 8.7 4.5± 1.0 91.8± 2.2 6.9± 4.3
DFLe2e 5.0± 0.3 94.2± 0.7 69.4± 8.2 5.6± 0.6 94.7± 1.5 13.6± 6.7
PoE 5.0± 0.4 93.9± 0.7 64.6± 9.3 6.0± 0.6 94.5± 0.9 13.5± 4.8
PoEe2e 4.9± 0.3 94.2± 0.4 70.8± 5.1 5.7± 0.7 94.7± 1.6 15.6± 6.8

Table 4: Results of probing for lexical bias on SNLI. The notation here stays consistent with Table 2.

the probe and the performance of the model on anti-
biased (non-entailed) samples from the relevant
subset of HANS attributed to the lexical overlap
heuristic (HANS− column).

All debiasing methods improve the o.o.d gener-
alization (performance on HANS−) compared to
the base model, consistent with prior work. All
debiasing methods also lead to models with more
extractable bias, as demonstrated by higher com-
pression values. The base model already exhibits
higher compression than a random model or a pre-
trained model, indicating that fine-tuning makes
bias more extractable from the inner representation.
However, fine-tuning with any debiasing method
makes this bias even more extractable.

In fact, as performance on the anti-biased exam-
ples from the HANS subset increases, so does the
compression of the probe; Figure 1 shows an exam-
ple of this trend in the subsequence case. DFL with
implicit bias from the TinyBERT model (trained
either end-to-end or in a pipeline) has the highest
compression values, as well as the biggest improve-
ment out of distribution.

SNLI Table 4 shows results for the Overlap and
Subsequence probing tasks. All debiasing methods
lead to improved o.o.d performance, as expected.
Compression of the random and pretrained base-
lines remains very close, with most of the bias
being made more extractable in the representations
of the fine-tuned baseline (Base). Most of the de-
biased models still largely surpass the baseline for
compression and probing accuracy, indicating that
they make bias more extractable. ConfReg and
DFL with a fine-tuned TinyBERT are exceptions;

Bias Model C Symmetric

Random 1.37± 0.00 –
Pretrained 1.64± 0.03 –
Base 2.97± 0.10 56.0± 2.0

Claim
DFLe2e 3.04± 0.08 62.1± 1.8
PoEe2e 3.00± 0.05 61.9± 1.6

Subset ConfReg 3.03± 0.04 56.2± 2.0

Tiny

DFL 3.31± 0.09 62.2± 3.9
DFLe2e 3.16± 0.07 60.5± 2.5
PoE 3.12± 0.05 61.0± 3.6
PoEe2e 3.06± 0.06 61.4± 3.2

Table 5: Results of probing for NegWords on FEVER.
Symmetric is the o.o.d set by Schuster et al. (2019),
which is designed such that a claim-only classifier can-
not achieve higher-than-guess performance on it. Prob-
ing accuracy is reported in Appendix A.5.

they do not exhibit higher compression than the
baseline, but still improve out of distribution.

5.2 Negative Word Bias

FEVER Table 5 shows the results for the Neg-
Words task on FEVER. All models improve
on FEVER-Symmetric compared to the baseline
(Base), indicating that they are less biased in their
predictions. Conversely, when probed for the bias,
all models achieve higher compression compared
to the baseline and outperform it in terms of prob-
ing accuracy. That is, this bias is more extractable
in the debiased models than in the baseline model.
As a point of reference, the compression of the
random model is smallest, closely followed by the
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pre-trained model. Any fine-tuning leads to signifi-
cantly larger compression scores. These trends are
consistent with the Overlap/Sub. results. The best
model in terms of o.o.d accuracy is DFL with an
implicit TinyBERT bias model. We also see that
bias is most extractable in this model, compared to
the baseline. While previous work used statistical
tools to show that the REFUTES label is spuriously
correlated with negative bigrams (Schuster et al.,
2019), we reveal that this information is preserved
and even amplified in the model when an attempt
is made to make the predictions less reliant on it.

SNLI In this case, all models perform better or
as well as the baseline model when evaluated on
the hard subset, yet the compression values of all
models significantly surpass the baseline. While
any form of debiasing makes bias more available
in the representations, it does not necessarily lead
to an improvement on the o.o.d set. Models with a
hypothesis-only model perform best out of distri-
bution, and also expose the most bias. Similarly to
the results on FEVER, the compression of the ran-
dom and pretrained models is significantly lower
and close to each other, with most of the bias being
made available by fine-tuning the model (Base).
Table 7 in Appendix A.5 provides the full results.

MNLI Compression results are much closer to
the fine-tuned baseline, but all debiased models still
contain more information about negation words.
This is on-par with previous results that anaylzed
the statistical correlation of such negation words
to the CONTRADICTION label (Gururangan et al.,
2018; Poliak et al., 2018), and we show that not
only does the correlation exist in the data, but at-
tempts to remove such evidence result in more
extractability. Still, most growth in compression
compared to the random and pretrained models is
attributed to the fine-tuning process itself (without
debiasing). Interestingly, some of the models do
not improve the performance on the hard test set,
but their compression still increases, suggesting
that the more accessible bias can also be decou-
pled from the predictions of the model. Table 8 in
Appendix A.5 provides the full results.

5.3 Varying the Debiasing Effect
So far we evaluated the effect of debiasing on bias
extractability across debiasing methods. To evalu-
ate this effect within the same method, we analyze
the effect of stronger debiasing in the DFL method,
by increasing the “focusing parameter” γ (Eq. 6).

We test our probing tasks on models trained with in-
creasing values of γ ∈ {1, 2, 3, 4}. Figure 2 shows
the results for the Overlap/Subsequence tasks. As
we increase γ, the extractability of bias from the
model’s representations increases. This is consis-
tent with our main results.
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Figure 2: Compression of a DFL model with an
implicit bias model on Overlap/Subsequence probing
tasks vs. the focusing parameter γ, for MNLI. As γ in-
creases, the bias becomes more extractable.

5.4 Linguistic Information in Debiased
Models

Following the main results, a useful question to
ask is whether debiased models also tend to learn
useful linguistic information more broadly, which
may explain the noticeable increase in performance
out of distribution.8 To test this, we take our mod-
els trained for NLI on the MNLI dataset and ap-
ply the SentEval probing tasks (Conneau et al.,
2018), which test ten different linguistic properties
in model representations. We exclude the word
content (WC) task, because it is a 1000-way classi-
fication problem and takes substantially more time
to train with an MDL probe. Table 6 shows the
average results for all debiased models and the
remaining nine tasks, compared to our three base-
lines (random, pretrained, fine-tuned). First, we
notice that for 8/9 tasks, compression of the model
decreases when it is fine-tuned, compared to the
pretrained model. This can be explained by the
close connection between the linguistic phenom-
ena and the masked language modelling (MLM)
objective, compared to fine-tuning on NLI. Further-
more, on average, debiased models do not decrease
in compression compared to the fine-tuned model,

8We thank a reviewer for pointing out this idea.
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C

Random Pretrained Baseline Average Accuracy

BShift 1.39± 0.01 2.41± 0.0 1.61± 0.01 1.67± 0.03 51.6± 0.57
CoordInv 1.37± 0.01 1.58± 0.0 1.48± 0.01 1.5± 0.02 59.0± 1.74
ObjNum 1.4± 0.01 1.79± 0.0 1.77± 0.02 1.86± 0.04 73.8± 1.0
SOMO 1.37± 0.0 1.48± 0.0 1.44± 0.01 1.45± 0.01 58.7± 0.5
Tense 1.48± 0.01 3.05± 0.0 2.38± 0.12 2.52± 0.1 83.8± 1.25
SentLen 3.0± 0.16 2.19± 0.0 1.49± 1.2 2.24± 0.06 50.8± 0.8
SubjNum 1.39± 0.0 2.11± 0.0 1.83± 0.03 1.96± 0.05 76.2± 0.92
TopConst 1.68± 0.0 2.82± 0.0 2.41± 0.06 2.47± 0.14 51.9± 3.28
TreeDepth 1.48± 0.0 1.55± 0.0 1.53± 0.01 1.56± 0.01 25.6± 0.6

Table 6: Average accuracy and compression scores for debiased models and baselines, when probed for the Sen-
tEval tasks (Conneau et al., 2018). Random is the randomly initialized model, Pretrained is the pretrained model
without fine-tuning, and Base is the fine-tuned model. Accuracy and Average denote the average accuracy and
compression score of M debiased models trained on MNLI (M = 8).

but the differences are very subtle and generally
within standard deviation bounds. This suggests
that while debiasing does not make linguistic in-
formation measured in these probing tasks less ex-
tractable, it also does not substantially amplify it,
as opposed to extractability of bias information.

6 Discussion and Conclusion

All of our experiments tested model-based debi-
asing, where a weak learner is used to capture bi-
ased features and discourage their use in model
predictions. We discover that for both explicit and
implicit modeling of the bias, this method exposes
the biased features in the representation. When
we fix the model and change the effect of debi-
asing (through the “focusing parameter” of DFL),
we observe the same trend, where stronger bias
mitigation leads to higher extractability of the mod-
elled bias. Based on our results, we stipulate that
while current debiasing methods are good at mak-
ing model predictions less biased, they are a bad
proxy for learning unbiased text representations.
The increased extractability of bias from the repre-
sentations is not necessarily a bad trait: For exam-
ple, the NegWords task does not reveal more gran-
ular semantics of negation, which may be useful
for the generalization of the model. By probing for
linguistic properties using the SentEval tasks, we
also observe that debiased models do not make lin-
guistic information less extractable, which can also
contribute to their improvement in performance.
We argue that future research should look for more
interpretable methods for debiasing language mod-

els, and consider the problem of finding robust,
bias-free feature detectors.

Another domain where this finding may be
alarming is social bias. Previous studies show that
word vectors contain social bias (Caliskan et al.,
2017), and that debiasing them does not necessar-
ily remove this information (Gonen and Goldberg,
2019). Our work shows that debiasing sometimes
increases the information available about bias in
the representations, albeit in the context of dataset
bias rather than social bias.

Our work shows that unbiased predictions =⇒
biased representations. We speculate that there ex-
ists a proxy for the language model that removes
bias information from the representations and con-
sequently improves the generalization of predic-
tions out of distribution. Future work could focus
on methods that are both representation-robust and
prediction-robust w.r.t various biases. Finding such
methods can help alleviate leakage of bias from
data to the model’s representations, without sacri-
ficing the in-distribution performance.
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A Appendix

A.1 Online Code Evaluation
Following Voita and Titov (2020), we evaluate our
models using an online code probe, with times-
tamps [2.0, 3.0, 4.4, 6.5, 9.5, 14.0, 21.0, 31.0, 45.7,
67.6, 100] (Each timestamp corresponds to a per-
centage of the samples in the training dataset). We
use a slightly different scale than Voita and Titov
(2020), to account for the smaller datasets and the
resulting instability in the first fractions of training.
The last timestamp is used to train the probe on
the full training dataset, and it is then evaluated for
accuracy on the entire test set. During all training
phases, we employ early-stopping when the valida-
tion accuracy does not improve over four epochs,
with a tolerance of 10−3.

A.2 Bias-only Models
For the lexical bias-only model, we use the follow-
ing features as bias input features: 1) Whether all
words in the hypothesis are included in the premise;
2) If the hypothesis is the contiguous subsequence
of the premise; 3) If the hypothesis is a subtree in
the premise’s parse tree; 4) The number of tokens
shared between premise and hypothesis normalized
by the number of tokens in the premise, and 5) The
cosine similarity between premise and hypothesis’s
pooled token representations from BERT followed
by min, mean, and max-pooling. Following Ma-
habadi et al., we also give equal weights to neutral
and contradiction labels (by calculating a weighted
cross-entropy loss) to encourage the model towards
biased predictions.

A.3 Hyperparameters
ConfReg We train all models for five epochs
and use the same hyperparameters as in Utama
et al. (2020b): 2000 samples for the weak learner
sub-sampling, a batch size of 32, learning rate of
5 · 10−5, a weight decay of 0.01 and a linear sched-
uler for modulating the learning rate with a 10%
warm-up proportion. For training FEVER, we set a
learning rate of 2 · 10−5 and sub-sample 500 sam-
ples. For SNLI we use the same parameters as
in MNLI, but we sub-sample 3 000 samples to ac-
count for the larger dataset, and make sure that the
weak model still follows the constraints: at least
90% of the predictions on the sampled training set
fall within the 0.9 probability bin, and the weak
learner achieves more than 60% accuracy on the
entire training set.

DFL and PoE We train all models for three
epochs on MNLI and SNLI with a batch size of
32, learning rate of 5 · 10−5, a weight decay of 0.0
and a linear scheduler for modulating the learning
rate with a 10% warm-up proportion. We choose
γ = 2.0 for most of the DFL models. Excep-
tions are made for DFL with the subsampled bias
model and end-to-end DFL with a TinyBERT bias
model, where we sweep γ ∈ {1.0, 2.0} and choose
γ = 1.0 based on the highest validation accuracy
(in-distribution). Another exception is made for
FEVER, where we set the learning rate at 2 · 10−5

to be consistent with previous work.

A.4 Training Details
To train all models, we have used single instances
of NVIDIA GeForce RTX 2080 Ti, with an av-
erage training time of 1–7 hours. Models where
the weak learner is frozen have 110M parameters,
as in the base BERT model. TinyBERT models
have 4.4M parameters (Turc et al., 2019) and any
combination of a weak model and a main model is
straightforward to calculate.

A.5 Additional Results
Table 7 summarizes the results for NegWords bias
on the SNLI dataset, and Table 8 summarizes the
results on MNLI. Table 9 shows the full results for
NegWords on FEVER, including probing accuracy.
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Bias Model C Acc. Hard

Random 1.47± 0.0 59.8± 2.4 –
Pretrained 2.01± 0.0 76.1± 0.0 –
Base 3.48± 0.3 92.9± 0.4 80.51± 0.57

Hypothesis
DFLe2e 5.24± 0.3 95.4± 0.7 82.91± 0.38

PoEe2e 5.23± 0.2 95.9± 0.4 82.37± 0.46

Tiny

DFL 5.13± 0.3 95.6± 0.9 80.5± 0.9

DFLe2e 4.49± 0.6 94.1± 0.9 80.06± 0.62

PoE 4.81± 0.2 94.0± 0.8 81.4± 0.4

PoEe2e 4.41± 0.4 94.3± 0.8 80.4± 0.3

Table 7: Results of probing for NegWords on SNLI. We also report results on the SNLI hard test set from Guru-
rangan et al. (2018)

Bias Model C Acc. Hard

Random 1.48± 0.01 56.8± 0.57 –
Pretrained 1.57± 0.00 52.8± 0.0 –
Base 2.42± 0.11 85.2± 1.1 76.7± 0.2

Hypothesis
DFLe2e 2.66± 0.11 86.5± 0.4 77.8± 0.9

PoEe2e 2.60± 0.06 86.1± 1.4 77.4± 0.5

Subset ConfReg 2.85± 0.07 88.2± 0.3 76.6± 0.5

Tiny

DFL 2.75± 0.06 88.4± 0.1 76.5± 0.0

DFLe2e 2.68± 0.10 87.5± 1.0 75.6± 0.4

PoE 2.71± 0.23 87.4± 1.3 77.8± 0.9

PoEe2e 2.64± 0.09 87.5± 0.1 76.8± 0.1

Table 8: Results of probing for NegWords on MNLI. We also report results on the MNLI hard test set generated
by Mahabadi et al. (2020)

Bias Model C Acc. Symmetric

Random 1.37± 0.00 56.9± 1.3 –
Pretrained 1.64± 0.03 71.0± 0.1 –
Base 2.97± 0.10 85.0± 1.7 56.0± 2.0

Claim
DFLe2e 3.04± 0.08 87.6± 1.2 62.1± 1.8
PoEe2e 3.00± 0.05 87.9± 0.5 61.9± 1.6

Subset ConfReg 3.03± 0.04 87.5± 1.3 56.2± 2.0

Tiny

DFL 3.31± 0.09 87.7± 0.7 62.2± 3.9
DFLe2e 3.16± 0.07 86.9± 1.0 60.5± 2.5
PoE 3.12± 0.05 87.5± 0.8 61.0± 3.6
PoEe2e 3.06± 0.06 86.4± 1.0 61.4± 3.2

Table 9: Results of probing for NegWords on FEVER, including probe accuracy (Acc.).


