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Abstract

Discrete adversarial attacks are symbolic per-
turbations to a language input that preserve
the output label but lead to a prediction error.
While such attacks have been extensively ex-
plored for the purpose of evaluating model ro-
bustness, their utility for improving robustness
has been limited to offline augmentation only.
Concretely, given a trained model, attacks are
used to generate perturbed (adversarial) exam-
ples, and the model is re-trained exactly once.
In this work, we address this gap and lever-
age discrete attacks for online augmentation,
where adversarial examples are generated at
every training step, adapting to the changing
nature of the model. We propose (i) a new
discrete attack, based on best-first search, and
(ii) random sampling attacks that unlike prior
work are not based on expensive search-based
procedures. Surprisingly, we find that random
sampling leads to impressive gains in robust-
ness, outperforming the commonly-used of-
fline augmentation, while leading to a speedup
at training time of ∼10x. Furthermore, on-
line augmentation with search-based attacks
justifies the higher training cost, significantly
improving robustness on three datasets. Last,
we show that our new attack substantially im-
proves robustness compared to prior methods.

1 Introduction

Adversarial examples are inputs that are slightly,
but intentionally, perturbed to create a new exam-
ple that is misclassified by a model (Szegedy et al.,
2014). Adversarial examples have attracted im-
mense attention in machine learning (Goodfellow
et al., 2015; Carlini and Wagner, 2017; Papernot
et al., 2017) for two important, but separate, rea-
sons. First, they are useful for evaluating model
robustness, and have revealed that current mod-
els are over-sensitive to minor perturbations. Sec-
ond, adversarial examples can improve robustness:
training on adversarial examples reduces the brittle-
ness and over-sensitivity of deep learning models to

Figure 1: Robust accuracy vs. slowdown in training
time, comparing different methods to Baseline (purple
pentagon); x-axis in logarithmic scale. The popular
ADVOFF (blue squares, offline augmentation with ad-
versarial example) is 10x slower than our simple aug-
mentation of 4 (8) random samples (triangles, RAND-
OFF-4, RANDOFF-8) and achieves similar or worse ro-
bust accuracy. Our online augmentation of adversar-
ial examples (ADVON, yellow circles) significantly im-
proves robust accuracy, but is expensive to train.

such perturbations (Alzantot et al., 2018; Jin et al.,
2020; Li et al., 2020; Lei et al., 2019; Wallace et al.,
2019; Zhang et al., 2020; Garg and Ramakrishnan,
2020; Si et al., 2020a; Goel et al., 2021).

Training and evaluating models with adversarial
examples has had considerable success in computer
vision, with gradient-based techniques like FGSM
(Goodfellow et al., 2015) and PGD (Madry et al.,
2018). In computer vision, adversarial examples
can be constructed by considering a continuous
space of imperceptible perturbations around im-
age pixels. Conversely, language is discrete, and
any perturbation is perceptible. Thus, robust mod-
els must be invariant to input modifications that
preserve semantics, such as synonym substitutions
(Alzantot et al., 2018; Jin et al., 2020), paraphras-
ing (Tan et al., 2020), or typos (Huang et al., 2019).
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Due to this property of language, ample work
has been dedicated to developing discrete attacks
that generate adversarial examples through combi-
natorial optimization (Alzantot et al., 2018; Ren
et al., 2019; Jin et al., 2020; Zhou et al., 2020;
Zang et al., 2020) . For example, in sentiment
analysis, it is common to consider the space of all
synonym substitutions, where an adversarial exam-
ple for an input “Such an amazing movie!” might
be “Such an extraordinary film” (Fig. 2). This
body of work has mostly focused on evaluating ro-
bustness, rather than improving it, which naturally
led to the development of complex combinatorial
search algorithms, whose goal is to find adversarial
examples in the exponential space of perturbations.

In this work, we address a major research gap in
current literature around improving robustness with
discrete attacks. Specifically, past work (Alzan-
tot et al., 2018; Ren et al., 2019; Jin et al., 2020)
only considered offline augmentation, where a dis-
crete attack is used to generate adversarial exam-
ples and the model is re-trained exactly once with
those examples. This ignores online augmentation,
which had success in computer vision (Kurakin
et al., 2017; Perez and Wang, 2017; Madry et al.,
2018), where adversarial examples are generated in
each training step, adapting to the changing model.
Moreover, simple data augmentation techniques,
such as randomly sampling from the space of syn-
onym substitutions and adding the generated sam-
ples to the training data have not been investigated
and compared to offline adversarial augmentation.
We address this lacuna and systematically com-
pare online augmentation to offline augmentation,
as well as to simple random sampling techniques.
To our knowledge, we are the first to evaluate on-
line augmentation with discrete attacks on a wide
range of NLP tasks. Our results show that online
augmentation leads to significant improvement in
robustness compared to prior work and that simple
random augmentation achieves comparable results
to the common offline augmentation at a fraction
of the complexity and training time.

Moreover, we present a new search algorithm
for finding adversarial examples, Best-First search
over a Factorized graph (BFF), which alleviates
the greedy nature of previously-proposed algo-
rithms. BFF improves search by incorporating
backtracking, and allowing to re-visit previously-
discarded search paths, once the current one is re-
vealed to be sub-optimal.

Figure 2: Given a movie review x, the model A is ro-
bust to a set of perturbations, while A′ is not.

We evaluate model robustness on three datasets:
BoolQ (Clark et al., 2019), IMDB (Maas et al.,
2011), and SST-2 (Socher et al., 2013), which vary
in terms of the target task (question answering and
sentiment analysis) and input length. Surprisingly,
we find across different tasks (Fig. 1) that augment-
ing each training example with 4-8 random sam-
ples from the synonym substitution space performs
as well as (or better than) the commonly used of-
fline augmentation, while being simpler and 10x
faster to train. Conversely, online augmentation
makes better use of the extra computational cost,
and substantially improves robust accuracy com-
pared to offline augmentation. Additionally, our
proposed discrete attack algorithm, BFF, outper-
forms prior work by a wide margin. Our data and
code are available at https://github.com/
Mivg/robust_transformers.

2 Problem Setup and Background

Problem setup We focus in this work on the su-
pervised classification setup, where given a training
set {xj , yj}Nj=1 sampled from X × Y , our goal is
to learn a mapping A : X → Y that achieves high
accuracy on held-out data sampled from the same
distribution. Moreover, we want the model A to be
robust, i.e., invariant to a set of pre-defined label-
preserving perturbations to x, such as synonym
substitutions. Formally, for any natural language
input x, a discrete attack space of label-preserving
perturbations S(x) ⊂ X is defined. Given a la-
beled example (x, y), a model A is robust w.r.t
x, if A(x) = y and for any x̄ ∈ S(x), the out-
put A(x̄) = A(x). An example x̄ ∈ S(x) such
that A(x̄) 6= A(x) is called an adversarial exam-
ple. We assume A provides not only a prediction
but a distribution pA(x) ∈ ∆|Y| over the possible
classes, where ∆ is the simplex, and denote the
probability A assigns to the gold label by [pA(x)]y.
Fig. 2 shows an example from sentiment analysis,

https://github.com/Mivg/robust_transformers
https://github.com/Mivg/robust_transformers
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where a model A is robust, while A′ is not w.r.t x.
Robustness is evaluated with robust accuracy

(Tsipras et al., 2019), i.e., the fraction of exam-
ples a model is robust to over some held-out data.
Typically, the size of the attack space S(x) is expo-
nential in the size of x and it is not feasible to enu-
merate all perturbations. Instead, an upper bound
is estimated by searching for a set of adversarial
attacks, i.e., “hard” examples in S(x) for every x,
and estimating robust accuracy w.r.t to that set.

Improving robustness with discrete attacks
Since language is discrete, a typical approach for
evaluating robustness is to use combinatorial op-
timization methods to search for adversarial ex-
amples in the attack space S(x). This has been
repeatedly shown to be an effective attack method
on pre-trained models (Alzantot et al., 2018; Lei
et al., 2019; Ren et al., 2019; Li et al., 2020; Jin
et al., 2020; Zang et al., 2020). However, in terms
of improving robustness, discrete attacks have thus
far been mostly used with offline augmentation
(defined below) and have led to limited robustness
gains. In this work, we examine the more costly but
potentially more beneficial online augmentation.

Offline vs. online augmentation Data augmen-
tation is a common approach for improving gener-
alization and robustness, where variants of training
examples are automatically generated and added
to the training data (Simard et al., 1998). Here,
discrete attacks can be used to generate these ex-
amples. We consider both offline and online data
augmentation and focus on improving robustness
with adversarial examples.

Given a training set {(xj , yj)}Nj=1, offline data
augmentation involves (a) training a model A over
the training data, (b) for each training example
(xj , yj), generating a perturbation w.r.t to A (using
some discrete attack) and labeling it with yj , and (c)
training a new model over the union of the original
training set and the generated examples. This is
termed offline augmentation because examples are
generated with respect to a fixed model A.

Online data augmentation is this setup, exam-
ples are generated at training time w.r.t the current
model A. This is more computationally expensive,
as examples must be generated during training and
not as pre-processing, but examples can adapt to
the model over time. In each step, half the batch
contains examples from the training set, and half
are adversarial examples generated by some dis-

crete attack w.r.t to the model’s current state.

Online augmentation has been used to improve
robustness in NLP with gradient-based approaches
(Jia et al., 2019; Shi et al., 2020; Zhou et al., 2020),
but to the best of our knowledge has been over-
looked in the context of discrete attacks. In this
work, we are the first to propose model-agnostic
online augmentation training, which uses automat-
ically generated discrete adversarial attacks to
boost overall robustness in NLP models.

3 The Attack Space

An attack space for an input with respect to a clas-
sification task can be intuitively defined as the set
of label-preserving perturbations over the input.
A popular attack space S(x), which we adopt, is
the space of synonym substitutions (Alzantot et al.,
2018; Ren et al., 2019). Given a synonym dictio-
nary that provides a set of synonyms Syn(w) for
any word w, the attack space Ssyn(x) for an ut-
terance x = (w1, . . . , wn) contains all utterances
that can be obtained by replacing a word wi (and
possibly multiple words) with one of their syn-
onyms. Typically, the number of words from x
allowed to be substituted is limited to be no more
than D = dd · |x|e, where d ∈ {0.1, 0.2} is a
common choice.

Synonym substitutions are context-sensitive, i.e.,
substitutions might only be appropriate in certain
contexts. For example, in Fig. 3, replacing the word

“like” with its synonym “similar” (red box) is in-
valid, since “like” is a verb in this context. Conse-
quently, past work (Ren et al., 2019; Jin et al., 2020)
filtered Ssyn(x) using a context-sensitive filtering
function Φx(wi, w̄i) ∈ {0, 1}, which determines
whether substituting a word wi from the original
utterance x with its synonym w̄i is valid in a par-
ticular context. For instance, an external model
can check whether the substitution maintains the
part-of-speech, and whether the overall semantics
is maintained. We define the filtered synonyms
substitutions space SΦ(x) as the set that includes
all utterances x̄ that can be generated through a
sequence of no more than D single-word substi-
tutions from the original utterance that are valid
according to Φ(·, ·). In §5.2, we describe the de-
tails of the synonym dictionary and function Φ.
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Figure 3: Example of an attack space, and the paths
taken by a greedy algorithm and best-first search. An
adversarial example has a probability p < 0.5 for the
gold positive label.

4 Best-first Search Over a Factorized
Graph

Searching over the attack space SΦ(x) can be nat-
urally viewed as a search problem over a directed
acyclic graph (DAG), G = (U , E), where each
node ux̄ ∈ U is labeled by an utterance x̄, and
edges E correspond to single-word substitutions,
valid according to Φ(·). The graph is directed and
acyclic, since only substitutions of words from the
original utterance x are allowed (see Fig. 3). Be-
cause there is a one-to-one mapping from the node
ux̄ to the utterance x̄, we will use the latter to de-
note both the node and the utterance.

Discrete attacks use search algorithms to find an
adversarial example in S(x). The search is guided
by a heuristic scoring function sA(x) := [pA(x)]y,
where the underlying assumption is that utterances
that give lower probability to the gold label are
closer to an adversarial example. A popular choice
for a search algorithm in NLP is greedy search, il-
lustrated in Fig. 3. Specifically, one holds in step t
the current node xt, where twords have been substi-
tuted in the source node x0 = x. Then, the model
A(·) is run on the frontier, that is, all out-neighbor
nodes N (xt) = {x̂t+1 | (xt, x̂t+1) ∈ E}, and the
one that minimizes the heuristic scoring function
is selected: xt+1 := argminx̂∈N (xt) sA(x̂).

While greedy search has been used for character-
flipping (Ebrahimi et al., 2018), it is ill-suited in
the space of synonym substitutions. The degree
of nodes is high – assuming nrep words can be re-
placed in the text, each with K possible synonyms,
then the out degree is O(nrep ·K). This results in
an infeasible number of forward passes through the
attacked model even for a small number of search

iterations.
To enable effective search through the search

space, we (a) factorize the graph such that the out-
degree of nodes is lower, and (b) use a best-first
search algorithm. We describe those next.

Graph factorization To reduce the out-degree
of a node in the search space and thus improve its
efficiency, we can split each step into two. First,
choose a position to substitute in the utterance; Sec-
ond, choose a substitution for that position. This
reduces the number of evaluations of A per step
from O(nrep · K) to O(nrep + K). To estimate
the score of a position i, one can mask the word
wi with a mask token τ and measure sA(xwi→τ ),
where xwi→τ is the utterance x where the word in
position i is replaced by the mask τ .

We can describe this approach as search over a
bi-partite DAG Ĝ = (U ∪W, Ê). The nodes U are
utterances like in G, and the new nodes are utter-
ances with a single mask tokenW = {x̄wi→τ | x̄ ∈
S(x)∧wi is a word in x}. The edges comprise two
types: Ê = E1 ∪ E2. The edges E1 are from utter-
ances to masked utterances: E1 = {(x̄, x̄wi→τ )} ⊂
U×W , and E2 = {(x̄wi→τ , x̄wi→wsyn )} ⊂ W×U ,
where wsyn ∈ Syn(wi). In Figure 3, the two right-
most nodes in each row would be factorized to-
gether as they substitute the same word, and the
algorithm will evaluate only one of them to esti-
mate the potential benefit of substituting “movie”.

Best-first search A factorized graph makes
search possible by reducing the out-degree of nodes.
However, greedy search is still sub-optimal. This
is since it relies on the heuristic search function to
be a good estimate of the distance to an adversarial
example, which can often be false. Consider the
example in Fig. 3. The two adversarial examples
(with p = 0.4 or p = 0.45) are not reachable from
the best node after the first step (p = 0.6), only
from the second-best (p = 0.65).

Best-first search (Pearl, 1984) overcomes this at
a negligible cost, by holding a min-heap over the
nodes of the frontier of the search space (Alg. 1). In
each step, we pop the next utterance, which assigns
the lowest probability to the gold label, and push all
neighbors into the heap. When a promising branch
turns out to be sub-optimal, search can resume from
an earlier node to find a better solution, as shown
in the blue path in Figure 3. To bound the cost
of finding a single adversarial example, we bound
the number of forward passes through the model
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A with a budget parameter B. To further reduce
“greedyness”, search can use a beam by popping
more than one node in each step, expanding all
their neighbors and pushing the result back to the
heap. Our final approach uses Best-First search
over a Factorized graph, and is termed BFF.

Algorithm 1: BFF
input :model A, factorized graph G, utterance x.
heap← {(x, sA(X)}
x∗ ← x
while |heap| > 0 and budget B not exhausted:

x̄← heap.pop()
x∗ ← argminx̂∈{x̄,x∗}A(x̂)

if A(x∗) 6= y break;
for x̂ ∈ N (x̄) do

heap.push(x̂, sA(x̂))
return x∗

5 Experiments

We conduct a thorough empirical evaluation of
model robustness across a wide range of attacks
and training procedures.

5.1 Experimental Setup
To evaluate our approach over diverse settings, we
consider three different tasks: text classification,
sentiment analysis and question answering, two of
which contain long passages that result in a large
attack space (see Table 1).
1. SST-2: Based on the the Stanford sentiment

treebank (Socher et al., 2013), SST-2 is a binary
(positive/negative) classification task contain-
ing 11,855 sentences describing movie reviews.
SST-2 has been frequently used for evaluating
robustness.

2. IMDB (Maas et al., 2011): A binary (posi-
tive/negative) text classification task, containing
50K reviews from IMDB. Here, passages are
long and thus the attack space is large (Table 1).

3. BoolQ (Clark et al., 2019): contains 16,000
yes/no questions over Wikipedia paragraphs.
This task is perhaps the most interesting, be-
cause the attack space is large and answering
requires global passage understanding. We al-
low word substitutions in the paragraph only
and do not substitute nouns, verbs, or adjectives
that appear in the question to avoid non-label-
preserving perturbations. Further details can be
found in App. A.2.

Models We consider a wide array of models and
evaluate both their downstream accuracy and ro-

bustness. In all models, we define a budget of
B = 1000, which specifies the maximal number
of allowed forward passes through the model for
finding an adversarial example. All results are an
average of 3 runs.

To demonstrate the effectiveness of BFF for both
robustness evaluation as well as adversarial train-
ing, we compare it to a recent state-of-the-art dis-
crete attack, TEXTFOOLER (Jin et al., 2020), which
we denote in model names below by the prefix TXF.
The models compared are:

• BASELINE: we fine-tune a pretrained language
model on the training set. We use BERT-
BASE (Devlin et al., 2019) for IMDB/SST-2 and
ROBERTA-LARGE (Liu et al., 2019) for BoolQ.
These baselines are on par with current state-of-the-
art to demonstrate the efficacy of our method.

• BFFOFF/TXFOFF Offline augmentation with the
BFF or TEXTFOOLER attacks.

• BFFON/TXFON Online augmentation with the
BFF or TEXTFOOLER attacks.

• RANDOFF-L: We compare search-based algo-
rithms to a simple and efficient approach that does
not require any forward passes through the model
A. Specifically, we randomly sample L utterances
from the attack space for each example (without
executing A) and add them to the training data.

• RANDON: A random sampling approach that does
use the model A. Here, we sample B random utter-
ances, pass them through A, and return the attack
that resulted in lowest model probability.

• FREELB: For completeness, we also consider
FREELB (Zhu et al., 2020), a popular gradient-
based approach for improving robustness, which
employs virtual adversarial training (see §6). This
approach uses online augmentation, where exam-
ples are created by taking gradient steps w.r.t the
input embeddings to maximize the model’s loss.
Other gradient-based approaches (e.g., certified ro-
bustness) are not suitable when using pre-trained
transformers, which we further discuss in §6.

In a parallel line of work, Garg and Ramakrish-
nan (2020) and Li et al. (2020) used pre-trained
language models to both define an attack space and
to generate high-fidelty attacks in that space. while
successful, these approaches are not suitable for
our setting, due to the strong coupling between
the attack strategy and the attack space itself. We
further discuss this in §6
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Evaluation We evaluate models on their down-
stream accuracy, as well as on robust accuracy, i.e.
the fraction of examples against which the model is
robust. Since exact robust accuracy is intractable
to compute due to the exponential size of the attack
space, we compute an upper-bound by attacking
each example with both BFF and TEXTFOOLER

(TXF) with a budget of B = 2000. An example
is robust if we cannot find an utterance where the
prediction is different from the gold label. We eval-
uate robust accuracy on 1000/1000/872 samples
from the development sets of BoolQ/IMDB/SST-2.

5.2 Attack Space

Despite the myriad of works on discrete attacks, an
attack space for synonym substitutions has not been
standardized. While all past work employed a syn-
onym dictionary combined with a Φ(·, ·) filtering
function (see §3), the particular filtering functions
vary. When examining the attack space proposed
in TXF, we observed that attacks result in exam-
ples that are difficult to understand or are not label-
preserving. Table 6 in App. A.4 shows several
examples. For instance, in sentiment classification,
the attack replaced “compelling” with “unconvinc-
ing” in the sentence “it proves quite unconvincing
as an intense , brooding character study” which al-
ters the meaning and the sentiment of the sentence.
Therefore, we use a more strict definition of the
filtering function and conduct a user study to verify
it is label-preserving.

Concretely, we use the synonym dictionary from
Alzantot et al. (2018). We determine if a word
substitution is context-appropriate by computing
all single-word substitutions (nrep ·K) and disal-
lowing those that change the POS tag according
to spaCy (Honnibal et al.) or increase perplexity
according to GPT-2 (Radford et al., 2019) by more
than 25%. Similar to Jin et al. (2020), we also filter
out synonyms that are not semantics-preserving ac-
cording to the USE (Cer et al., 2018) model. The
attack space includes any combination of allowed
single-word substitutions, where the fraction of al-
lowed substitutions is d = 0.1. Implementation
details are in App. A.2. We find that this ensemble
of models reduces the number of substitutions that
do not preserve semantics and are allowed by the
filtering function.

We check the validity of our more restrictive
attack space with a user study, where we verify that
our attack space is indeed label-preserving. The

|x| nrep |Syn(w)| |Sφ(x)|
SST-2 8.9 2.7 2.4 27.7
IMDB 242.4 97.3 3.6 2.27× 1064

BoolQ† 97.7 38.7 3.6 3.64× 1025

Table 1: Statistics on datasets and the size of attack
space. We show the average number of words per ut-
terance |x|, the average number of words with substi-
tutions nrep, average number of synonyms per replace-
able word, and an estimation of the attack space size.

details of the user study are in §5.6.

5.3 Robustness Results
Table 2 shows accuracy on the development set,
robust accuracy, and slowdown compared to BASE-
LINE for all models and datasets. For downstream
accuracy, training for robustness either maintains
or slightly increases downstream accuracy. This
is not the focus of this work, but is indeed a nice
side-effect. For robust accuracy, discrete attacks
substantially improve robustness: 80.5→ 85.3 on
SST-2, 41.2 → 78.9 on IMDB, and 50.0 → 68.7
on BoolQ, closing roughly half the gap from down-
stream accuracy.

Comparing different attacks, online augmenta-
tion (BFFON), which has been overlooked in the
context of discrete attacks, leads to dramatic robust-
ness gains compared to other methods, but is slow
to train – 20-270x slower than BASELINE. This
shows the importance of continuous adaptation to
the current vulnerabilities of the model.

Interestingly, adding offline random samples
(RANDOFF−L) consistently improves robust ac-
curacy, and using L = 12 leads to impressive ro-
bustness gains without executing A at all, outper-
forming BFFOFF in robust accuracy, and being
∼5x faster on IMDB and BoolQ. Moreover, ran-
dom sampling is trivial to implement, and indepen-
dent from the attack strategy. Hence, the common
practice of using offline augmentation with search-
based attacks, such as BFFOFF, seems misguided,
and a better solution is to use random sampling.
Online random augmentation obtains impressive
results, not far from BFFON, without applying any
search procedure, but is very slow, since it uses the
entire budget B in every example.

Comparing BFF to TXF, we observe that BFF,
which uses best-first search, outperforms TXF in
both the online and offline setting. Last FREELB,
which is based on virtual adversarial training, im-
proves robust accuracy at a low computational cost,
but is dramatically outperformed by discrete search-
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Model Accuracy Robust Accuracy Slowdown
SST-2 IMDB BoolQ SST-2 IMDB BoolQ SST-2 IMDB BoolQ

Baseline 91.9 93.4 84.5 80.5 41.2 50.0 ×1 ×1 ×1
FREELB 92.5 93.9 85.5 82.1 62.5 55.8 ×1.8 ×1.8 ×3.9

RANDOFF-1 91.9 93.5 85.6 83.5 50.3 52.2 ×1.9 ×1.5 ×2.1
RANDOFF-4 91.6 93.7 85.5 83.6 57.0 58.4 ×3.8 ×4.5 ×5.1
RANDOFF-8 91.1 93.8 86.1 83.3 60.9 61.3 ×5.4 ×8.0 ×9.3
RANDOFF-12 91.5 93.7 85.8 84.2 60.1 63.0 ×6.3 ×11.5 ×13.2
TXFOFF 91.2 93.4 86.5 83.5 49.0 61.5 ×3.0 ×56.1 ×8.6
BFFOFF 91.8 93.7 85.8 84.6 54.3 62.3 ×5.4 ×60.0 ×63.2

RANDON 91.7 94.1 85.6 84.9 68.5 66.0 ×14.8 ×249.3 ×280.4
TXFON 91.3 93.8 86.0 84.0 67.4 65.3 ×3.9 ×58.0 ×28.1
BFFON 91.7 94.2 86.5 85.3 78.9 68.7 ×21.1 ×270.7 ×215.9

Table 2: Accuracy on the evaluation set, robust accuracy, and slowdown in model training for all datasets.

Model IMDB BoolQ
Rand TXF BFF Gen Rand TXF BFF Gen

Baseline 73.1 70.2 49.9 54.1 62.1 67.7 50.2 52.0

RND-OA 74.8 74.7 52.9 59.1 70.9 72.0 59.4 62.0
TXFOFF 67.7 77.5 52.5 56.7 71.0 75.0 61.5 63.4
BFFOFF 75.4 76.9 58.6 64.1 70.9 74.8 64.7 65.2

RANDON 87.0 76.4 68.5 79.6 71.5 72.6 60.1 67.5
TXFON 81.1 84.2 69.7 73.7 73.4 74.8 65.3 67.4
BFFON 87.0 84.9 79.0 81.9 75.1 76.1 69.0 70.3

Table 3: Robust accuracy of different robust models
w.r.t particular discrete attacks. RND-OA is offline aug-
mentation with a random attack and B = 1000. Gen is
our implementation of the Genetic Attack by Alzantot
et al. (2018).

based attacks, including BFF.
To summarize, random sampling leads to signifi-

cant robustness gains at a small cost, outperforming
the commonly used offline augmentation. Online
augmentation leads to the best robustness, but is
more expensive to train.

5.4 Robustness across Attack Strategies

A natural question is whether a model trained for
robustness with an attack (e.g., BFF) is robust w.r.t
to examples generated by other attacks, which are
potentially uncorrelated with them. To answer that,
we evaluate the robustness of our models to attacks
generated by BFF, TXF, and random sampling.
Moreover, we evaluate robustness to a genetic at-
tack, which should not be correlated with BFF and
TXF: we re-implement the genetic attack algorithm
from Alzantot et al. (2018) (details in A.3), and ex-
amine the robustness of our model to this attack.
All attacks are with a budget of B = 2000.

Table 3 shows the result of this evaluation. We
observe that BFFON obtains the highest robust
accuracy results w.r.t to all attacks: BFF, TXF,
random sampling, and a genetic attack. In offline

augmentation, we observe again that BFFOFF ob-
tains good robust accuracy, higher or comparable
to all other offline models for any attack strategy.
This result highlights the generality of BFF for
improving model robustness.

5.5 Success Rate Results

To compare the different attacks proposed in §4,
we analyze the success rate against BASELINE, i.e.,
the proportion of examples for which an attack
finds an adversarial example as a function of the
budget B.

Fig. 4 compares the success rate of different at-
tacks. We observe that BFF-based attacks have the
highest success rate after a few hundred executions.
TEXTFOOLER performs well at first, finding ad-
versarial examples for many examples, but then its
success plateaus. Similarly, a random approach,
which ignores the graph structure, starts with a rel-
atively high success rate, as it explores far regions
in the graph, but fails to properly utilize its budget
and then falls behind.

BFF combines backtracking with graph factor-
ization. When removing backtracking, i.e., greedy
search over the factorized graph, success rate de-
creases, especially in BoolQ. Greedy search with-
out graph factorization leads to a low success rate
due to the large number of neighbors of each node,
which quickly exhausts the budget. Moreover, look-
ing at BFF with beam size 2 (popping 2 items from
the heap in each step) leads to lower performance
when the budget B ≤ 2000, as executions are ex-
pended on less promising utterances, but could
improve success rate given a larger budget.

Lastly, due to our more strict definition of the
attack space, described in (§5.2), success rates of
BFF and TXF are lower compared to Jin et al.
(2020). To verify the correctness of our attacks,
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Figure 4: Success rate of different attacks against
BoolQ/IMDB BASELINE as a function of the budget.

Original Random BFF
IMDB 98.0 98.0 96.0
BoolQ 89.0 91.5 83.5
SST-2 97.0 96.0 94.4

Table 4: Evaluating attack space validity. We show hu-
man performance on original examples, random exam-
ples, and examples generated with BFF.

we run BFF and TXF in their attack space, which
uses a larger synonym dictionary, a more permis-
sive function Φ, and does not limit the number of
substitutions D and budget B. We obtain a simi-
lar success rate, close to 100%. Nevertheless, we
argue our attack space, validated by users to be
label-preserving is preferable, and leave standard-
ization of attack spaces through a broad user study
to future work.

5.6 User Study

Since a model is considered to not be robust even
if it flips the output label for a single adversarial
sample, the validity of adversarial examples in the
attack space is crucial. When we examined gener-
ated attacks based on prior works, we found many
label-flipping attacks. This was especially notice-
able when using BFF attacks over tasks not eval-
uated in prior works (see examples in Appendix
A.4). In this work, our focus was on evaluating
different methods for increasing model robustness,

and thus over-constraining the attack space to guar-
antee its validity was acceptable. We stress that our
attack search space is more conservative than prior
work, and is a strict subset of prior attack spaces
(see Appendix A.2), leading to higher validity of
adversarial examples.

We evaluate the validity of our attack space
and the generated adversarial samples with a user
study. We sample 100/100/50 examples from SST-
2/BoolQ/IMDB respectively, and for each example
create two adversarial examples: (a) by random
sampling (b) using a BFF attack. We ask 25 NLP
graduate students to annotate both the original ex-
ample and the two adversarial ones. Each example
is annotated by two annotators and each annotator
only sees one version of an example. If human per-
formance on random and adversarial examples is
similar to the original task, this indicates the attack
space is label-preserving.

Table 4 shows the results. Human performance
on random examples is similar to the original utter-
ances. Human performance on examples generated
with BFF is only mildly lower than the perfor-
mance on the original utterances, overall confirm-
ing that the attack space is label-preserving.

Ideally, the validity of adversarial exmaples
should be as high as the original examples. How-
ever, a small degradation in random vs. original
is expected since the search space is not perfect,
and similarly for BFF since it is targeted at find-
ing adversarial examples. Nevertheless, observed
drops were small, showing the advantage in validity
compared to prior work. The minor irregularity in
BoolQ between random and original is indicative
of the noise in the dataset.

6 Related Work

Adversarial attacks and robustness have attracted
tremendous attention. We discuss work beyond
improving robustness through adversarial attacks.

Certified Robustness is a class of methods that
provide a mathematical certificate for robustness
(Dvijotham et al., 2018; Gowal et al., 2018; Jia
et al., 2019; Huang et al., 2019; Shi et al., 2020).
The model is trained to minimize an upper bound
on the loss of the worst-case attack. When this up-
per bound is low, we get a certificate for robustness
against all attacks. While this approach has had
success, it struggles when applied to transformers,
since upper bounds are propagated through many
layers, and become too loose to be practical.
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Gradient-based methods In a white-box setting,
adversarial examples can be generated by perform-
ing gradient ascent with respect to the input rep-
resentation. Gradient-based methods (Goodfellow
et al., 2015; Madry et al., 2018) have been em-
pirically successful (Gowal et al., 2018; Ebrahimi
et al., 2018), but suffer from a few shortcomings:
(a) they assume access to gradients, (b) they lose
their effectiveness when combined with sub-word
tokenization, since one cannot substitute words that
have a different number of sub-words, and (c) they
can generate noisy examples that does not preserve
the output label. In parallel to our work, Guo et al.
(2021) proposed a gradient-based approach that
finds a distribution over the attack space at the to-
ken level, resulting in an efficient attack.

Virtual adversarial training In this approach,
one does not generate explicit adversarial exam-
ples (Zhu et al., 2020; Jiang et al., 2020; Li and
Qiu, 2020; Pereira et al., 2021). Instead, embed-
dings in an ε-sphere around the input (that do not
correspond to words) are sampled, and continu-
ous optimization approaches are used to train for
robustness. These works were shown to improve
downstream accuracy, but did not result in better
robust accuracy. Recently, Zhou et al. (2020) pro-
posed a method that does improve robustness, but
like other gradient-based methods, it is white-box,
does not work well with transformers over sub-
words, and leads to noisy samples. A similar ap-
proach has been taken by Si et al. (2020b) to gener-
ate virtual attacks during training by interpolating
offline-generated attacks.

Defense layers This approach involves adding
normalization layers to the input before propagat-
ing it to the model, so that different input varia-
tions are mapped to the same representation (Wang
et al., 2019; Mozes et al., 2020; Jones et al., 2020)
. While successful, this approach requires manual
engineering and a reduction in model expressiv-
ity as the input space is significantly reduced. A
similar approach (Zhou et al., 2019) has been to
identify adversarial inputs and predict the original
un-perturbed input.

Pretrained language-models as attacks In this
work, we decouple the definition of the attack-
space from the attack strategy itself, which is cast
as a search algorithm. This allows us to systemati-
cally compare different attack strategies and meth-
ods to improve robustness in the same setting. An

orthogonal approach to ours was proposed by Garg
and Ramakrishnan (2020) and Li et al. (2020),
who used the fact that BERT was trained with the
masked language modeling objective to predict pos-
sible semantic preserving adversarial perturbations
over the input tokens, thereby coupling the defi-
nition of the attack space with the attack strategy.
While this approach showed great promise in ef-
ficiently generating valid adversarial examples, it
does not permit any external constraint on the at-
tack space and thus is not comparable to attacks in
this work. Future work can test whether robustness
transfers across attack spaces and attack strategies
by either (a) evaluating the robustness of models
trained in this work against the aforementioned
works (in their attack space), or (b) combine such
attacks with online augmentation to train robust
models and compare to the attacks proposed in our
work.

7 Conclusions

We examine achieving robustness through discrete
adversarial attacks. We find that the popular ap-
proach of offline augmentation is sub-optimal in
both speed and accuracy compared to random sam-
pling, and that online augmentation leads to im-
pressive gains. Furthermore, we propose BFF, a
new discrete attack based on best-first search, and
show that it outperforms past work both in terms
of robustness improvement and in terms of attack
success rate.

Together, our contributions highlight the key fac-
tors for success in achieving robustness through ad-
versarial attacks, and open the door to future work
on better and more efficient methods for achieving
robustness in natural language understanding.
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A Appendix

A.1 Experimental Details

All of the code was written in python and
is available at https://github.com/Mivg/
robust_transformers. The models are
trained with the transformers library (Wolf et al.,
2020). Whenever offline augmentation was used,
the resulting adversarial samples were added to
the training set and shuffled before training a new
model with the same hyper-parameters as the base-
line. Thus, the model is trained on N × L samples
where N is the original numbers of samples and L
is the number of augmentations added per sample.
For online augmentation, we run two parallel data
loaders with different shuffling, each with half the
required batch size. We then attack the samples
in one batch and concatenate the most successful
attack to the other batch. The model is fed with
the new constructed batch with identical weight-
ing to the halves. Here, we consider a full epoch
when every sample was passed through the model
both as a perturbed and as an unperturbed sample.
As such, the model is trained on 2N samples. For
each dataset, we use the default train-dev split as de-
scribed in the paper, and report the accuracy on the
development set. We train with hyper-parameters
as described below:
SST-2: We fine-tuned a pre-trained cased BERT-
BASE (Devlin et al., 2019) with max seq length=
128 over Nvidia Titan XP GPU for three epochs
with batch size of 32 and learning rate of 2e− 5.

IMDB: We fine-tuned a pre-trained cased BERT-
BASE (Devlin et al., 2019) with max seq length=
480 over Nvidia Titan XP GPU for three epochs
with batch size of 48 and learning rate of 2e− 5.

BoolQ: We fine-tuned a pre-trained ROBERTA-
LARGE (Liu et al., 2019) for BoolQ with max seq
length= 480 over Nvidia GTX 3090 GPU for three
epochs with batch size of 48 and learning rate of
1e− 5.

For each parameter choice reported in Table 2,
we ran three different experiments with different
random initialization, and reported the mean re-
sults. The respective standard deviations are given
in Table 5. To finetune the models using the
FreeLB (Zhu et al., 2020) method, we adapted the
implementation from https://github.com/
zhuchen03/FreeLB and used the following pa-
rameters:
SST-2: init-magnitude = 0.6, adversarial-steps =

Model Accuracy Robust Accuracy
SST-2 IMDB BoolQ SST-2 IMDB BoolQ

Baseline ±0.1 ±0.1 ±1.3 ±0.4 ±0.6 ±0.9
FREELB ±0.2 ±0.1 ±0.4 ±0.5 ±1.0 ±1.1

RANDOFF-1 ±0.3 ±0.1 ±1.8 ±0.5 ±1.4 ±1.8
RANDOFF-4 ±0.7 ±0.1 ±0.5 ±0.6 ±1.9 ±0.5
RANDOFF-8 ±0.2 ±0.1 ±0.8 ±0.7 ±2.1 ±0.8
RANDOFF-12 ±0.6 ±0.1 ±1.0 ±0.5 ±1.4 ±1.0
TXFOFF ±0.6 − − ±0.3 − −
BFFOFF ±0.3 − ±0.3 ±0.3 − ±1.8

RANDON ±0.1 − − ±0.3 − −
TXFON ±0.0 − − ±0.3 − −
BFFON ±0.5 − − ±0.6 − −

Table 5: Standard deviation on the experiments re-
ported in Table 2. Missing cells indicate a single-run
was used due to the long training time.

Figure 5: Success rate of different attacks against
BoolQ/IMDB BASELINE as a function of the budget.

2, adversarial-learning-rate = 0.1 and l2 norm
with no limit on the norm.

IMDB: init-magnitude = 0.2, adversarial-steps =
4, adversarial-learning-rate = 0.2 and l2 norm
with no limit on the norm.

BoolQ: init-magnitude = 0.2, adversarial-steps =
4, adversarial-learning-rate = 0.2 and l2 norm
with no limit on the norm.

BFF implementation For the factorization
phase of BFF, we use τ ∼ Syn(w) with uniform
sampling. We find that while using an out-of-
vocabulary masking token is useful to compute
a word salience, it is less suitable here as we are
interested in the model’s over-sensitivity to pertur-
bations in the exact phrasing of the word. Also,

https://github.com/Mivg/robust_transformers
https://github.com/Mivg/robust_transformers
https://github.com/zhuchen03/FreeLB
https://github.com/zhuchen03/FreeLB
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in contrast to TXF which is optimistic and factor-
izes the attack space only once, BFF factorizes the
space after every step. Namely, Optimistic greedy
search plans the entire search path by evaluating all
permissible single-word substitutions. Let xwi→w
denote the utterance x where the word wi is re-
placed with a synonym w ∈ Syn(wi). The opti-
mistic greedy algorithm scores each word wi in the
utterance with s(wi) := minw∈syn(wi) sA(xwi→w),
that is, the score of a word is the score for its best
substitution, and also stores this substitution. Then,
it sorts utterance positions based on s(wi) in as-
cending order, which defines the entire search path:
In each step, the algorithm moves to the next po-
sition based on the sorted list and uses the best
substitution stored for that position. Fig. 5 shows
the benefit from each of those modifications.

Budget Effect Intuitively, higher budgets better
approximate an exhaustive search and thus the ro-
bustness evaluation as an upper bound should ap-
proach its true value. However, due to lack of back-
tracking in some of the attack strategies, they may
plateau early on. In this work, we used B = 1000
for all training phases and B = 2000 for the ro-
bustness evaluation. Empirically, this gives a good
estimate on the upper bound of model’s robust accu-
racy, while constraining the computational power
needed for the experiments. A natural question is
how much tighter the bounds may be if a larger
budget is given. Fig. 6 depicts an evaluation of
strategies’ success-rates over the same models as
in Fig. 4 with a larger budget. As can be seen,
while the RANDOM attack and TXF plateau, BFF
variants as well as GENATTACK are able to ex-
ploit the larger budget to fool the model in more
cases. This is especially true in IMDB where the
search space is considerably larger. We expect this
trend of tighter bounds to continue with ever larger
budgets, though we note that the rate of improve-
ments decreases with budget and that the ranking
between strategies remains unchanged. Therefore,
we conclude that drawing conclusions about strate-
gies comparison and robustness improvements by
evaluating with a budget of 2, 000 suffices.

A.2 Attack Space Implementation Details

As described in §5.2, we use the synonyms dictio-
nary defined by Alzantot et al. (2018). In particular,
we use the pre-computed set of those synonyms
given by Jia et al. (2019) as our bases for Syn(w).
We pre-process the entire development and training

Figure 6: Success rate of different attacks against
BoolQ/IMDB BASELINE as a function of the budget.

data and store for each utterance, the set SynΦ(w)
and avoid the need to employ large language mod-
els during training and robustness evaluation. For
every word in an utterance wi ∈ x, and for every
w̄i ∈ Syn(wi) we evaluate Φ(wi, w̄i) as follows:

1. With the same sequences as above, we validate
that POS(wi) ≡ POS(w̄i) according to spaCy’s
(Honnibal et al.) POS tagger.

2. With a window of size 101, we validate that
PPL(x)/PPL(x̄) ≥ 0.8 where PPL(·) is the per-
plexity of the sequence as given by a pre-trained
GPT-2 model (Radford et al., 2019)

3. For BoolQ only, we also use spaCy’s POS tagger
to tag all content words (namely NOUN, PROPN,
ADV, and ADJ) in the question. We then restrict
all those words from being perturbed in the pas-
sage.

4. Following Jin et al. (2020), we take a win-
dow of size 15 around the word, and validate
with USE (Cer et al., 2018) that the seman-
tic similarity between the unperturbed sequence
(wi−7, . . . , wi, . . . , wi+7) and the perturbed se-
quence (wi−7, . . . , w̄i, . . . , wi+7) is at least 0.7.

A.3 Genetic Attack Implementation Details
Our implementation of Gen-Attack presented by
Alzantot et al. (2018) was based on https://
github.com/nesl/nlp_adversarial_

https://github.com/nesl/nlp_adversarial_examples/blob/master/attacks.py
https://github.com/nesl/nlp_adversarial_examples/blob/master/attacks.py
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examples/blob/master/attacks.py
and used our attack space rather than the original
attack space presented there. For evaluation,
we used the distribution hyperparameters as
defined by the paper. Namely, population-size:
p := 20, maximum generations: g := 100 and
softmax-temperature = 0.3. Note we did not
need to limit the number of candidate synonyms
considered as this was already done in the attack
space construction. However, we have made two
modifications to the original algorithm in order to
adapt to our settings.

Maximal modification constraints While the
original algorithm presented by Alzantot et al.
(2019) contained a clipping phase where mutated
samples where clipped to match a maximal norm
constraint, the adapted version for discrete attacks
presented in Alzantot et al. (2018) did not. As we
wish to limit the allowed number of perturbation
for any single input utterance and the crossover
phase followed by the perturb sub-routine can eas-
ily overstep this limit, a post-perturb phase was
added. Namely, in every generation creation, af-
ter the crossover and mutation (i.e. perturb) sub-
routines create a candidate child, if the total number
of perturbed samples exceeds the limit, we ran-
domly uniformly revert the perturbation in words
until the limit is reached. This step introduced an-
other level of randomness into the process. We
experimented with reverting based on the probabil-
ity to be replaced as used in the perturb sub-routine,
but this resulted in sub-par results.

Improved Efficiency In addition to estimating
the fitness function of each child in a generation
which requires a forward pass through the attacked
model, Alzantot et al. (2018) also used a greedy
step in the perturb sub-routine to estimate the fit-
ness of each synonym mutation for a chosen po-
sition. This results in an extremely high number
of forward passes through the model, specifically
O(g ·p·(k+1)) which is orders of magnitude larger
than our allowed budget of 2000. However, many
of the passes are redundant, so by utilizing caching
to previous results, the attack strategy can better uti-
lize its allocated budget, resulting in significantly
better success rate in with better efficiency.

A.4 Attack Space in Prior Work
Examining the attack space proposed in Jin et al.
(2020), which includes a larger synonym dictionary
and a different filtering function Φ(·), we observe

that many adversarial examples are difficult to un-
derstand or are not label-preserving. Table 6 shows
examples from an implementation of the attack
space of the recent TEXTFOOLER (Jin et al., 2020).
We observe that while in IMDB the labels remain
mostly unchanged, many passages are difficult to
understand. Moreover, we observe frequent label
flips in datasets such as in SST-2 example, as well
as perturbations in BoolQ that leave the question
unanswerable.

https://github.com/nesl/nlp_adversarial_examples/blob/master/attacks.py
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Passage: Table of prime factors – The number 1 is called a unit. It has no incipient [prime] factors and is neither fiirst
[prime] nor composite.
Question: is 1 a prime factor of every number
Answer: False
Passage: Panama Canal – The nouvelle [new] locks commences [opened] for commercial vehicular [traffic] on 26
June 2016, and the first yacht [ship] to intersecting [cross] the canal using the third set of locks was a modern New
Panamax vessel, the Chinese-owned container warships [ship] Cosco Shipping Panama. The original locks, now over 100
centuries [years] old, give [allow] engineer [engineers] best [greater] access for maintenance, and are hoped [projected]
to continue workplace [operating] indefinitely.
Question: is the old panama canal still in use
Answer: True
Passage: Chevrolet Avalanche – The Chevrolet Avalanche is a four-door, five or eight [six] commuter [passenger]
harvest [pickup] trucking [truck] stocks [sharing] GM’s long-wheelbase frame [chassis] used on the Chevrolet Suburban
and Cadillac Escalade ESV. Breaking with a long-standing tradition, the Avalanche was not affordable [available] as a
GMC, but only as a Chevrolet.
Question: is there a gmc version of the avalanche
Answer: False
Sentence: I’ve been waiting for this movie for SO many years! The best part is that it decedent [lives] up to my visions!
This is a MUST SEE for any Tenacious D or true Jack Black fan. It’s just once [so] great to see JB, KG and Lee on the big
screen! It’s not a authentic [true] story, but who cares. The D is the greatest band on earth! I had the soundtrack to the
movie last week and heeded [listened] to it non-stop. To see the movie was unadulterated [pure] bliss for me and my
hubby. We’ve both met Jack and Kyle after 2 different Tenacious D concerts and also saw them when they toured with
Weezer. We left that concert after the D was done playing. Nobody can top their show! Long live the D!!! :D
Answer: True
Sentence: Sweet, kidding [entertaining] tale of a young 17 1/2 year old boy, controlled by by an overbearing religious
mother and withdrawn father, and how he finds himself through his work with a retired, eccentric and tragic actress. Very
better [well] acted, especially by Julie Walters. Rupert Grint plays the role of the teenage boy well, showing his talent
will last longer than the Harry Potter series of films. Laura Linney plays his ruthlessly strict mother without a hint of
redemption, so there’s no room to like her at all. But the film is a awfully [very] antics [entertaining] film, made well by
the British in the style of the likes of Keeping Mum and Calendar Girls.
Answer: True
Sentence: Enormous adjourned [suspension] of disbelief is required where Will’s "genius" is concerned. Not just in
math–he is also very well reads [read] in economic history, able to out-shrink several shrinks, etc etc. No, no, no. I don’t
buy it. While they’re at it, they might as well have him wearing a big "S" on his chest, flying faster than a jet plane and
stopping bullets.<br / > <br / >Among other problems...real genius (shelving for the moment the problem of what it
really is, and whether it deserves such mindless homage) doesn’t simply appear /ex nihilo/. It isn’t ever so multi-faceted.
And it is very virtually [rarely] appreciates [appreciated] by contemporaries.<br /><br />Better to have made Will a
basketball prodigy. Except that Damon’s too short.
Answer: False
Sentence: it proves quite unconvincing [compelling] as an intense , brooding character study .
Answer: True
Sentence: an sensible [unwise] amalgam of broadcast news and vibes . an sensible amalgam of broadcast news and vibes .
Answer: False
Sentence: if you dig on david mamet ’s mind tricks ... rent this movie and iike [enjoy] !
Answer: True

Table 6: Examples of adversarial examples, which are difficult to understand or not label-preserving, found for
BoolQ/IMDB/SST-2 with the attack space from (Jin et al., 2020). In bold are the substituting words and in
brackets the original word.


