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Abstract

Extractive text summarization aims at extract-
ing the most representative sentences from a
given document as its summary. To extract a
good summary from a long text document, sen-
tence embedding plays an important role. Re-
cent studies have leveraged graph neural net-
works to capture the inter-sentential relation-
ship (e.g., the discourse graph) to learn con-
textual sentence embedding. However, those
approaches neither consider multiple types of
inter-sentential relationships (e.g., semantic
similarity & natural connection), nor model
intra-sentential relationships (e.g, semantic &
syntactic relationship among words). To ad-
dress these problems, we propose a novel Mul-
tiplex Graph Convolutional Network (Multi-
GCN) to jointly model different types of rela-
tionships among sentences and words. Based
on Multi-GCN, we propose a Multiplex Graph
Summarization (Multi-GraS) model for extrac-
tive text summarization. Finally, we evaluate
the proposed models on the CNN/DailyMail
benchmark dataset to demonstrate the effec-
tiveness of our method.

1 Introduction

Numerous documents from a variety of sources
are uploaded to the Internet or database everyday,
such as news articles (Hermann et al., 2015), sci-
entific papers (Qazvinian and Radev, 2008) and
electronic health records (Jing et al., 2019). How
to effectively digest the overwhelming informa-
tion has always been a fundamental question in
natural language processing (Nenkova and McKe-
own, 2011). This question has sparked the research
interests in the task of extractive text summariza-
tion, which aims to generate a short summary of
a document by extracting the most representative
sentences from it.

Most of the recent methods (Cheng and Lap-
ata, 2016; Narayan et al., 2018; Luo et al., 2019;
Wang et al., 2020a; Mendes et al., 2019; Zhou et al.,

2018) formulate the task of extractive text summa-
rization as a sequence labeling task, where the la-
bels indicate whether a sentence should be included
in the summary. To extract sentence features, ex-
isting approaches generally use Recurrent Neural
Networks (RNN) (Yasunaga et al., 2017; Nallapati
et al., 2017; Zhou et al., 2018; Mendes et al., 2019;
Luo et al., 2019; Cheng and Lapata, 2016), Convo-
lutional Neural Networks (CNN) (Cheng and La-
pata, 2016; Luo et al., 2019; Narayan et al., 2018)
or Transformers (Zhong et al., 2019; Liu and Lap-
ata, 2019a). Endeavors have been made to develop
models to capture various sentence-level relations.
Early studies, such as LexRank (Radev, 2004) and
TextRank (Mihalcea and Tarau, 2004), built similar-
ity graphs among sentences and leverage PageRank
(Page et al., 1999) to score them. Later, graph neu-
ral networks e.g., Graph Convolutional Network
(GCN) (Kipf and Welling, 2016) have been adopted
on various inter-sentential graphs, such as the ap-
proximate discourse graph (Yasunaga et al., 2017),
the discourse graph (Xu et al., 2020) and the bi-
partite graph between sentences and words (Wang
et al., 2020a; Jia et al., 2020).

Albeit the effectiveness of the existing methods,
there are still two under-explored problems. Firstly,
the constructed graphs of the existing studies only
involve one type of edges, while sentences are of-
ten associated with each other via multiple types
of relationships (referred to as the multiplex graph
in the literature (De Domenico et al., 2013; Jing
et al., 2021a)). Two sentences with some common
keywords are considered to be naturally connected
(we refer this type of graph as the natural connec-
tion graph). For example, in Figure 1, the first
and the last sentence exhibit a natural connection
(green) via the shared keyword “City”. Although
the two sentences are far away from each other,
they can be jointly considered as part of the sum-
mary since the entire document is about the key-
word “City”. However, such a relation can barely

133

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 133—139
November 7-11, 2021. (©2021 Association for Computational Linguistics



be captured by traditional encoders such as RNN
and CNN. Two sentences sharing similar meanings
are also considered to be connected (we refer this
type of graph as the semantic graph). In Figure
1, the second and the third sentence are semanti-
cally similar since they express a similar meaning
(yellow). The semantic similarity graph maps the
semantically similar sentences into the same cluster
and thus helps the model to select sentences from
different clusters, which could improve the cover-
age of the summary. Different relationships pro-
vide relational information from different aspects,
and jointly modeling different types of edges will
improve model’s performance (Wang et al., 2019;
Park et al., 2020; Jing et al., 2021b; Yan et al., 2021;
Jing et al., 2021c). Secondly, the aforementioned
methods fall short in taking advantage of the valu-
able relational information among words. Both of
the syntactic relationship (Tai et al., 2015; He et al.,
2017) and the semantic relationship among words
(Kenter and De Rijke, 2015; Wang et al., 2020b;
Varelas et al., 2005; Wang et al., 2021; Radev et al.,
2004) have been proven to be useful for the down-
stream tasks, such as text classification (Kenter and
De Rijke, 2015; Jing et al., 2018), information re-
trieval (Varelas et al., 2005) and text summarization
(Radev et al., 2004).

We summarize our contributions as follows:

* To exploit multiple types of relationships
among sentences and words, we propose a
novel Multiplex Graph Convolutional Net-
work (Multi-GCN).

* Based on Multi-GCN, we propose a Multiplex
Graph based Summarization (Multi-GraS)
framework for extractive text summarization.

* We evaluate our approach and competing
methods on the CNN/DailyMail benchmark
dataset and the results demonstrate our mod-
els’ effectiveness and superiority.

2 Methodology

We first present Multi-GCN to jointly model dif-
ferent relations, and then present the Multi-GraS
approach for extractive text summarization.

2.1 Multiplex Graph Convolutional Network

Figure 2c illustrates Multi-GCN over a multiplex
graph with initial node embedding X and a set
of relations R. Firstly, Multi-GCN learns node
embeddings H, of different relations r € R sepa-
rately, and then combines them to produce the final

2.[City had won their last five games against West Ham...

3. And after a recent run of form that has seen the Barclays premier league
champions lose six of their last eight games, hammers defender Reid says
he and his team-mates no longer dread facing Manuel Pellegrini’s side.

4. Winston Reid says West Ham no longer suffer from a fear of facing
Manchester city after beating them at last .

21. Sergio Aguero will be City's principal threat and Reid says he has the
experience to cope with his pace .

Figure 1: An example document: There are two differ-
ent relationships among sentences: the semantic simi-
larity (yellow) and the natural connection (green). Sen-
tences 2, 3, 21 are the oracle sentences.

embedding H. Secondly, Multi-GCN employs two
types of skip connections, the inner and the outer
skip-connections, to mitigate the over-smoothing
(Li et al., 2018) and the vanishing gradient prob-
lems of the original GCN (Kipf and Welling, 2016).

More specifically, we propose a Skip-GCN with
an inner skip connection to extract the embeddings
H, for each relation. The updating functions for
the [-th layer of the Skip-GCN are defined as:

HY = GENO(A,, HED)y 4+ HEED (1)
(

H" = ReLUEHVWO + b®) 2)

T

where A, is the adjacency matrix for the relation
r; W,(«l) and b&” denote the weight and bias. Note
that H\”) = X is the initial embedding, and H, is
the output after all Skip-GCN layers.

Next, we combine the embedding of different
relations {H, },cr by the following equations:

H = tanh(cat({H, },cr)W + b) 3)

where cat denotes the concatenation operation and
W and b denote the weight and bias of the project
block in Figure 2c.

Finally, we use an outer skip connection to di-
rectly connect X with H:

H=-H+X 4)

2.2 The Multi-GraS model

The overview of the proposed Multi-GraS is illus-
trated in Figure 2a. Multi-GraS is comprised of
three major components: the word block, the sen-
tence block, and the sentence selector. The word
block and the sentence block share a similar “Ini-
tialization — Multi-GCN — Readout” structure to
extract the sentence and document embeddings.
The sentence selector picks the most representative
sentences as the summary based on the extracted
embeddings.
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Figure 2: Overview of the proposed Multi-GraS, the word block and Multi-GCN.

2.2.1 The Word Block

The architecture of a word block is illustrated in
Figure 2b. Given a sentence s,, with N words
{w,}N_,, the word block takes the pre-trained
word embeddings {e,,, }_, as inputs, and pro-
duces the sentence embedding e, . Specifically,
the Initialization module produces contextualized
word embeddings {x,,, }_; via Bi-LSTM. The
Multi-GCN module jointly captures multiple rela-
tions for {x,,, }_; and produces {h,, }"_,. The
Readout module produces the sentence embedding
e, based on max pooling over {h,, })\_,

In this paper, we jointly consider the syntac-
tic and semantic relation among words. For the
syntactic relation, we use a dependency parser
to construct a syntactic graph Ag,,: if a word
wy, and another word w,, has a dependence link
between them, then A,y,[n,n'] = 1, otherwise
A ynn,n'] = 0. For the semantic relation, we
use the absolute value of dot product between
the embeddings of words to construct the graph:
Agem,[n,n'] =[x x| Note that we use the
absolute value since GCN (Kipf and Welling, 2016)
requires the values in the adjacency matrix to be
non-negative.

2.2.2 The Sentence Block

Given a document with M sentences {sn, }M_,,
the sentence block takes the sentence embeddings
{es,, }M_| as inputs, and generates a document
embedding d through a Bi-LSTM, a Multi-GCN
and a pooling module. Essentially, the architecture
of the sentence block resembles the word block,
thus we only elaborate the construction of graphs
for sentences.

In this paper, we consider the natural connection
and the semantic relation between sentences. The
semantic similarity between s, and s/, is the ab-

solute value of dot product between x;,, and x;_,,
and thus the semantic similarity graph A, can
be constructed by Aerm, [m,m'] = [xL - x, |.
For the natural connection, if two sentences share
a common keyword, then we consider they are nat-
urally connected. Such a relation helps to cover
more sections of a document by connecting far-
away sentences (not necessarily semantic similar)
via their shared keywords, as shown in Figure 1.

= > thidf,,, ) - tidf(, ), (5)
wew

Amt m m

where tfidf ;. is the tfidf score of the keyword
w within s,,; WV is the set of keywords.

2.2.3 Sentence Selector

The sentence selector first scores the sentences
{5 }M_, and then selects the top-K sentences
as the summary. The model design for scoring
the sentences follows the human reading compre-
hension strategy (Pressley and Afflerbach, 1995;
Luo et al., 2019), which contains reading and post-
reading processes. The reading process extracts
rough meaning of s,,:

0, = tanh(WReadmghsm + bReading)' (6)

The post-reading process further captures the auxil-
iary contextual information — document embedding
ey and the initial sentence embedding e, :

Oy = tanh(vaost [Oma €q, esm} + bPost)- (7)
The final score for s,, is given by:
Pm = U(Wpom + bp)7 (8)

where () denotes the sigmoid activation.

When ranking the sentences {s,, }_,, we fol-
low (Paulus et al., 2018; Liu and Lapata, 2019b;
Wang et al., 2020a) and use the tri-gram blocking
technique to reduce the redundancy.
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3 Experiments

3.1 Experimental Setup

3.1.1 Datasets

We evaluate our propose model on the benchmark
CNN/DailMail (Hermann et al., 2015) dataset. This
dataset is a combination of the CNN and Daily-
Mail datasets, which contains 287,227, 13, 368
and 11,490 articles for training, validating and test-
ing respectively.

For the DailyMail dataset (Hermann et al., 2015),
the news articles were collected from the DailyMail
website. Each article contains a story and high-
lights, and the story and highlights are treated as
the document and the summary respectively. The
dataset contains 219,506 articles, which is split
into 196,961/12, 148 /10, 397 for training, validat-
ing and testing.

For the CNN dataset (Hermann et al., 2015), the
news articles were collected from the CNN website.
Each article is comprised of a story and highlights,
where the story is treated as the document and high-
lights are considered as the summary. The CNN
dataset contains 92, 579 articles in total, 90, 266 are
used for training, 1,220 for validation and 1,093
for testing.

3.1.2 Comparison Methods

For the task of extractive text summarization, we
compare the proposed Multi-GraS method with the
following methods in three categories: (1) deep
learning based methods: NN-SE (Cheng and Lap-
ata, 2016), LATENT (Zhang et al., 2018), NeuSUM
(Zhou et al., 2018), JECS (Xu and Durrett, 2019)
and EXCONSUMMExractuve (Mendes et al., 2019);
(2) reinforcement-learning based methods: RE-
FRESH (Narayan et al., 2018), BanditSum (Dong
et al., 2018), LSTM+PN+RL (Zhong et al., 2019)
and HER (Luo et al., 2019); (3) graph based meth-
ods: TextRank (Mihalcea and Tarau, 2004) and
HSG (Wang et al., 2020a).

3.2 Implementation Details

The vocabulary size is fixed as 50,000 and the
pre-trained Glove embeddings (Pennington et al.,
2014) are used for the input word embeddings. For
both of the word block and the sentence block,
the Initialization modules employ two-layer Bi-
LSTMs. The Multi-GCN modules use two-layer
Skip-GCNs. We fix all the hidden dimensions
as 300. We use the Stanford CoreNLP(Manning
et al., 2014) to extract syntactic graphs. For the

Methods R-1 R-2 R-L
NN-SE 3550 1470 3220
LATENT 41.05 18.77  37.54
NeuSUM 41.59 19.01 37.98
JECS 41.70 1850  37.90
EXCONSUMMEyacive | 41.70  18.60  37.80
REFRESH 40.00 1820  36.60
BanditSum 4150 1870  37.60
LSTM+PN+RL 41.85 1893  38.13
HER 42.30 18.90  37.60
TextRank 40.20 1756 36.44
HSG 42.95 1976 39.23
Multi-GraS 43.16  20.14  39.49

Table 1: ROUGE scores of different methods.

natural connection graphs, we filter out the stop
words, punctuation, and the words whose docu-
ment frequency is less than 100. During train-
ing, we use the Adam optimizer (Kingma and Ba,
2014), and the learning rates for CNN, DailyMail,
and CNN/DailyMail datasets are set to be 0.0001,
0.0005, and 0.0005, respectively. When generating
summaries, we select the top-2 and top-3 sentences
for the CNN and DailyMail datasets, respectively.

3.2.1 Oracle Label Extraction

The summaries of the documents are the highlights
of the news written by human experts, hence the
sentence-level labels are not provided. Given a
document and its summary, we follow (Wang et al.,
2020a; Liu and Lapata, 2019b; Mendes et al., 2019;
Narayan et al., 2018) to identify the set of sentences
(or oracles) of the document which has the highest
ROUGE scores with respect to its summary.

3.2.2 Evaluation Metrics

We evaluate the quality of the summarization by
the ROUGE scores (Lin, 2004), including R-1, R-2
and R-L for calculating the unigram, bigram and
the longest common sub-sequence overlapping be-
tween the generated summarization and the ground-
truth summary. In addition to automatic evaluation
via ROUGE, we follow (Luo et al., 2019; Wu and
Hu, 2018) and conduct human evaluation to score
the quality of the generated summaries.

3.3 Overall Performance

The ROUGE (Lin, 2004) scores of all compari-
son methods are presented in Table 1. Within
baseline methods, HSG achieves the highest per-
formance, which indicates that considering graph
structures could improve performance. We also ob-
serve that Multi-GraS outperforms all of the com-
parison methods and it achieves 0.21/0.38/0.26
performance increase on R-1/R-2/R-L scores.
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Methods R-1 R-2 R-L
Multi-GraS 43.16 20.14 3949
- trigram blocking 42.15 19.62  38.55
- contextual information 43.12 20.04  39.18
- outer skip 43.08 20.08 39.44
- inner skip 4295  20.05 39.33
- semantic relation 43.03 20.10  39.40
- natural connection relation 42.74 19.80  39.14
- weights for natural connection 42.54 19.67  38.92
Multi-GraSyord 42.67 19.80  39.06
- outer skip 42.44 19.52  38.81
- inner skip 42.64 19.76  39.04
- semantic relation 42.63 19.68 39.02
- syntactic relation 4242 19.57  38.82
LSTM 4235 19.51 38.73
LSTM (w/o tri-gram blocking) 41.55 19.14  37.98
Transformer (w/o tri-gram blocking) 41.33 18.83 37.65

Table 2: Ablation Study.

3.4 Ablation Study

Firstly, as shown in Table 2, tri-gram blocking and
contextual information within the sentence selector
help improve model’s performance.

Then we study the influence of the Multi-GCN
within the sentence block and the word block sep-
arately. To do so, we remove the Multi-GCN
within the sentence block (Multi-GraSq) and fur-
ther remove the Multi-GCN within the word block
(LSTM). By comparing LSTM, Multi-GraSy,ord
and Multi-GraS, it can be observed that Multi-GCN
in both sentence and word blocks significantly im-
prove the performance. Next, we study the influ-
ence of the components within Multi-GCN. Table
2 indicates that the inner and outer skip connec-
tions play an important role in Multi-GCN. Besides,
jointly considering different relations is always bet-
ter than considering one relation alone.

Finally, for the Initialization module in the word
and sentence blocks, LSTM performs better than
Transformer (Vaswani et al., 2017).

3.5 Human Evaluation

We randomly select 50 documents along with the
summaries obtained by HSG, Multi-GraS, Multi-
GraSy,ord, LSTM as well as the oracle summaries.
Three volunteers (proficiency in English) rank the
summaries from 1 to 5 in terms of the overall qual-
ity, coverage and non-redundancy. The human eval-
uation results are presented in Table 3: oracle ranks
the highest, Multi-GraS ranks higher than HSG.

Methods Overall Coverage Non-Redundancy
LST™M 3.07 297 2.77
Multi-GraSyord 2.97 2.93 2.77
HSG 2.87 2.87 2.67
Multi-GraS 2.20 223 2.13
Oracle 1.70 1.57 1.57

Table 3: Human evaluation: the lower the better.

33 r\ 24 =
uh L
% 31 g 40
o« -3
o
29 36
—e—w/o blocking
= blocking
27 32
1 2 3 4 5 1 2 3 a4 5
# selected sentences # selected sentences
(a) CNN (b) DailyMail

Figure 3: Rouge-1 score vs. the number of selected
sentences.

4 Sensitivity Experiments

To check the performance on the number of se-
lected sentences, we conduct a sensitivity experi-
ment for both CNN and DailyMail datasets. The
results in Figure 3 show that the Multi-GraS per-
forms the best when the number of the selected
sentences is 2 for the CNN dataset and 3 for the
DailyMail dataset.

5 Conclusion

In this paper, we propose a novel Multi-GCN to
jointly model multiple relationships among words
and sentences. Based on Multi-GCN, we propose
a novel Multi-GraS model for extractive text sum-
marization. Experimental results on the benchmark
CNN/DailyMail dataset demonstrate the effective-
ness of the proposed methods.
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