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Abstract

Previous work has indicated that pretrained
Masked Language Models (MLMs) are not ef-
fective as universal lexical and sentence en-
coders off-the-shelf, i.e., without further task-
specific fine-tuning on NLI, sentence similar-
ity, or paraphrasing tasks using annotated task
data. In this work, we demonstrate that it is
possible to turn MLMs into effective lexical
and sentence encoders even without any addi-
tional data, relying simply on self-supervision.
We propose an extremely simple, fast, and ef-
fective contrastive learning technique, termed
Mirror-BERT, which converts MLMs (e.g.,
BERT and RoBERTa) into such encoders in
20-30 seconds with no access to additional
external knowledge. Mirror-BERT relies on
identical and slightly modified string pairs as
positive (i.e., synonymous) fine-tuning exam-
ples, and aims to maximise their similarity dur-
ing “identity fine-tuning”. We report huge
gains over off-the-shelf MLMs with Mirror-
BERT both in lexical-level and in sentence-
level tasks, across different domains and differ-
ent languages. Notably, in sentence similarity
(STS) and question-answer entailment (QNLI)
tasks, our self-supervised Mirror-BERT model
even matches the performance of the Sentence-
BERT models from prior work which rely on
annotated task data. Finally, we delve deeper
into the inner workings of MLMs, and sug-
gest some evidence on why this simple Mirror-
BERT fine-tuning approach can yield effective
universal lexical and sentence encoders.

1 Introduction

Transfer learning with pretrained Masked Lan-
guage Models (MLMs) such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) has been
widely successful in NLP, offering unmatched per-
formance in a large number of tasks (Wang et al.,
2019a). Despite the wealth of semantic knowledge
stored in the MLMs (Rogers et al., 2020), they do
not produce high-quality lexical and sentence em-
beddings when used off-the-shelf, without further
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Figure 1: Illustration of the main concepts behind the
proposed self-supervised Mirror-BERT method. The
same text sequence can be observed from two addi-
tional “views”: 1) by performing random span mask-
ing in the input space, and/or 2) by applying dropout
(inside the BERT/RoBERTa MLM) in the feature space,
yielding identity-based (i.e., “mirrored’) positive exam-
ples for fine-tuning. A contrastive learning objective
is then applied to encourage such “mirrored” positive
pairs to obtain more similar representations in the em-
bedding space relatively to negative pairs.

task-specific fine-tuning (Feng et al., 2020; Li et al.,
2020). In fact, previous work has shown that their
performance is sometimes even below static word
embeddings and specialised sentence encoders (Cer
et al., 2018) in lexical and sentence-level seman-
tic similarity tasks (Reimers and Gurevych, 2019;
Vuli¢€ et al., 2020b; Litschko et al., 2021).

In order to address this gap, recent work has
trained dual-encoder networks on labelled exter-
nal resources to convert MLMs into universal lan-
guage encoders. Most notably, Sentence-BERT
(SBERT, Reimers and Gurevych 2019) further
trains BERT and RoBERTa on Natural Language
Inference (NLI, Bowman et al. 2015; Williams et al.
2018) and sentence similarity data (Cer et al., 2017)
to obtain high-quality universal sentence embed-
dings. Recently, SapBERT (Liu et al., 2021) self-
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aligns phrasal representations of the same meaning
using synonyms extracted from the UMLS (Boden-
reider, 2004), a large biomedical knowledge base,
obtaining lexical embeddings in the biomedical
domain that reach state-of-the-art (SotA) perfor-
mance in biomedical entity linking tasks. However,
both SBERT and SapBERT require annotated (i.e.,
human-labelled) data as external knowledge: it is
used to instruct the model to produce similar repre-
sentations for text sequences (e.g., words, phrases,
sentences) of similar/identical meanings.

In this paper, we fully dispose of any external
supervision, demonstrating that the transformation
of MLMs into universal language encoders can
be achieved without task-labelled data. We pro-
pose a fine-tuning framework termed Mirror-BERT,
which simply relies on duplicating and slightly aug-
menting the existing text input (or their representa-
tions) to achieve the transformation, and show that
it is possible to learn universal lexical and sentence
encoders with such “mirrored” input data through
self-supervision (see Fig. 1). The proposed Mirror-
BERT framework is also extremely efficient: the
whole MLM transformation can be completed in
less than one minute on two 2080Ti GPUs.

Our findings further confirm a general hypothe-
sis from prior work (Liu et al., 2021; Ben-Zaken
et al., 2020; Glavas and Vuli¢, 2021) that fine-
tuning exposes the wealth of (semantic) knowledge
stored in the MLMs. In this case in particular, we
demonstrate that the Mirror-BERT procedure can
rewire the MLMs to serve as universal language en-
coders even without any external supervision. We
further show that data augmentation in both input
space and feature space are key to the success of
Mirror-BERT, and they provide a synergistic effect.

Contributions. 1) We propose a completely self-
supervised approach that can quickly transform
pretrained MLMSs into capable universal lexical
and sentence encoders, greatly outperforming off-
the-shelf MLMs in similarity tasks across different
languages and domains. 2) We investigate the ra-
tionales behind why Mirror-BERT works at all,
aiming to understand the impact of data augmen-
tation in the input space as well as in the feature
space. We release our code and models at https:
//github.com/cambridgeltl/mirror—-bert.

2 Mirror-BERT: Methodology

Mirror-BERT consists of three main parts, de-
scribed in what follows. First, we create positive

pairs by duplicating the input text (§2.1). We then
further process the positive pairs by simple data
augmentation operating either on the input text or
on the feature map inside the model (§2.2). Finally,
we apply standard contrastive learning, ‘attracting’
the texts belonging to the same class (i.e., positives)
while pushing away the negatives (§2.3).

2.1 Training Data through Self-Duplication

The key to success of dual-network representa-
tion learning (Henderson et al., 2019; Reimers and
Gurevych, 2019; Humeau et al., 2020; Liu et al.,
2021, inter alia) is the construction of positive and
negative pairs. While negative pairs can be eas-
ily obtained from randomly sampled texts, posi-
tive pairs usually need to be manually annotated.
In practice, they are extracted from labelled task
data (e.g., NLI) or knowledge bases that store rela-
tions such as synonymy or hypernymy (e.g., PPDB,
Pavlick et al. 2015; BabelNet, Ehrmann et al. 2014;
WordNet, Fellbaum 1998; UMLS).

Mirror-BERT, however, does not rely on any ex-
ternal data to construct the positive examples. In
a nutshell, given a set of non-duplicated strings
X, we assign individual labels (y;) to each string
and build a dataset D = {(z;,vi)|x; € X,y; €
{1,...,]|X|}}. We then create self-duplicated
training data D’ simply by repeating every ele-
ment in D. In other words, let X = {x1,x9,...}.
We then have D = {(z1,v1), (z2,y2),...} and
D' = {(z1,51), (@1, %), (¥2,52), (T2,Y2), - - -}
where 1 = Z1,y1 = Yy, 22 = T2,Y2 = Yg,.... In
§2.2, we introduce data augmentation techniques
(in both input space and feature space) applied on
D'. Each positive pair (x;, T;) yields two different
points/vectors in the encoder’s representation space
(see again Fig. 1), and the distance between these
points should be minimised.

2.2 Data Augmentation

We hypothesise that applying certain ‘corruption’
techniques to (i) parts of input text sequences or
(ii) to their representations, or even (iii) doing both
in combination, does not change their (captured)
meaning. We present two ‘corruption’ techniques
as illustrated in Fig. 1. First, we can directly mask
parts of the input text. Second, we can erase (i.e.,
dropout) parts of their feature maps. Both tech-
niques are rather simple and intuitive: (i) even
when masking parts of an input sentence, humans
can usually reconstruct its semantics; (ii) dropping
a small subset of neurons or representation dimen-
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x1: Economist Paul Krugman mainly works on trade models.

x1: Econ [MASK] Paul Krugman mainly works on trade models.

Figure 2: An example of input data augmentation via
random span masking.

sions, the representations of a neural network will
not drift too much.

Input Augmentation: Random Span Masking.
The idea is inspired by random cropping in visual
representation learning (Hendrycks et al., 2020). In
particular, starting from the mirrored pairs (x;, y;)
and (7;,y;), we randomly replace a consecutive
string of length k& with [MASK] in either x; or ;.
The example (Fig. 2) illustrates the random span
masking procedure with & = 5.

Feature Augmentation: Dropout. The random
span masking technique, operating directly on text
input, can be applied only with sentence/phrase-
level input; word-level tasks involve only short
strings, usually represented as a single token under
the sentence-piece tokeniser. However, data aug-
mentation in the feature space based on dropout, as
introduced below, can be applied to any input text.

Dropout (Srivastava et al., 2014) randomly drops
neurons from a neural net during training with a
probability p. In practice, it results in the erasure of
each element with a probability of p. It has mostly
been interpreted as implicitly bagging a large num-
ber of neural networks which share parameters at
test time (Bouthillier et al., 2015). Here, we take
advantage of the dropout layers in BERT/RoBERTa
to create augmented views of the input text. Given
a pair of identical strings x; and Z;, their repre-
sentations in the embedding space slightly differ
due to the existence of multiple dropout layers in
the BERT/RoBERTa architecture (Fig. 6). The two
data points in the embedding space can be seen as
two augmented views of the same text sequence,
which can be leveraged for fine-tuning.'

It is possible to combine data augmentation via
random span masking and featuure augmentation
via dropout; this variant is also evaluated later.

2.3 Contrastive Learning

Let f(-) denote the encoder model. The encoder
is then fine-tuned on the data constructed in §2.2.

!The dropout augmentations are naturally a part of the
BERT/RoBERTa network. That is, no further actions need to
be taken to implement them. Note that random span masking
is applied on only one side of the positive pair while dropout
is applied on all data points.

B W

dropout( v; ) !=dropout( V; )

Figure 3: As the same vector goes through the same
dropout layer separately, the outcomes are independent.
Consequently, two fully identical strings fed to the sin-
gle BERT/RoBERTa model yield different representa-
tions in the MLM embedding space.

Given a batch of data D'}, we leverage the standard
InfoNCE loss (Oord et al., 2018) to cluster/attract
the positive pairs together and push away the nega-
tive pairs in the embedding space:

|Dy |

Ly = — Z log exp(cos(f(z:), f(T:))/T)

S~ exp(cos(f(xe), f(23))/7)

szNi

(O]

7 denotes a temperature parameter; N; denotes all
negatives of x;, which includes all z;, T; where ¢ #
Jj in the current data batch (i.e., [N;| = |Dy| — 2).
Intuitively, the numerator is the similarity of the
self-duplicated pair (the positive example) and the
denominator is the sum of the similarities between
x; and all other strings besides z; (the negatives).2

3 Experimental Setup

Evaluation Tasks: Lexical. We evaluate on
domain-general and domain-specific tasks: word
similarity and biomedical entity linking (BEL). For
the former, we rely on the Multi-SimLex evaluation
set (Vuli¢ et al., 2020a): it contains human-elicited
word similarity scores for multiple languages. For
the latter, we use NCBI-disease (NCBI, Dogan
et al. 2014), BC5CDR-disease, BC5CDR-chemical
(BC5-d, BC5-c, Li et al. 2016), AskAPatient
(Limsopatham and Collier, 2016) and COMETA
(stratified-general split, Basaldella et al. 2020) as
our evaluation datasets. The first three datasets are
in the scientific domain (i.e., the data have been ex-
tracted from scientific papers), while the latter two

“We also experimented with another state-of-the-art con-
trastive learning scheme proposed by Liu et al. (2021). There,
hard triplet mining combined with multi-similarity loss (MS
loss) is used as the learning objective. InfoNCE and triplet
mining + MS loss work mostly on par, with slight gains of
one variant in some tasks, and vice versa. For simplicity and
brevity, we report the results only with InfoNCE.

1444



are in the social media domain (i.e., extracted from
online forums discussing health-related topics). We
report Spearman’s rank correlation coefficients (p)
for word similarity; accuracy @1 /@5 is the stan-
dard evaluation measure in the BEL task.

Evaluation Tasks: Sentence-Level. Evaluation
on the intrinsic sentence textual similarity (STS)
task is conducted on the standard SemEval 2012-
2016 datasets (Agirre et al., 2012, 2013, 2014,
2015, 2016), STS Benchmark (STS-b, Cer et al.
2017), SICK-Relatedness (SICK-R, Marelli et al.
2014) for English; STS SemEval-17 data is used for
Spanish and Arabic (Cer et al., 2017), and we also
evaluate on Russian STS.? We report Spearman’s p
rank correlation. Evaluation in the question-answer
entailment task is conducted on QNLI (Rajpurkar
et al., 2016; Wang et al., 2019b). It contains 110k
English QA pairs with binary entailment labels.*

Evaluation Tasks: Cross-Lingual. We also as-
sess the benefits of Mirror-BERT on cross-lingual
representation learning, evaluating on cross-lingual
word similarity (CLWS, Multi-SimLex is used) and
bilingual lexicon induction (BLI). We rely on the
standard mapping-based BLI setup (Artetxe et al.,
2018), and training and test sets from Glavas et al.
(2019), reporting accuracy @1 scores (with CSLS
as the word retrieval method, Lample et al. 2018).

Mirror-BERT: Training Resources. For fine-
tuning (general-domain) lexical representations,
we use the top 10k most frequent words in each
language. For biomedical name representations,
we randomly sample 10k names from the UMLS.
In sentence-level tasks, for STS, we sample 10k
sentences (without labels) from the training set
of the STS Benchmark; for Spanish, Arabic and
Russian, we sample 10k sentences from the Wiki-
Matrix dataset (Schwenk et al., 2021). For QNLI,
we sample 10k sentences from its training set.

Training Setup and Details. The hyperparame-
ters of word-level models are tuned on SimLex-999
(Hill et al., 2015); biomedical models are tuned
on COMETA (zero-shot-general split). Sentence-
level models are tuned on the dev set of STS-b. 7
in Eq. (1) is 0.04 (biomedical and sentence-level
models); 0.2 (word-level). Dropout rate p is 0.1.
Sentence-level models use a random span masking

3github.com/deepmipt /deepPavlovEval

*We follow the setup of Li et al. (2020) and adapt QNLI
to an unsupervised task by computing the AUC scores (on
the development set, ~25.4k pairs) using 0/1 labels and cosine
similarity scores of QA embeddings.

lang.—+ EN FR ET AR ZH RU ES PL avg.
fastText .528 .560 .447 .409 428 435 488 .396 .46l

BERT 267 .020 .106 220 .398 .202 .177 217 .201
+ Mirror 556 .621 308 .538 .639 .365 .296 .444 471

mBERT .105 .130 .094 .101 .261 .109 .095 .087 .123
+Mirror 358 341 134 .097 501 210 332 .141 .264

Table 1: Word similarity evaluation on Multi-SimLex.
“BERT” denotes monolingual BERT models in each
language (see the Appendix). “mBERT” denotes mul-
tilingual BERT. Bold and underline denote highest and
second-highest scores per column, respectively.

scientific language social media language

dataset— NCBI BC5-d BC5-c  AskAPatient COMETA

model]

@l @5 @1 @5 @1 @5 @1 @5 @1 @5
SapBERT 920 956 .935 .960 .965 .982 .705 .889 .659 .779

BERT 676 770 815 .891 .798 912 382 433 404 477
+ Mirror 872 921 921 949 957 971 555 .695 547 .647
PubMedBERT .778 .869 .890 .938 .930 .946 425 496 468 .532
+ Mirror 909 .948 930 .962 .958 .979 .590 .750 .603 .713

Table 2: Biomedical entity linking (BEL) evaluation.

rate of k = 5, while k = 2 for biomedical phrase-
level models; we do not employ span masking for
word-level models (an analysis is in the Appendix).
All lexical models are trained for 2 epochs, max to-
ken length is 25. Sentence-level models are trained
for 1 epoch with a max sequence length of 50.

All models use AdamW (Loshchilov and Hut-
ter, 2019) as the optimiser, with a learning rate of
2e-5, batch size of 200 (400 after duplication).
In all tasks, for all ‘Mirror-tuned’ models, unless
noted otherwise, we create final representations
using [CLS], instead of another common option:
mean-pooling (mp) over all token representations
in the last layer (Reimers and Gurevych, 2019).5 ¢

4 Results and Discussion

4.1 Lexical-Level Tasks

Word Similarity (Tab. 1). SotA static word em-
beddings such as fastText (Mikolov et al., 2018)
typically outperform off-the-shelf MLMs on word
similarity datasets (Vuli¢ et al., 2020a). How-
ever, our results demonstrate that the Mirror-BERT
procedure indeed converts the MLLMs into much
stronger word encoders. The Multi-SimLex results
on 8 languages from Tab. 1 suggest that the fine-

SFor ‘non-Mirrored’ original MLMs, the results with mp
are reported instead; they produce much better results than
using [CLS]; see the Appendix.

8 All reported results are averages of three runs. In general,
the training is very stable, with negligible fluctuations.
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model], dataset— STS12 STS13 STS14 STS15 STS16 STS-b  SICK-R  avg.
SBERT* 719 174 742 799 147 174 721 154
BERT-CLS 215 321 213 379 442 203 427 314
BERT-mp 314 .536 433 .582 .596 464 528 493
+ Mirror .670 .801 713 812 743 764 .699 743
+ Mirror (drophead) .691 811 730 .819 157 780 .691 154
RoBERTa-CLS .090 327 210 338 .388 317 .355 289
RoBERTa-mp 134 126 124 203 224 129 .320 180
+ Mirror .646 .818 734 .802 782 187 .703 753
+ Mirror (drophead) .666 827 .740 824 797 796 .697 764

Table 3: English STS. *We were able to reproduce the scores reported in the original Sentence-BERT (SBERT,
Reimers and Gurevych 2019) paper. However, we found mean-pooling over all tokens (including padded ones)
yield better performance (.754 vs .749). We thus report the stronger baseline.

model|, lang.—  ES AR RU avg.
BERT .599 455 552 533
+ Mirror 709 669 673 .684
mBERT .610 447 .616 .558
+ Mirror 755 .594 692 .680

Table 4: STS evaluation in other languages.

tuned +Mirror variant substantially improves the
performance of base MLMs (both monolingual and
multilingual ones), even beating fastText in 5 out
of the 8 evaluation languages.’

We also observe that it is essential to have a
strong base MLM. While Mirror-BERT does offer
substantial performance gains with all base MLMs,
the improvement is more pronounced when the
base model is strong (e.g., EN, ZH).

Biomedical Entity Linking (Tab. 2). The goal of
BEL is to map a biomedical name mention to a
controlled vocabulary (usually a node in a knowl-
edge graph). Considered a downstream application
in BioNLP, the BEL task also helps evaluate and
compare the quality of biomedical name representa-
tions: it requires pairwise comparisons between the
biomedical mention and all surface strings stored
in the biomedical knowledge graph.

The results from Tab. 2 suggest that our +Mirror
transformation achieves very strong gains on top
of the base MLMs, both BERT and PubMedBERT
(Gu et al., 2020). We note that PubMedBERT is a
current SotA MLM in the biomedical domain, and
performs significantly better than BERT, both be-
fore and after +Mirror fine-tuning. This highlights
the necessity of starting from a domain-specific
model when possible. On scientific datasets, the
self-supervised PubMedBERT+Mirror model is

"Language codes: see the Appendix for a full listing.
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Figure 4: Unsupervised QNLI: ROC curves and AOC
scores.

very close to SapBERT, which fine-tunes PubMed-
BERT with more than 10 million synonyms ex-
tracted from the external UMLS knowledge base.
However, in the social media domain, PubMed-
BERT+Mirror still cannot match the performance
of knowledge-guided SapBERT. This in fact re-
flects the nature and complexity of the task do-
main. For the three datasets in the scientific domain
(NCBI, BC5-d, BC5-¢), strings with similar surface
forms tend to be associated with the same concept.
On the other hand, in the social media domain, se-
mantics of very different surface strings might be
the same.® This also suggests that Mirror-BERT
adapts PubMedBERT to a very good surface-form
encoder for biomedical names, but dealing with
more difficult synonymy relations (e.g. as found in
the social media) does need external knowledge.’

4.2 Sentence-Level Tasks

English STS (Tab. 3). Regardless of the base
model (BERT/RoBERTa), applying +Mirror fine-

8For instance, HCQ and Plaquenil refer to exactly the same
concept on online health forums: Hydroxychloroquine.

“Motivated by these insights, in future work we will also
investigate a combined approach that blends self-supervision
and external knowledge (Vuli¢ et al., 2021), which could also
be automatically mined (Su, 2020; Thakur et al., 2021).
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lang.— EN-FR ZH-HE avg.

mBERT .163 118 071 142 .104 .010 101
+ Mirror .454 385 133 465 163 179 297

EN-ZH EN-HE FR-ZH FR-HE

Table 5: Cross-lingual word similarity results.

lang.— EN-FR

BERT .014 112 154 150 .025 .018 .079
+ Mirror .458 378 336 289 417 345 371

EN-IT EN-RU EN-TR IT-FR RU-FR  avg.

Table 6: BLI results.

tuning greatly boosts performance across all En-
glish STS datasets. Surprisingly, on average,
RoBERTa+Mirror, fine-tuned with only 10k sen-
tences without any external supervision, is on-par
with the SBERT model, which is trained on the
merged SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018) datasets, containing 570k
and 430k sentence pairs, respectively.

Spanish, Arabic and Russian STS (Tab. 4). The
results in the STS tasks on other languages, which
all have different scripts, again indicate very large
gains, using both monolingual language-specific
BERTSs and mBERT as base MLMs. This confirms
that Mirror-BERT is a language-agnostic method.

Question-Answer Entailment (Fig. 4). The re-
sults indicate that our +Mirror fine-tuning con-
sistently improves the underlying MLMs. The
RoBERTa+Mirror variant even shows a slight edge
over the supervised SBERT model (.709 vs. .706).

4.3 Cross-Lingual Tasks

We observe huge gains across all language pairs
in CLWS (Tab. 5) and BLI (Tab. 6) after running
the Mirror-BERT procedure. For language pairs
that involve Hebrew, the improvement is usually
smaller. We suspect that this is due to mBERT
itself containing poor semantic knowledge for He-
brew. This finding aligns with our prior argument
that a strong base MLM is still required to obtain
prominent gains from running Mirror-BERT.

4.4 Further Discussion and Analyses

Running Time. The Mirror-BERT procedure is
extremely time-efficient. While fine-tuning on
NLI (SBERT) or UMLS (SapBERT) data can take
hours, Mirror-BERT with 10k positive pairs com-
pletes the conversion from MLMs to universal lan-
guage encoders within a minute on two NVIDIA
RTX 2080Ti GPUs. On average, 10-20 seconds is
needed for 1 epoch of the Mirror-BERT procedure.

0.6

2
805 task
2
e word similarity
biomedical entity linking

0.4 e sentence similarity

T T T T T
1k 10k 20k 50k 100k
input size

Figure 5: The impact of the number of fine-tuning “mir-
rored” examples (z-axis) on the task performance (y-
axis). The scores across tasks are not directly compara-
ble, and are based on different evaluation metrics (§3).

Input Data Size (Fig. 5). In our main experi-
ments in §4.1-§4.3, we always use 10k examples
for Mirror-BERT tuning. In order to assess the
importance of the fine-tuning data size, we run a
relevant analysis for a subset of base MLMs, and
on a subset of English tasks. In particular, we
evaluate the following: (i) BERT, Multi-SimLex
(EN) (word-level); (ii)) PubMedBERT, COMETA
(biomedical phrase-level); (iii) ROBERTa, STS12
(sentence-level). The results indicate that the per-
formance in all tasks reaches its peak in the region
of 10k-20k examples and then gradually decreases,
with a steeper drop on the the word-level task.'® !

Random Span Masking + Dropout? (Tab. 7).
We conduct our ablation studies on the English
STS tasks. First, we experiment with turn-
ing off dropout, random span masking, or both.
With both techniques turned off, we observe
large performance drops of RoBERTa+Mirror and
BERT+Mirror (see also the Appendix). Span mask-
ing appears to be the more important factor: its
absence causes a larger decrease. However, the
best performance is achieved when both dropout
and random span masking are leveraged, suggest-
ing a synergistic effect when the two augmentation
techniques are used together.

Other Data Augmentation Types? Dropout vs.
Drophead (Tab. 7). Encouraged by the effective-
ness of random span masking and dropout for
Mirror-BERT, a natural question to pose is: can

OWe suspect that this is due to the inclusion of lower-
frequency words into the fine-tuning data: embeddings of
such words typically obtain less reliable embeddings (Pilehvar
et al., 2018).

"For word-level experiments, we used the top 100k words
in English according to Wikipedia statistics. For phrase-level
experiments, we randomly sampled 100k names from UMLS.
For sentence-level experiments we sampled 100k sentences
from SNLI and MultiNLI datasets (as the STS training set has
fewer than 100k sentences).
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model configuration avg. p
RoBERTa + Mirror 153
~ -dropout + drophead =~ .764 T .0I1
~-dropout 732).021
- span mask 717 ] .036
- dropout & span mask .682 ] .071

Table 7: Ablation study: (i) replacing dropout with
drophead; (ii) the synergistic effect of dropout and ran-
dom span masking in the English STS tasks.

controlled
dropout

controlled
dropout

dropout( vV, ) == dropout( V, )

Figure 6: Under controlled dropout, if two strings are
identical, they will have an identical set of dropout
masks throughout the encoding process.

other augmentation types work as well? Recent
work points out that pretrained MLM are heav-
ily overparameterised and most Transformer heads
can be pruned without hurting task performance
(Voita et al., 2019; Kovaleva et al., 2019; Michel
et al., 2019). Zhou et al. (2020) propose a drop-
head method: it randomly prunes attention heads
at MLM training as a regularisation step. We
thus evaluate a variant of Mirror-BERT where the
dropout layers are replaced with such dropheads:'?
this results in even stronger STS performance,
cf. Tab. 7. In short, this hints that the Mirror-BERT
framework might benefit from other data and fea-
ture augmentation techniques in future work.'?

Regularisation or Augmentation? (Tab. 8).
When using dropout, is it possible that we are sim-
ply observing the effect of adding/removing regu-
larisation instead of the augmentation benefit? To
answer this question, we design a simple probe
that attempts to disentangle the effect of regular-

Drophead rates for BERT and RoBERTa are set to the
default values of 0.2 and 0.05, respectively.

3Besides the drophead-based feature space augmentation,
in our side experiments, we also tested input space augmenta-
tion techniques such as whole-word masking, random token
masking, and word reordering; they typically yield perfor-
mance similar or worse to random span masking. We also
point to very recent work that explores text augmentation in
a different context (Wu et al., 2020; Meng et al., 2021). We
leave a thorough search of optimal augmentation techniques
for future work.

model configuration (MLM=RoBERTa) pon STS12

random span masking X; dropout X .562

.648 T .086
random span masking X; controlled dropout v .452 | .110

Table 8: Probing the impact of dropout.

isation versus augmentation; we turn off random
span masking but leave the dropout on (so that the
regularisation effect remains). However, instead of
assigning independent dropouts to every individual
string (rendering each string slightly different), we
control the dropouts applied to a positive pair to
be identical. As a result, it holds f(x;) = f(T;),
when x; = 7;, Vi € {1,--- ,|D|}. We denote this
as “controlled dropout”. In Tab. 8, we observe that,
during the +Mirror fine-tuning, controlled dropout
largely underperforms standard dropout and is even
worse than not using dropout at all. As the only
difference between controlled and standard dropout
is the augmented features for positive pairs in the
latter case, this suggests that the gain from +Mir-
ror indeed stems from the data augmentation effect
rather than from regularisation.

Mirror-BERT Improves Isotropy? (Fig. 7). We
argue that the gains with Mirror-BERT largely stem
from its reshaping of the embedding space geome-
try. Isotropy (i.e., uniformity in all orientations)
of the embedding space has been a favourable
property for semantic similarity tasks (Arora et al.,
2016; Mu and Viswanath, 2018). However, Etha-
yarajh (2019) shows that (off-the-shelf) MLMs’
representations are anisotropic: they reside in a nar-
row cone in the vector space and the average cosine
similarity of (random) data points is extremely high.
Sentence embeddings induced from MLMs with-
out fine-tuning thus suffer from spatial anistropy
(Li et al., 2020; Su et al., 2021). Is Mirror-BERT
then improving isotropy of the embedding space?'*
To investigate this claim, we inspect (1) the distri-
butions of cosine similarities and (2) an isotropy
score, as defined by Mu and Viswanath (2018).
First, we randomly sample 1,000 sentence pairs
from the Quora Question Pairs (QQP) dataset. In

14Some preliminary evidence from Tab. 7 already leads in
this direction: we observe large gains over the base MLMs
even without any positive examples, that is, when both span
masking and dropout are not used (i.e., it always holds z; = =;
and f(x;) = f(Z;)). During training, this leads to a constant
numerator in Eq. (1). In this case, learning collapses to the
scenario where all gradients solely come from the negatives:
the model is simply pushing all data points away from each
other, resulting in a more isotropic space.
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Figure 7: Cosine similarity distribution over 1k sen-
tence pairs sampled from QQP. Blue and mean
positive and negative similarities, respectively.

Fig. 7, we plot the distributions of pairwise co-
sine similarities of BERT representations before
(Figs. 7a and 7b) and after the +Mirror tuning
(Fig. 7c). The overall cosine similarities (regard-
less of positive/negative) are greatly reduced and
the positives/negatives become easily separable.
We also leverage a quantitative isotropy score
(IS), proposed in prior work (Arora et al., 2016;
Mu and Viswanath, 2018), and defined as follows:

mineec Dy ey exp(c'v)

maXeec Zvev exp(cTv)

IS(V) = @)
where V is the set of vectors,'® C is the set of all
possible unit vectors (i.e., any c so that ||c|| = 1)
in the embedding space. In practice, C is approx-
imated by the eigenvector set of VTV (V is the
stacked embeddings of V). The larger the IS value,
more isotropic an embedding space is (i.e., a per-
fectly isotropic space obtains the IS score of 1).

IS scores in Tab. 9 confirm that the +Mirror fine-
tuning indeed makes the embedding space more
isotropic. Interestingly, with both data augmenta-
tion techniques switched off, a naive expectation
is that IS will increase as the gradients now solely
come from negative examples, pushing apart points
in the space. However, we observe the increase of
IS only for word-level representations. This hints at
more complex dynamics between isotropy and gra-
dients from positive and negative examples, where
positives might also contribute to isotropy in some
settings. We will examine these dynamics more in
future work.'®

Learning New Knowledge or Exposing Avail-
able Knowledge? Running Mirror-BERT for more
epochs, or with more data (see Fig. 5) does not re-

'5) comprises the corresponding text data used for Mirror-
BERT fine-tuning (10k items for each task type).

Introducing positive examples also naturally yields
stronger task performance, as the original semantic space
is better preserved. Gao et al. (2021) provide an insightful
analysis on the balance of learning uniformity and alignment
preservation, based on the method of Wang and Isola (2020).

level — word phrase sentence
BERT .169 205 222
+ Mirror .599 252 265
+ Mirror (w/o aug.) 825 .170 255

Table 9: IS of word, phrase, and sentence-level models.

model p

fastText 528
BERT-CLS .105
BERT-mp 267
A Mirror _ _ 556
+ Mirror (random string) .393

+ Mirror (random string, Ir 5e-5) .481

Table 10: Running Mirror-BERT with a set of ‘zero-
semantics’ random strings. Evaluation is conducted on
Multi-SimLex (EN).

e ————710s8
1250 s Multi-SimLex (en) word freq. distribution
1000 BERT-+Mirror (w/ words of different freq.) |
750
500 Fo.56
250

o
n
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Count
Spearman's rho
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word frequency rank in English Wikipedia

Figure 8: Blue: words in Multi-SimLex (EN) follow a
long-tail distribution. . BERT+Mirror trained
with frequent words tend to perform better.

sult in performance gains. This hints that, instead
of gaining new knowledge from the fine-tuning
data, Mirror-BERT in fact ‘rewires’ existing knowl-
edge in MLMs (Ben-Zaken et al., 2020). To fur-
ther verify this, we run Mirror-BERT with random
‘zero-semantics’ words, generated by uniformly
sampling English letters and digits, and evaluate on
(EN) Multi-SimLex. Surprisingly, even these data
can transform off-the-shelf MLMs into effective
word encoders: we observe a large improvement
over the base MLLM in this extreme scenario, from
p =0.267 to 0.481 (Tab. 10). We did a similar
experiment on the sentence-level and observed sim-
ilar trends. However, we note that using the actual
English texts for fine-tuning still performs better as
they are more ‘in-domain’ (with further evidence
and discussions in the following paragraph).

Selecting Examples for Fine-Tuning. Using raw
text sequences from the end task should be the de-
fault option for Mirror-BERT fine-tuning since they
are in-distribution by default, as semantic similarity
models tend to underperform when faced with a
domain shift (Zhang et al., 2020). In the general-
domain STS tasks, we find that using sentences
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extracted from the STS training set, Wikipedia ar-
ticles, or NLI datasets all yield similar STS per-
formance after running Mirror-BERT (though op-
timal hyperparameters differ). However, porting
BERT+Mirror trained on STS data to QNLI results
in AUC drops from .674 to .665. This suggests that
slight or large domain shifts do affect task perfor-
mance, further corroborated by our findings from
fine-tuning with fully random strings (see before).
Further, Fig. 8 shows a clear tendency that more
frequent strings are more likely to yield good
task performance. There, we split the 100k most
frequent words from English Wikipedia into 10
equally sized fine-tuning buckets of 10k examples
each, and run +Mirror fine-tuning on BERT with
each bucket. In sum, using frequent in-domain
examples seems to be the optimal choice.

5 Related Work

Self-supervised text representations have a large
body of literature. Here, due to space constraints,
we provide a highly condensed summary of the
most related work. Even prior to the emergence
of large pretrained LMs (PLMs), most represen-
tation models followed the distributional hypothe-
sis (Harris, 1954) and exploited the co-occurrence
statistics of words/phrases/sentences in large cor-
pora (Mikolov et al., 2013a,b; Pennington et al.,
2014; Kiros et al., 2015; Hill et al., 2016; Lo-
geswaran and Lee, 2018). Recently, DeCLUTR
(Giorgi et al., 2021) follows the distributional hy-
pothesis and formulates sentence embedding train-
ing as a contrastive learning task where span pairs
sampled from the same document are treated as pos-
itive pairs. Very recently, there has been a growing
interest in using individual raw sentences for self-
supervised contrastive learning on top of PLMs.

Wu et al. (2020) explore input augmentation
techniques for sentence representation learning
with contrastive objectives. However, they use it
as an auxiliary loss during full-fledged MLLM pre-
training from scratch (Rethmeier and Augenstein,
2021). In contrast, our post-hoc approach offers a
lightweight and fast self-supervised transformation
from any pretrained MLM to a universal language
encoder at lexical or sentence level.

Carlsson et al. (2021) use two distinct models
to produce two views of the same text, where we
rely on a single model, that is, we propose to use
dropout and random span masking within the same
model to produce the two views, and demonstrate

their synergistic effect. Our study also explores
word-level and phrase-level representations and
tasks, and to domain-specialised representations
(e.g., for the BEL task).

SimCSE (Gao et al., 2021), a work concurrent
to ours, adopts the same contrastive loss as Mirror-
BERT, and also indicates the importance of data
augmentation through dropout. However, they do
not investigate random span masking as data aug-
mentation in the input space, and limit their model
to general-domain English sentence representations
only, effectively rendering SimCSE a special case
of the Mirror-BERT framework. Other concurrent
papers explore a similar idea, such as Self-Guided
Contrastive Learning (Kim et al., 2021), ConSERT
(Yan et al., 2021), and BSL (Zhang et al., 2021),
inter alia. They all create two views of the same
sentence for contrastive learning, with different
strategies in feature extraction, data augmentation,
model updating or choice of loss function. How-
ever, they offer less complete empirical findings
compared to our work: we additionally evaluate
on (1) lexical-level tasks, (2) tasks in a specialised
biomedical domain and (3) cross-lingual tasks.

6 Conclusion

We proposed Mirror-BERT, a simple, fast, self-
supervised, and highly effective approach that trans-
forms large pretrained masked language models
(MLMs) into universal lexical and sentence en-
coders within a minute, and without any external
supervision. Mirror-BERT, based on simple un-
supervised data augmentation techniques, demon-
strates surprisingly strong performance in (word-
level and sentence-level) semantic similarity tasks,
as well as on biomedical entity linking. The large
gains over base MLMs are observed for different
languages with different scripts, and across diverse
domains. Moreover, we dissected and analysed the
main causes behind Mirror-BERT’s efficacy.
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A Language Codes

EN English
ES  Spanish
FR French
PL  Polish
ET Estonian
FI  Finnish
RU Russian
TR  Turkish
IT Italian
zH Chinese
AR  Arabic

HE Hebrew

Table 11: Language abbreviations used in the paper.

B Additional Training Details

Most Frequent 10k/100k Words by Language.
The most frequent 10k words in each language
were selected based on the following list:
https://github.com/oprogramador/
most—-common-words—by—-language.

The most frequent 100k English words in
Wikipedia can be found here:
https://gist.github.com/h3xx/
1976236.

[CLS] or Mean-Pooling? For MLMs, the con-
sensus in the community, also validated by our
own experiments, is that mean-pooling performs
better than using [CLS] as the final output rep-
resentation. However, for Mirror-BERT models,
we found [CLS] (before pooling) generally per-
forms better than mean-pooling. The exception is
BERT on sentence-level tasks, where we found
mean-pooling performs better than [CLS]. In
sum, sentence-level BERT+Mirror models are fine-
tuned and tested with mean-pooling while all other
Mirror-BERT models are fine-tuned and tested with
[CLS]. We also tried representations after the
pooling layer, but found no improvement.

Training Stability. All task results are reported
as averages over three runs with different random
seeds (if applicable). In general, fine-tuning is very
stable and the fluctuations with different random
seeds are very small. For instance, on the sentence-
level task STS, the standard deviation is < 0.002.
On word-level, standard deviation is a bit higher,
but is generally < 0.005. Note that the randomly

dropout rate— 005 0.1 02 0.3 0.4

BERT + Mirror 740 743 748 748 731
RoBERTa + Mirror .755 753 .737 .694 .677

Table 12: Average p across STS tasks with different
dropout rates. * default dropout rate for all models in
other experiments.

random span mask rate— 2 5% 10 15 20
BERT + Mirror 741 743 720 .690 .616
RoBERTa + Mirror 750 753 757 743 706

Table 13: Avg. p across STS tasks with different ran-
dom span masking rates. * default mask rates for all
models in other experiments.

sampled training sets are fixed across all experi-
ments, and changing the training corpus for each
run might lead to larger fluctuations.

C Details of Mirror-BERT Trained on
Random Strings

We pointed out in the main text that BERT+Mirror
trained on random strings can outperform MLMs
by large margins. With standard training configu-
rations, BERT improves from .267 (BERT-mp) to
.393 with +Mirror. When learning rate is increased
to 5e—5, the MLM fine-tuned with random strings
performs only around 0.07 lower than the standard
BERT+Mirror model fine-tuned with the 10k most
frequent English words.

D Dropout and Random Span Masking
Rates

Dropout Rate (Tab. 12). The performance trends
conditioned on dropout rates are generally the same
across word-level, phrase-level and sentence-level
fine-tuning. Here, we use the STS task as a ref-
erence point. BERT prefers larger dropouts (0.2
& 0.3) and is generally more robust. RoBERTa
prefers a smaller dropout rate (0.05) and its perfor-
mance decreases more steeply with the increase of
the dropout rate. For simplicity, as mentioned in
the main paper, we use the default value of 0.1 as
the dropout rate for all models.

Random Span Masking Rate (Tab. 13). Interest-
ingly, the opposite holds for random span masking:
RoBERTa is more robust to larger masking rates k,
and is much more robust than BERT to this hyper-
parameter.
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level— word phrase sentence
model]

MVN IS MVN IS MVN IS
BERT-CLS 13.79 .043 12.8 .028 12.73 .062
BERT-mp 7.89 169 6.82 205 6.93 .222
+Mirror 2.1 599 591 252 557 .265

+ Mirror (w/o aug.) 0.71 .825 8.16 .170 5.75 .255

Table 14: Full table for MVN and IS of word-, phrase-
, and sentence-level models. Higher is better, that is,
more isotropic with IS, while the opposite holds for
MVN (lower scores mean more isotropic representa-
tion spaces).

E Mean-Vector [;-Norm (MVN)

To supplement the quantitative evidence already
suggested by the Isotropy Score (IS) in the main
paper, we additionally compute the mean-vector [»-
norm (MVN) of embeddings. In the word embed-
ding literature, mean-centering has been a widely
studied post-processing technique for inducing bet-
ter semantic representations. Mu and Viswanath
(2018) point out that mean-centering is essentially
increasing spatial isotropy by shifting the centre
of the space to the region where actual data points
reside in. Given a set of representation vectors V,
we define MVN as follows:

v

3)

vey 2
The lower MVN is, the more mean-centered an em-
bedding is. As shown in Tab. 14, MVN aligns with
the trends observed with IS. This further confirms
our intuition that +Mirror tuning makes the space
more isotropic and shifts the centre of space close
to the centre of data points.

Very recently, Cai et al. (2021) defined more
metrics to measure spatial isotropy. Rajaee and
Pilehvar (2021) also used Eq. (2) for analysing
sentence embedding’s isotropiness.

F Evaluation Dataset Details

All datasets used and links to download them can
be found in the code repository provided. The
Russian STS dataset is provided by
https://github.com/deepmipt/

deepPavlovEval. The Quora Ques-
tion Pair (QQP) dataset is downloaded
at https://www.kaggle.com/c/

quora—-question—-pairs.

G Pretrained Encoders

A complete listing of URLSs for all used pretrained
encoders is provided in Tab. 15. For monolingual
MLMs of each language, we made the best effort
to select the most popular one (based on download
counts). For computational tractability of the large
number of experiments conducted, all models are
BASE models (instead of LARGE).

H Full Tables

Here, we provide the complete sets of results. In
these tables we include both MLMs w/ features
extracted using both mean-pooling (“mp”’) and
[CLS] (“CLS”).

For full multilingual word similarity results,
view Tab. 16. For full Spanish, Arabic and Russian
STS results, view Tab. 3. For full cross-lingual
word similarity results, view Tab. 18. For full BLI
results, view Tab. 19. For full ablation study results,
view Tab. 20. For full MVN and IS scores, view
Tab. 14.

I Number of Model Parameters

All BERT/RoBERTa models in this paper have
~110M parameters.

J Hyperparameter Optimisation

Tab. 21 lists the hyperparameter search space. Note
that the chosen hyperparameters yield the overall
best performance, but might be suboptimal on any
single setting (e.g. different base model).

K Software and Hardware Dependencies

All our experiments are implemented using Py-
Torch 1.7.0 and huggingface. co transformers
4.4.2, with Automatic Mixed Precision (AMP)!”
turned on during training. Please refer to the
GitHub repo for details. The hardware we use
is listed in Tab. 22.

"nttps://pytorch.org/docs/stable/amp.
html
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model URL

fastText https://fasttext.cc/docs/en/crawl-vectors.html

SBERT https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
SapBERT https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
BERT (English) https://huggingface.co/bert-base-uncased

RoBERTa (English) https://huggingface.co/roberta-base

mBERT https://huggingface.co/bert-base-multilingual-uncased

Turkish BERT dbmdz/bert-base-turkish-uncased

Italian BERT dbmdz/bert-base-italian-uncased

French BERT https://huggingface.co/camembert-base

Spanish BERT https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
Russian BERT https://huggingface.co/DeepPavlov/rubert-base-cased

Chinese BERT https://huggingface.co/bert-base-chinese

Arabic BERT https://huggingface.co/aubmindlab/bert-base-arabertv02

Polish BERT https://huggingface.co/dkleczek/bert-base-polish-uncased-vl

Estonian BERT https://huggingface.co/tartuNLP/EstBERT

Table 15: A listing of HuggingFace & fastText URLSs of all pretrained models used in this work.

language— EN FR ET AR ZH RU ES PL  avg.
fastText 528 .560 .447 409 428 435 488 396 461
BERT-CLS 105 .050 .160 210 277 177 152 257 174
BERT-mp 267 .020 .106 .220 .398 202 .177 217 201
+ Mirror 556  .621 308 538 .639 365 296 444 471
mBERT-CLS .062 .046 .074 .047 204 .063 .039 .051 .073
mBERT-mp 105 130 .094 101 261 .109 .095 .087 .123
+ Mirror 358 341 134 .097 501 210 332 .141 264

Table 16: Word similarity evaluation on Multi-SimLex (Spearman’s p).

model|, lang.—  ES AR RU  avg.
BERT-CLS 526 308 470 435
BERT-mp 599 455 552 535
+ Mirror 709 669 673 .684
mBERT-CLS 421 326 430 392
mBERT-mp .610 447 616 .558
+ Mirror J755 594 .692 .680

Table 17: Full Spanish, Arabic and Russian STS evaluation. Spearman’s p correlation reported.

lang.% EN-FR EN-ZH EN-HE FR-ZH FR-HE ZH-HE avg.
mBERT-CLS .059 .053 .032 .042 .024 .050 .043
mBERT-mp 163 118 071 142 104 .010 101
+ Mirror 454 385 133 465 163 179 297

Table 18: Full cross-lingual word similarity evaluation on Multi-SimLex (Spearman’s p).

lang.— EN-FR EN-IT EN-RU EN-TR IT-FR RU-FR avg.
BERT-CLS  .045 .049 .108 .109 .046 068 071
BERT-mp 014 112 154 150 .025 018  .079
+ Mirror 458 378 336 289 417 345 371

Table 19: Full Bilingual Lexicon Induction results (accuracy reported). “EN-FR” means en mapped to FR.
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model configuration], dataset— STS12 STS13 STS14 STS15 STS16 STS-b  SICK-R  avg.

BERT + Mirror .674 796 713 .814 743 764 .703 744

- -dropout 646 770 691 800 726 745 01 7264018
- random span masking 641 775 684 77 737 749 .658 17 027
- dropout & random span masking .587 .695 .617 .688 .683 .674 .614 .651 003
RoBERTa + Mirror .648 .819 732 798 780 787 706 753

- -dropout 619 795 706 802 777 727 698 732,001
- random span masking .616 786 .689 766 743 756 .663 117,036
- dropout & random span masking 562 730 .643 144 752 708 .638 682 071

Table 20: Full table for the synergistic effect of dropout and random span masking in sentence similarity tasks.

hyperparameters search space
learning rate {5e-5,2e-5", 1e-5}
batch size {100, 200", 300}
training epochs {1*,2%,3,5}
7in Eq. (1) {0.03, 0.04*, 0.05, 0.07, 0.1, 0.2%, 0.3}

Table 21: Hyperparameters along with their search grid. * marks the values used to obtain the reported results. The
hparams are not always optimal in every setting but generally performs (close to) the best.

hardware specification
RAM 128 GB
CPU AMD Ryzen 9 3900x 12-core processor x 24
GPU NVIDIA GeForce RTX 2080 Ti (11 GB) x 2

Table 22: Hardware specifications of the used machine. When encountering out-of-memoery error, we also used a
second server with two NVIDIA GeForce RTX 3090 (24 GB).
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