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Abstract

Material science synthesis procedures are a
promising domain for scientific NLP, as proper
modeling of these recipes could provide in-
sight into new ways of creating materials.
However, a fundamental challenge in build-
ing information extraction models for mate-
rial science synthesis procedures is getting
accurate labels for the materials, operations,
and other entities of those procedures. We
present a new corpus of entity mention an-
notations over 595 Material Science synthe-
sis procedural texts (157,488 tokens), which
greatly expands the training data available for
the Named Entity Recognition task. We out-
line a new label inventory designed to pro-
vide consistent annotations and a new annota-
tion approach intended to maximize the con-
sistency and annotation speed of domain ex-
perts. Inter-annotator agreement studies and
baseline models trained upon the data suggest
that the corpus provides high-quality annota-
tions of these mention types. This corpus helps
lay a foundation for future high-quality model-
ing of synthesis procedures.

1 Introduction

The Material Science literature contains millions
of synthesis procedures: descriptions that outline
the specific steps required to create a particular
material, such as the text in Figure 1. Large-scale
analysis of these procedures could enable tasks
such as automatic planning of new synthesis pro-
cedures (Kim et al., 2020). However, such tasks
require extraction of high-quality representations
of those synthesis procedures from raw text (Kim
et al., 2017), and thus are limited by the size and
quality of annotations.

An important component for information extrac-
tion of synthesis procedures involves predicting
the entities, actions and attributes of the synthe-
sis, including the steps followed in the synthesis

∗* Work done while at UMass Amherst

Figure 1: Part of an example synthesis procedure in-
cluded in the dataset with entity annotations from Zhao
et al. (2015). Colors represent entity types and un-
derlines represent span boundaries. Colors: Target,
Nonrecipe-operation, Unspecified-Material, Opera-
tion, Material, Condition-Unit, Number.

procedures, the materials used and created in the
synthesis, and all the quantitative attributes (includ-
ing operation conditions, material amounts, and
properties) necessary to replicate or understand the
procedure. Such annotations require the judgment
of domain experts, as not all verbs in a text are
actual steps in the synthesis, and not all materi-
als mentioned are actual inputs or outputs of the
synthesis process. We outline an inventory of 15
mention types which can be consistently annotated
while still making important distinctions regard-
ing the roles that these operations and mentions
play in the overall synthesis. Figure 1 illustrates
how such an example synthesis procedure would
be annotated with entity mentions.

We annotate these labels over a new corpus of
595 synthesis procedures. To improve the consis-
tency of this annotation pipeline, we separate the
annotation of operation-type mentions, material-
type mentions, and quantitative mentions (includ-
ing conditions, amounts and properties), allowing
annotators to specialize upon a subset of the task
and reducing inter-annotator variation in how each
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phenomenon is annotated. We present baseline
models trained on this dataset which demonstrate
that models can be trained upon this dataset to
achieve mention extraction performance exceeding
90 F1, providing a reliable base for future work.

The contributions of the work are as follows.
First, we establish a large new dataset of Material
Science mention annotations∗, which includes both
texts sampled from a wide range of different syn-
thesis procedures. Secondly, we provide improve-
ments to synthesis procedure annotation, both by
providing a new label set that can be consistently
annotated and by providing new approaches to ex-
pert mention annotation. Thirdly, we provide sim-
ple baseline models to be made public with the pa-
per, and use those baseline models to illustrate both
the remaining challenges with the data, as well as
the promise this dataset holds for high-performing
mention extraction over synthesis procedures.

2 Dataset Description

We annotate three different kinds of mentions: the
individual steps or operations constituting the syn-
thesis procedure, the different kinds of materials
mentioned in a procedure, and a third class of quan-
titative mentions such as measurable conditions,
quantities and apparatus mentions. These three
broad classes are each annotated in a different stage,
as outlined in §3. Note that the current dataset
does not annotate relations between mentions as
in Mysore et al. (2019), but focuses on annotat-
ing the much larger set of operation, material and
condition mentions to be linked together.

2.1 Structures Annotated

2.1.1 Operation Annotation
A major component of annotating procedural scien-
tific text is the annotation of operations — specific
mentions of the steps taken during a synthesis pro-
cedure — since these form the primary structure of
the synthesis procedure. We define three operation
types:
Operation: Discrete actions physically per-

formed by the researcher or discrete process
steps taken to synthesize the target.

Nonrecipe-Operation: Verbs or action
words that were not directly carried out by
the researcher, or a reference to an operation
with more descriptive wording.
∗Available at https://github.com/

olivettigroup/

Meta: A canonical name to specify a particular
overall synthesis method used for synthesis.
For example: “Graphite oxide was prepared
by oxidation of graphite powder according to
the modified Hummers method.”

Although making this distinction between dif-
ferent types of events based upon their role in the
procedure is novel in the context of synthesis pro-
cedure annotation (Mysore et al., 2019), domains
such as newswire have generally established other
tasks where one needs to go beyond a general no-
tion of nouns and verbs being eventualities (Puste-
jovsky et al., 2003) and focus on events relevant
to a specific task (Doddington et al., 2004). In this
domain, many events describe processes which are
not being enacted by the researchers, and there-
fore are not part of the list of “steps” that define a
procedure, as seen in example 1:

(1) “After this, the autoclave was cooled to room
temperature naturally.”

A related issue occurs in which multiple words
or phrases collectively refer to the same step in a
synthesis process. In some of these situations one
mention does not describe the step solely in terms
of the researcher action. For example, in “pre-
pared by mixing” or “heated to evaporate”, “mix-
ing” or “heated” are annotated as the Operation
and semantically light non-recipe processes such
as “prepared” and “evaporate” are annotated as
Nonrecipe-Operation. In some other cases
where both words, by themselves, would serve
as descriptive and desirable operations for down-
stream analysis, both are labeled as operations, for
example: “separated by filtration”, “mixed by ul-
trasonication”, or “mixed by stirring”.

All operation types were annotated using mini-
mal spans, i.e. annotating only the predicative trig-
ger without any larger verbal nor nominal spans.
An exception applies to manners and instruments
hyphenated with a predicate, as in “heat-treated” or
“ball-milled”; these were included in the operation
mention spans.

2.1.2 Materials Annotation
Our dataset annotates a variety of material types,
the distinctions of which were based primarily on
usefulness to downstream materials science tasks.
The set of types we define are as follows:
Target: Indicates the chemical entity made in

the context of the synthesis procedure.
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Dataset
Type of

Text Genre Texts Sentences Tokens Mentions Relations

SOFC-Exp Articles Mat.Sci. 45 853 32428 5095 5095
SC-CoMIcs Abstracts Mat.Sci. 1000 6639 204884 42337 -
MSPT Procedural Mat.Sci. 230 2112 56,510 20849 18402
MS-MENTIONS Procedural Mat.Sci. 595 7980 157488 44295 -
WLP Procedural Organic 622 13679 177770 60721 42425
WLP 2020 test Procedural Organic +111 3562 51688 104654 70591

Table 1: Corpus statistics for our dataset (MS-MENTIONS) and a range of related corpora for materials science
(SOFC-Exp, SC-CoMIcs, MSPT) and biomedical (WLP) procedural texts.

Type Train Dev Test

Operation 10744 1364 1252
Nonrecipe-Operation 2608 301 334
Meta 560 71 68

Material 6132 769 786
Target 1529 196 176
Unspecified-Material 2685 352 364
Nonrecipe-Material 1071 115 106
Sample 280 67 39

Number 7444 946 903
Condition-Unit 3628 426 403
Amount-Unit 2484 325 313
Synthesis-Apparatus 1206 163 159
Property-Unit 288 39 41
Apparatus-Unit 185 27 31

Table 2: Counts for each mention type

Material: A physically used, chemically de-
fined object used in the synthesis but not the
end result of the synthesis.

Unspecified-Material: A material stated
without sufficient chemical specificity, often
referring to intermediate states such as “the
mixture”,“a dilute solution” or “the disk”.

Nonrecipe-Material: A material men-
tioned that is not contributing to the target
material, such as impurities filtered out of a
solution or reference to alternative materials
that were not used.

Sample: A material or minor variant of the target
referenced with a potentially arbitrary signi-
fier such as “Sample A”, “S1”, or “undoped
TiO2”.

These distinctions allow us to understand the role
of these materials within the synthesis procedure.
While some of these distinctions represent informa-

tion that would be relations in other datasets (such
as Target, which would be a recipe-target
relation in Mysore et al. (2019)), others introduce
new important distinctions. In particular, the new
Sample label would be important for researchers
attempting to link the outcomes of a particular syn-
thesis procedure to other paper components, such
as results tables, where such sample names are
used.

In annotating materials, all materials are labeled
with only the base chemical composition of the ma-
terial, omitting modifiers and relative clauses that
might describe the chemical, structural, or morpho-
logical modifications to that chemical. However,
Target materials, because of their nature as the
goal of a synthesis procedure and as a complex
material, often end up with a more complex base
description than other material type mentions, but
are annotated using the same criterion.

2.1.3 Quantity and Instrument Annotation
In addition to operation and material enti-
ties our dataset annotates a range of other
entity types. We utilized a range of la-
bels for conditions of synthesis operations
(Condition-Unit), instruments used during
the synthesis (Synthesis-Apparatus), mea-
surements of the apparatus (Apparatus-Unit),
properties asserted about a material or material
quantities (Property-Unit, Amount-Unit)
and numbers to be linked to these units (Number).
Appendix C.3 expands on these entity types.

2.2 Dataset Statistics

Table 1 outlines the resultant size of our corpus,
MS-MENTIONS. We also list the corpus statistics
for the Materials Science Procedural Text (MSPT)
corpus described in Mysore et al. (2019), the SOFC-
Exp Corpus of Friedrich et al. (2020), the SC-
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CoMIcs corpus of Yamaguchi et al. (2020) and
the Wet Lab Protocols (WLP) corpus of Kulka-
rni et al. (2018), which has also been augmented
for a recent WNUT shared task (Tabassum et al.,
2020). Of these, MSPT is the most comparable
annotation in structures annotated and domain of
text. WLP bears resemblance in most of its anno-
tated structures, but is in a different domain, while
both SOFC-Exp and SC-CoMIcs are in the same
Material Science domain, but do not focus upon
procedural text. The current corpus is therefore
the largest corpus we are aware of for materials
science procedural text. Furthermore, our corpus
also spans a range of subdomains within materials
science whereas SOFC-Exp and SC-CoMIcs span
a more focused set of sub-domains. We elaborate
on this in the following section.

3 Annotation Pipeline

The present dataset was annotated by 3 domain
experts using the BRAT annotation tool†, using
non-nested mentions. In building the dataset, pa-
pers for annotation were picked to contain a mix of
randomly selected papers and those from a more
focused sub-domain of papers. Furthermore, to im-
prove consistency and speed, the different classes
of entity types were annotated by the same annota-
tor. Each of these processes is elaborated on next.

3.1 Data Selection and Filtering

The 595 synthesis procedures annotated were se-
lected from a database of over 3 million publica-
tions describing materials synthesis. This collec-
tion was obtained from journals containing material
science and chemistry content through API access,
web scraping, or direct contact with publishers. Le-
gal agreements with publishers allowed access to
closed access journals. Given this collection, the
595 synthesis procedures were picked using two
approaches, an ALL DOMAINS approach in which
338 papers were selected randomly to provide a
broad characterization of the field, and a BATTERY

subset, in which 257 papers were sampled using
keywords such as “Li battery” or “Li10GeP2S12”.
By providing this split, one can measure both the
ability of models to learn a single focused domain,
and whether models generalize across the broader
domain.

Given the papers, synthesis procedures were
extracted from each publication using a para-

†BRAT: https://brat.nlplab.org/

graph classifier (Mahbub et al., 2020) leveraging a
pipeline of a high recall rule-based approach rely-
ing on section header information to find possible
synthesis paragraphs, followed by a trained neural
network classifier to make a final prediction. This
paragraph classifier, which reports F1 of 0.96 for
all paragraphs, and F1 of 0.90 for synthesis para-
graphs, was used to select synthesis paragraphs,
and only those were annotated; each synthesis para-
graph was also manually checked before annota-
tion. Synthesis procedures were ruled out if they
did not describe the synthesis as a series of oper-
ations, as with procedures which only described
a single high-level operation name with a variety
of conditions. A more detailed account of pre-
processing is included in Appendix B.3.

3.2 Stages of Annotation

Situations in which domain experts are needed for
annotation add considerably to the cost and diffi-
culty of a project, and we focus on allowing tar-
geted use of expert annotation, by having annota-
tors focus upon restricted components of the anno-
tation pipeline. Our annotation procedure adopted a
division-of-labor approach to annotation, in which
a single annotator is employed for a given type of
annotation across the entire corpus. In the case of
this dataset, one domain expert annotated all opera-
tions entities (§2.1.1), a second expert then anno-
tated all materials (§2.1.2), and a third expert added
all apparatuses, conditions, numbers, amounts and
properties (§2.1.3). After these passes, each docu-
ment was checked for overall quality and consis-
tency by one of the domain experts.

While the more consistent annotations achieved
by this approach do not guarantee higher quality,
we still observe high inter-annotator agreement
scores (§7), and suggest that it is a valuable ap-
proach for expert annotation contexts. Having each
phenomenon in the dataset annotated by a single
expert allows us to minimize inter-annotator incon-
sistencies between annotators, and means that if a
particular aspect of the annotation requires special-
ized knowledge, an appropriate expert can focus
on it, in a manner similar to allocating different
tasks to different expertise levels during crowd-
sourcing (Wang et al., 2017). This approach of di-
viding the mention annotation tasks also increases
the speed and efficiency of annotation, by reducing
the number of different phenomena each annotator
must pay attention to. Because minimizing inter-
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annotator inconsistencies does not guarantee high
quality by itself, different annotators trained for
each task and distinctions were iterated over during
annotation, in order to improve quality.

4 Baselines

4.1 Baseline Models
We report baselines using pre-trained transformer
models, fine-tuned on the NER task. Each sentence
after tokenization (see below) is encoded with a pre-
trained transformer model (Vaswani et al., 2017) us-
ing the Transformers library(Wolf et al., 2020), and
the final hidden layer is regularized with dropout
and passed through a final linear prediction layer.
The output is optimized with cross-entropy, using
AdamW(Loshchilov and Hutter, 2019).

4.2 Data preprocessing and task evaluation
We split each raw text into sentences using SciS-
pacy(Neumann et al., 2019), tokenize using Hug-
gingface Tokenizers models corresponding each
encoder, and predict IOB2 tags. In order to es-
tablish maximally comparable baseline scores, we
do not hard-code any given tokenization scheme
for evaluation, but instead convert IOB2 tags into
start and end offsets and evaluate against the stand-
off annotations themselves, reporting exact-match
micro-F1 for all scores.

4.3 Additional Tests
We explore one preliminary options for improving
performance on the dataset, as it also serves to
give insight into the data: pre-training upon one
of the related datasets before fine-tuning on the
dataset. For the transfer from related datasets, we
use simple hard parameter sharing (Caruana, 1997),
keeping the same encoder but using a different final
linear prediction layer for each task. These result
are showns at the bottom of Table 4, designating
each dataset (+SOFC or +MSPT ).

5 Results and Experiments

To contextualize the provided baseline scores on
our new task, Table 3 provides scores on three
comparable datasets, MSPT (Mysore et al., 2019),
SOFC (Friedrich et al., 2020), and the 2020 WNUT
Wet Labs Protocols data (Tabassum et al., 2020),
along with the current state of the art for each.

We then show the performance of this base-
line model on the MS-MENTIONS task, using
BERT (Devlin et al., 2019), SciBERT (Beltagy

Model/Corpus Dev Test

WLP (WNUT-2020)
Baseline - SciBERT 77.96 73.22
Singh and Wadhawan (2020) 77.99
Knafou et al. (2020) 77.57

SOFC - mention
Baseline - SciBERT 73 78.57
Friedrich et al. (2020) 81.5

MSPT(Mysore et al., 2019)
Baseline - SciBERT 82.8 78.15
Friedrich et al. (2020) 92.2
Mysore et al. (2017) 77.6

Table 3: Similar procedural text datasets with mention
spans, along with current top scores for each task.

et al., 2019), and Electra (Clark et al., 2020). SciB-
ERT shows the best performance at the task, a trend
noted in other recent procedural text works and
shared tasks Tabassum et al. (2020); Friedrich et al.
(2020).

5.1 Results on Subsets

We also report against the two subsets of the data,
the ALL DOMAINS subset randomly sampled from
all material science, and the BATTERY subset. We
suggest that evaluating against these splits provides
interesting ways of testing the robustness of models,
and provides an interesting test bed for studying
the role of narrow-domain data. In particular, it
has been argued that model evaluation should also
focus upon the performance of models in differ-
ent kinds of minor domain shifts (Søgaard et al.,
2021). To study this more closely, we experiment
with different training set sizes: for sets of 25 doc-
uments, 50 documents, 100 documents and 200
documents, we train upon both domains and evalu-
ate those trained models. Figure 3 shows F1-micro
across four conditions (both within and across each
subset) against the development splits. Curiously,
we can see that while the BATTERY subset is un-
ambiguously more difficult, training upon those
battery papers does not seem to provide a consis-
tent improvement, and training upon such a narrow
subset, unsurprisingly, hurts general performance.

5.2 Results Across Corpora

Similarly, we briefly examine how this corpus com-
pares to a similar dataset, MSPT (Mysore et al.,
2019), when one controls for the much larger size
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Corpus Dev. Test

BERT 89.4 89.7
ELECTRA-BASE 88.8 88.6
SCIBERT 91.55 91.47

SCIBERT+MSPT 91.72 91.53
SCIBERT+SOFC 91.80 91.85
SCIBERT+MSPT+SOFC 91.8 91.2

Table 4: Baseline model results for the current dataset,
showing different transformers (top), pre-training with
other datasets (middle), and scores training and testing
on subsets of the data (bottom)

of the current corpus. As with analysis of subdo-
main, Figure 2 shows the results of training upon
increasing sizes of training data from each corpus,
evaluated against development sets.

We can see that even after controlling for training
data size, the predictions of a model trained on MS-
MENTIONS are more consistent than one trained on
MSPT. To exclude higher performance on easier
categories such as Number, we also show perfor-
mance on Operation and Material types.

6 Analysis of Annotator Agreement

As the pipeline uses a fixed annotator for each
part of the mention annotation, the inter-annotator
agreement could not simply be measured by
“double-annotating” documents. To measure the
inter-annotator agreement we instead annotated a

25 50 100 200
70

75

80

85

90

95

number of documents

MSPT-All Current-All
MSPT Operation Current Operation
MSPT Material Current Material

Figure 2: F1 against development set as training set
size is increased, showing that the current work pro-
duces higher performance independent of the larger
dataset size. MSPT refers to the similar, but not quite
comparable, dataset of Mysore et al. (2019).

set of five documents three times each, with dif-
ferent assignments of annotators for each stage of
our division of labor approach (§3.2). We then
score IAA using F1, selecting pairs of annotations,
and taking turns treating one as the gold annota-
tion and the next as a prediction, these individual
pairs are then micro-averaged. The overall F1 be-
tween annotation sets on the span prediction task
is 85.7. Further, when annotators both agree that
a given span exists, we measure a Fleiss’s Kappa
of 0.928. As an alternative measure of chance-
corrected agreement, we use Mathet’s γ (Mathet
et al., 2015; Titeux and Riad, 2021), which allows
for chance-corrected measures for span-based tasks
such as NER. We report a γ of 0.76 (wherein 0 is
chance and 1 is perfect agreement), showing sub-
stantial agreement.

Next we also denote labels for which an-
notators disagree in Figure 5. One can see
that the primary sources of label disagree-
ments is the judgments about whether a men-
tion is integral to the synthesis procedure, seen
in the distinction between Operation and
Nonrecipe-Operation labels, and between
Materials and Nonrecipe-Material and
Unspecified-Material labels. Examples of
such disagreements for operations (ex. 2) and ma-
terials (ex. 3) are shown below

(2) After evaporation of the solvent, a brown
tetraethylammoniumtricyanoimidazolate was
obtained

25 50 100 200

75

80

85

90

number of documents

All→Battery Battery→Battery
Battery→All All→All

Figure 3: Peerformance within and across the two
MS-Mentions subdomains on the development data, as
number of training documents increases.

1342



Figure 4: Confusion matrix of baseline prediction model against the development set. As with humans, Targets
and non-recipe operations are the most challenging.

Figure 5: Confusion matrices for inter-annotator agreement regaarding for operations (left) and materials (right).
Rows denotes an arbitrary annotation picked as gold to be compared to the other annotation. The primary source
of disagreement for both is the challenging non-recipe vs recipe distinction.

(3) The crude product was yield-purified by
column chromatography silica gel, gradient
mixtures of acetonitrile-toluene-1:3,1:2, 1:1
(v/v))

Next, following prior analyses in parsing and
SRL (Kummerfeld et al., 2012; He et al., 2017),
we show the impact of correcting specific types
disagreements with the circularly picked gold an-
notations for our annotations. This analysis first
converts overlapping spans to exactly matching
spans (fix span), then making label disagreements
match the gold (label), then adding mentions that
are missing (add), and finally removing spurious
mentions (remove). Figure 6 (left panel) explores
which kinds of errors cause disagreement between
annotators looking at three sets of labels; all types
of operation labels, all types of material labels, and
all other quantities and conditions. While the ad-
ditional details such as conditions, amounts, and
properties have high agreement, we note that for

material labels, fixing slight disagreements in span
boundaries has a meaningful impact. We suggest
that this is due to the difficulty of consistently defin-
ing the mention spans for complex chemical men-
tions; an example disagreement about target
span boundaries is shown in ex. 4 for an instance
of Target, where “[]” denote span boundaries.

(4) F-containing [[MIL-100] (Fe)(MIL-
100(Fe) F )] was prepared from hydrothermal
reaction oof trimesic acid with metallic iron,
HF, nitric acid and H2O at 160 decG for 8h
as reported elsewhere [10].

7 Analysis of Model Errors

Here, we can contrast inter-annotator disagree-
ments with the performance of models trained on
MS-MENTIONS. Figure 6 (right) illustrates the F1
of the baseline model evaluated upon the develop-
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exact fix-spans labels add remove

0.8

0.85

0.9

0.95

1

Operation labels
Material labels

Amounts/Conditions

exact fix-spans labels add remove

0.9

0.95

1

Operation labels
Material labels

Amounts/Conditions

Figure 6: F1 of inter-annotator agreement (left) and performance of trained models on the dev set (right) as one
progressively corrects span mismatches, incorrect labels, missing spans and spurious spans

ment set, as one automatically fixes specific errors
as in §6.

One can see that the general contour of errors is
similar between these model errors and the human
error pattern. We suggest that the higher model
performance (when compared to IAA F1) may be
due to the approach of using a division of labor,
so that each phenomenon in the main dataset is
annotated by a single annotator. This means that
a model is learning and evaluated upon a single
annotator’s annotation practices.

Finally to form an understanding of label dis-
agreements, Figure 4 shows a confusion matrix for
the predictions of the baseline model. We note
that trained models also suffer errors in distin-
guishing between Target and Material, but
are able to distinguish between Material and
Unspecified-Material.

Qualitatively examining model errors, a com-
mon source of the span disagreements is seen in
ex. 5 with “NaOH/urea”, where a domain expert in
context infers that this refers to a single material,
but model predictions split up “NaOH” and “urea”:

(5) 7 g NaOH and 12 g urea were added into
the deionized water (100 mL) under vigorous
stirring to form NaOH/urea solution.

A similar form of this kind of model error oc-
curs with complex measurement units where the
CONDITION-UNIT mention would refer to a ratio
such as “mol/mol” or a rate such as a “degC/min.”.

8 Related Work

The presented corpus fits into a larger body of work
on scientific information extraction (Kim et al.,
2003; Garg et al., 2016; Augenstein et al., 2017).

While a majority of the work in scientific IE de-
veloped resources for biomedical text, more recent
work has seen growing interest in information ex-
traction from materials science text, as in the cor-
pora outlined in Table 1, those of MSPT (Mysore
et al., 2019), SoFC (Friedrich et al., 2020), and
in organic procedural text (Kulkarni et al., 2018;
Tamari et al., 2021). In addition, Yamaguchi et al.
(2020) annotated a corpus of 1000 abstracts of pa-
pers about superconductive materials, Fang et al.
(2021) annotated a corpus of chemical reaction
snippets for coreference, Vaucher et al. (2020)
weakly supervise a transformer model for chemical
synthesis descriptions using rule-based methods.
Beyond the material science domain, Luan et al.
(2018) annotated a dataset for general scientific IE,
and Mori et al. (2014) and Kiddon (2016) annotate
cooking recipes with semantic structures.

This recent thrust to develop information extrac-
tion tools may be explained by the consensus in
the materials science community that extracting the
knowledge contained within natural language de-
scriptions of inorganic materials syntheses will be
a key step towards reducing the overall discovery
and development time for novel materials (Butler
et al., 2018).

9 Conclusion

The MS-MENTIONS dataset established a high-
quality annotation of entity mentions for the Ma-
terial Science domain. It achieves this in part
through a novel approach to the division of an-
notation into multiple stages, reducing the inter-
annotator variation of the annotation of each phe-
nomenon. Our baselines show that entity recog-
nition systems trained on this corpus can achieve
high performance on this consistently defined task.
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We hope that this can be utilized to improve down-
stream tasks relying upon mention detection per-
formance.
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A Baseline Model Details

Models on both the current dataset and Mysore et al.
(2019) used the same overall parameters, for com-
parability. Hyperparameters were adopted based
upon those used in (Friedrich et al., 2020) and par-
ticipants of the WNUT shared tasks using similar
approaches (Tabassum et al., 2020).

Models were trained with dropout between 0.1-
0.3, and learning rates ranging from 5e-6 to 2e-
5. Each were trained for 50 epochs of until no
improvement over validation set performance for
10 epochs. During task-adaptive pre-training on
other datasets, models were trained for 20 epochs
on the prior task, the model saved, and then training
restarted with the saved model (meaning that the
optimizer did re-initialize).

B MS Mentions Datasheet

Following recommended practice to report finer
details of the a dataset, we provide a Datasheet fol-
lowing prompts provided in Bender and Friedman
(2018) and Gebru et al. (2018).

B.1 Motivation
For what purpose was the dataset created?: The
broad goal of the annotations is to facilitate de-
velopment of information extraction models. We
expect the structured extractions from the scientific
papers to in turn will facilitate tools for accelerated
development of materials.

Who created the dataset and on behalf of which
entity?: Anonymized.

Who funded the creation of the dataset?:
Anonymized.

B.2 Composition
What do the instances that comprise the dataset
represent?: We view the dataset primarily as con-
sisting of materials synthesis procedures. Synthesis
procedures consist of sentences. Our dataset an-
notates the sentences in the context of the whole
synthesis procedure.

How many instances are there in total (of each
type, if appropriate)? There are 595 synthesis pro-
cedures.

Does the dataset contain all possible instances
or is it a sample of instances from a larger set?:
The instances were selected from a collection of
materials science and chemistry papers of more
than 3 million papers obtained from a variety of
scientific publishers through legal permissions.

Is there a label or target associated with each
instance?: Each word in the synthesis section is
labeled with the entity type which describes the role
it plays in the context of the synthesis procedure.

Is any information missing from individual in-
stances?: The dataset does not contain gold to-
kenization or gold sentence boundaries. More
broadly, the dataset only releases information most
relevant to the target tasks we envision. For each
synthesis procedure it would have been possible to
release bibliographic information and other meta-
data, this isn’t released. Individual instances do
come with a DOI which can be used to retrieve
more detailed metadata. The sentences are also
missing inline citation information and full text
paper context. There is likely a range of other infor-
mation which could have been included that isn’t
directly conceivable to us in writing this Datasheet.

Are relationships between individual instances
made explicit (e.g., users movie ratings, social net-
work links)?: Relations between instances could
take the form of citation relations, authorship links
etc, this information isn’t part of the dataset.

Are there recommended data splits (e.g., training,
development/validation, testing)?: Yes, splits are
released along side the data. The splits are made at
the level of the synthesis procedure.

Are there any errors, sources of noise, or redun-
dancies in the dataset?: Annotation errors are likely
to be present. Sources of noise might be introduced
during parsing of the raw HTML and XML files.

Is the dataset self-contained, or does it link to
or otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)?: The dataset is self-
contained.

Does the dataset contain data that might be con-
sidered confidential?: None.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety?: No.

Does the dataset relate to people?: The dataset
is about people to the extent that it annotates text
authored by researchers.

Does the dataset identify any subpopulations
(e.g., by age, gender)?: No

Is it possible to identify individuals (i.e., one
or more natural per- sons), either directly or indi-
rectly (i.e., in combination with other data) from the
dataset?: The dataset comes with DOIs which link
to biblographic information which makes the au-
thors of the authored synthesis procedures explicit.
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Figure 7: An example synthesis procedure which
wasn’t included in the current dataset since it did not
have a clear sequence of Operations. Colors represent
entity types and underlines represent span boundaries.
Colors: Operation, Nonrecipe-operation and Meta.

A simple web search of the synthesis procedure
text will also reveal the authors.

Does the dataset contain data that might be con-
sidered sensitive in any way?: No.

Speaker demographic and Language Variety fol-
lowing (Bender and Friedman, 2018): Demograph-
ics of paper authors were not collected. All papers
gathered are written in English but the specific lan-
guage dialect of the papers wasn’t selected for. The
style of writing is scientific given that all text came
from scientific papers.

B.3 Collection Process

What mechanisms or procedures were used to
collect the data (e.g., hardware apparatus or
sensor, manual human curation, software pro-
gram, software API)?: We used webscraping and
HTML/XML parsing to gather and format the data.
This was done using standard python libraries on a
Linux server.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?:
Synthesis procedures were selected by a mixture
of keyword searches and random selection from a
corpus of over 3 million papers: 13 papers were
obtained by searching Engineering Village with
“LGPS” and “Li10GeP2S12”, 244 papers were ob-
tained from Elsevier Scopus using “Li battery”,
338 papers were picked randomly. Each paper was
manually inspected to ensure consistency with our
annotation schema. Examples of procedures that
do not fit the schema are synthesis procedures con-
sisting of one major operation and a description of
the setting used for the synthesis. Such as example
is shown in Figure 7.

Who was involved in the data collection pro-
cess (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were
crowdworkers paid)?: One materials science PhD
student and two materials science post-doctoral re-
searchers were involved in the data collection and
annotation. Annotator Guidelines were developed
in conjunction with a computer science PhD stu-
dent and a Linguistics post-doctoral researcher.

Over what timeframe was the data collected?:
The selection and annotation of this data took place
over the course of approximately 3 months.

Were any ethical review processes conducted
(e.g., by an institutional review board)?: Since the
dataset did not involve human subjects this wasn’t
conducted.

Did you collect the data from the individuals in
question directly, or obtain it via third parties or
other sources (e.g., websites)?: Most of the data is
acquired through a website either API or direct web
scraping. However, a smaller portion of the data is
delivered directly to our servers by the publishers
at their request.

Were the individuals in question notified about
the data collection?: Individuals weren’t notified
about the data annotation.

Did the individuals in question consent to the
collection and use of their data?: NA.

If consent was obtained, were the consenting
individuals provided with a mechanism to revoke
their consent in the future or for certain uses?: NA.

Has an analysis of the potential impact of the
dataset and its use on data subjects been con-
ducted?: No.

Was any preprocessing/cleaning/labeling of the
data done?: Each article is parsed into plaintext
format. We run each paper through a section classi-
fier to identify the synthesis sections of the article.
Each section is then manually examined to ensure
classification accuracy.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)?: Yes, all preprocessed
HTML or XML files for each article have been
saved.

Is the software used to preprocess/clean/label the
instances available?: Yes. Software will be linked
upon acceptance.
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B.4 Uses

Has the dataset been used for any tasks already?:
No.

Is there a repository that links to any or all papers
or systems that use the dataset?: NA.

What (other) tasks could the dataset be used for?:
The primary task we envision this as supervised
training data for is that of Named Entity Recog-
nition. Given our careful distinctions of generic
events into Operation, Nonrecipe-operation and
Meta this dataset might be of value in training
models for event detection in this domain. Fur-
ther, given that most synthesis procedures con-
tain a single Target material and our annotation
of Sample mentions which typically reference
Targets, this data can be used as an evaluation
set (Sample mentions are somewhat infrequent in
our dataset) for target mention co-reference.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses?: This would depend on the future uses. But
we expect it to serve as robust training and evalu-
ation data for NER for the domain the data repre-
sents and if the definitions we use match those of
the future use.

Are there tasks for which the dataset should not
be used?: None. If future users attempt to use
models trained on this data for a domain different
from that of this data they should make sure to
thoroughly analyze errors it makes before using
models trained on this data.

B.5 Description

Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, organi-
zation) on behalf of which the dataset was created?:
Yes.

How will the dataset will be distributed (e.g., tar-
ball on website, API, GitHub)?: Will be released
on GitHub.

When will the dataset be distributed?: On publi-
cation.

Will the dataset be distributed under a copyright
or other intel- lectual property (IP) license, and/or
under applicable terms ofuse (ToU)?: MIT License.

Have any third parties imposed IP-based or other
restrictions on the data associated with the in-
stances?: No.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual in-

stances?: None that we are aware of.

B.6 Maintenance

Who is supporting/hosting/maintaining the
dataset?: Anonymized.

How can the owner/curator/manager of the
dataset be contacted?: Anonymized.

Is there an erratum?: There is not one at the
moment. Our dataset release will be updated if
non-trivial annotation or other errors are found.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)?:
Given the ongoing nature of this project non-trivial
errors which can work within the current assump-
tions and annotation framework may be added. If
this isnt possible and if the needs of the project
change in future, newer datasets may be released.

C Annotation Guidelines

C.1 Operations Annotation

Operation: Actions, events, and verbs that de-
note distinct, individual process steps, actions
that we would want to extract during data min-
ing.

Nonrecipe Operation Actions, events, and
verbs that do NOT denote a distinct, individ-
ual process steps, actions that we would NOT
want to extract during data mining. These are
often, but not always, less descriptive, general
actions that apply to the recipe as a whole, not
to individual steps in a process.
TYPICAL, BUT NOT UNIVERSAL, PAT-
TERNS:
• “NONRECIPE OPERATION by OPERA-

TION”, for example, Prepared by mix-
ing, Obtained by filtration , Removed by
filtration. Concentrated by centrifuging
• “OPERATION to NONRECIPE OPERA-

TION”, for example, Heated to remove,
Filtered to obtain, Centrifuged to give
• “NONRECIPE OPERATION to OPERA-

TION”, for example, Allowed to cool
• “OPERATION was NONRECIPE OPERA-

TION”, for example, Heating was per-
formed, Sintering was carried out
• “OPERATION by OPERATION” and

“OPERATION to OPERATION” are possi-
ble if both words are actions we want to
extract during data mining, for example,
Mixed by ultrasonication Mixed by stir-
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ring Collected by filtration Stirred to mix
Mixed to disperse

C.2 Material Annotation

Materials A material entity is a physically
used, chemically defined object used in the
synthesis but not the end result of the syn-
thesis. Only the words required to define the
base material chemical composition should be
labelled. All other words describing chemi-
cal, structural, or morphological modification
to the base material will not be labelled as a
material.
• Chemical Formulas — H20,

C2H5OH, La(NO3)3*6H2O, NaNO3,
Al(NO3)3[?]9H2O
• Chemical Names — Ethanol, water,

pluronic F127, titanium (IV) isopropox-
ide, 1-cysteine
• Abbreviations — GO, CTAB, MTMS

Targets A target is a physically present, chemi-
cally defined material that is made within the
context of the paragraph in which the target is
found. Only the words required to define the
base material chemical composition should be
labelled. All other words describing chemi-
cal, structural, or morphological modification
to the base material will not be labelled as a
target. Abbreviations denoting authors’ dif-
ferentiation between samples should not be
labeled as targets. Writing defining the vari-
able parts of the composition, either numerical
or elemental, should not be included as part of
the target although numbers and units should
be labeled accordingly. An undefined mate-
rial should never be labeled as a target even if
filling that role linguistically.
• Chemical Formulas — ZnAl2O4,

TiO2, La3NiO7, LiMn0.98Zn0.02PO4,
Li1+xV3O8, B-Ni(OH)2
• Chemical Names — Manganese dioxide,

carbon, titania, manganese-cobalt oxy-
sulfide
• Abbreviations — CNTs, TKF
• Composites — TiO2/Cu2O,

Li1.95FeSiO4/C, Li2FeSiO4/MWCNTs,
Copper sulfide—reduced graphene
oxide, CuS—rGO, MoS2/polyaniline,
P2-Na2/3Ni1/4Mn3/4O2

Unspecified Materials

An unspecified material is a physically
present, chemically undefined material. It can
play the role of target linguistically. Typically,
they are found as the intermediate materials
in the synthesis. Pronouns can be intermedi-
ate materials. Phase information, ie solution,
mixture, product etc, are only labeled as un-
specified material if there is no other, more
chemically descriptive word describing the
object. Words that describe material families
are also labeled as unspecified materials. If
a chemically undefined material is not physi-
cally present it is labeled as non-recipe.
• Material Families — Metal oxides,

metallic nitrates, metal salts
• Words — Solution, mixture, product,

precursor, dispersion, reagents, sample,
powders
• Pronouns — It, they

Non-recipe Materials Non-recipe materi-
als are both chemically defined or undefined
materials that are not physically present in
the synthesis but appear linguistically. These
often describe ratios of previously mixed pre-
cursor elements or chemical species that are
removed at various points of the synthesis. El-
ements defined as part of the noun phrases of
targets are not considered non-recipe.

Samples Samples are abbreviations used for
multiple target materials denoted by the au-
thors for the purpose of distinguishing be-
tween different synthesized materials. Not
all abbreviated targets are samples.

C.3 Quantitative Mentions

Number
Numbers are either digits or the number words.
All numbers should be labeled unless they are
part of a chemical composition or if nothing
else is labeled in the sentence. Hyphens and
ratio characters (: and /) should not be la-
beled as numbers. Variables should never be
labeled as numbers. Numbers describing a
multi-dimensional amount/property should be
labeled as all the numbers plus the connec-
tions (2x2).

Units
Any unit of measurement for material
amounts, operation conditions, materials prop-
erties, and apparatus properties.

AMOUNT units describe absolute amounts, con-
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centrations, purities, ratios, and flow rates
• Mg, mL, M, % , mol %
• Ratio, weight ratio, mg/min, mL/min,

sccm
CONDITION units describe intangible condi-

tions under which operations are performed
• ◦C, K, Sec, RPM, mW, MPa, pH, times

(as for repeated operations)
PROPERTY units describe measured materi-

als properties
• mm, %, MPa, nF

Apparatus units describe values associated
with apparatuses
• mm, mL

C.4 Apparatus
Tangible equipment used to perform an operation
(synthesis apparatus) or to characterize a material’s
properties (characterization apparatus)

C.5 General Notes
Brackets and parentheses are only included when
necessary to capture the entire chemical informa-
tion Materials joined by joining token (/ or : or +)
are labeled individually (joining token excluded) if
the materials are not a single entity. Examples of
single entities are composite materials or solutions
that have multiple components specified.
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