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Abstract

While the field of style transfer (ST) has been
growing rapidly, it has been hampered by a
lack of standardized practices for automatic
evaluation. In this paper, we evaluate lead-
ing ST automatic metrics on the oft-researched
task of formality style transfer. Unlike previ-
ous evaluations, which focus solely on English,
we expand our focus to Brazilian-Portuguese,
French, and Italian, making this work the first
multilingual evaluation of metrics in ST. We
outline best practices for automatic evaluation
in (formality) style transfer and identify sev-
eral models that correlate well with human
judgments and are robust across languages.
‘We hope that this work will help accelerate de-
velopment in ST, where human evaluation is
often challenging to collect.

1 Introduction

Textual style transfer (ST) is defined as a generation
task where a text sequence is paraphrased while
controlling one aspect of its style (Jin et al., 2020).
For instance, the informal sentence in Italian “in
bocca al lupo!” (i.e., “good luck”) is rewritten to
the formal version “7i rivolgo un sincero augurio!”
(i.e., “I send you a sincere wish!”). Despite the
growing attention on ST in the NLP literature (Jin
et al., 2020), progress is hampered by a lack of stan-
dardized and reliable automatic evaluation metrics.
Standardizing the latter would allow for quicker de-
velopment of new methods and comparison to prior
art without relying on time and cost-intensive hu-
man evaluation that is currently employed by more
than 70% of ST papers (Briakou et al., 2021a).

ST is usually evaluated across three dimensions:
style transfer (i.e., has the style of the generated out-
put changed as intended?), meaning preservation
(i.e., are the semantics of the input preserved?), and
fluency (i.e., is the output well-formed?). As we
will see, a wide range of automatic evaluation met-
rics and models has been used to quantify each of

these dimensions. For example, prior work has em-
ployed as many as nine different automatic systems
to rate formality alone (see Table 1). However, it is
not clear how different automatic metrics compare
to each other and how well they agree with human
judgments. Furthermore, previous studies of auto-
matic evaluation have exclusively focused on the
English language (Yamshchikov et al., 2021; Pang,
2019; Pang and Gimpel, 2019; Tikhonov et al.,
2019; Mir et al., 2019); yet, ST requires evaluation
methods that generalize reliably beyond English.

We address these limitations by conducting a
controlled empirical comparison of commonly used
automatic evaluation metrics. Concretely, for all
three evaluation dimensions, we compile a list of
different automatic evaluation approaches used in
prior ST work and study how well they correlate
with human judgments. We choose to build on
available resources as collecting human judgments
across the evaluation dimensions is a costly pro-
cess that requires recruiting fluent speakers in each
language addressed in evaluation. While there are
many stylistic transformations in ST, we conduct
our study through the lens of formality style trans-
fer (FoST), which is one of the most popular style
dimensions considered by past ST work (Jin et al.,
2020; Briakou et al., 2021a) and for which refer-
ence outputs and human judgments are available
for four languages: English, Brazilian-Portuguese,
French, and Italian.

* We contribute a meta-evaluation study that is
not only the first large-scale comparison of
automatic metrics for ST but is also the first
work to investigate the robustness of these
metrics in multilingual settings.

* We show that automatic evaluation ap-
proaches based on a formality regression
model fine-tuned on XLM-R and the chrF met-
ric correlate well with human judgments for
style transfer and meaning preservation, re-
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spectively, and propose that the field adopts
their usage. These metrics are shown to work
well across languages, and not just in English.

* We show that framing style transfer evaluation
as a binary classification task is problematic
and propose that the field treats it as a regres-
sion task to better mirror human evaluation.

* QOur analysis code and meta-evaluation files
with system outputs are made public to facil-
itate further work in developing better auto-
matic metrics for ST: https://github.com/
Elbria/xformal-FoST-meta.

2 Background

2.1 Limitations of Automatic Evaluation

Recent work highlights the need for research to im-
prove evaluation practices for ST along multiple di-
rections. Not only does ST lack standardized evalu-
ation practices (Yamshchikov et al., 2021), but com-
monly used methods have major drawbacks which
hamper progress in this field. Pang (2019) and
Pang and Gimpel (2019) show that the most widely
adopted automatic metric, BLEU, can be gamed.
They observe that untransferred text achieves the
highest BLEU score for the task of sentiment trans-
fer, questioning complex models’ ability to surpass
this trivial baseline. Mir et al. (2019) discuss the in-
herent trade-off between ST evaluation aspects and
propose that models are evaluated at specific points
of their trade-off plots. Tikhonov et al. (2019) argue
that, despite their cost, human-written references
are needed for future experiments with style trans-
fer. They also show that comparing models without
reporting error margins can lead to incorrect con-
clusions as state-of-the-art models sometimes end
up within error margins from one another.

2.2 Structured Review of ST Evaluation

We systematically review automatic evaluation
practices in ST with formality as a case study. We
select FOoST for this work since it is one of the
most frequently studied styles (Jin et al., 2020) and
there is human annotated data including human ref-
erences available for these evaluations (Rao and
Tetreault, 2018; Briakou et al., 2021b). Tables 1
and 2 summarize evaluation details for all FOST
methods in papers from the ST survey by Jin et al.
(2020)." Most works employ automatic evaluation

"The complete list is hosted at: https://github.

com/fuzhenxin/Style-Transfer—-in-Text

for style (87%) and meaning preservation (83%).
Fluency is the least frequently evaluated dimension
(43%), while 74% of papers employ automatic met-
rics to assess the overall quality of system outputs
that captures all desirable aspects.

Across dimensions, papers also frequently rely
on human evaluation (55%, 58%, 60%, and 40%
for style, meaning, fluency, and overall). However,
human judgments and automatic metrics do not
always agree on the best-performing system. In
60% of evaluations, the top-ranked system is the
same according to human and automatic evalua-
tion (marked as v in Table 1), and their ranking
disagrees in 40% of evaluations (marked as X in
Table 1). When there is a disagreement, human
evaluation is trusted more and viewed as the stan-
dard. This highlights the need for a systematic
evaluation of automatic evaluation metrics.

Finally, almost all papers (91%) consider FOST
for English (EN), as summarized in Table 2. There
are only two exceptions: Korotkova et al. (2019)
study FoST for Latvian (LV) and Estonian (ET) in
addition to EN, while Briakou et al. (2021b) study
FoST for 3 Romance languages: Brazilian Por-
tuguese (BR-PT), French (FR), and Italian (IT). The
former provides system output samples as a means
of evaluation, and the latter employs human eval-
uations, highlighting the challenges of automatic
evaluation in multilingual settings.

Next, we review the automatic metrics used for
each dimension of evaluation in FOST papers. As
we will see, a wide range of approaches is used.
Yet, it remains unclear how they compare to each
other, what their respective strengths and weak-
nesses are, and how they might generalize to lan-
guages other than English.

2.3 Automatic Metrics for FoST

Formality Style transfer is often evaluated us-
ing model-based approaches. The most frequent
method consists of training a binary classifier on
human written formal vs. informal pairs. The
classifier is later used to predict the percentage of
generated outputs that match the desired attribute
per evaluated system—the system with the high-
est percentage is considered the best performing
with respect to style. Across methods, the corpus
used to train the classifier is the GYAFC parallel-
corpus (Rao and Tetreault, 2018) consisting of
105K parallel informal-formal human-generated
excerpts. This corpus is curated for FOST in EN,
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PAPER ID STYLE MEANING FLUENCY OVERALL
metric arch. metric arch. metric arch. metric

[1] REG Linearreg. X CLS CNN v REG Linear reg. X r-BLEU

[2] r-BLEU -

[3] CLS CNN - r-BLEU - GM(S,M) -

[4] CLS CNN X r-BLEU v GM(S,M)

[5] CLS CNN X r-BLEU v

[6] CLS LSTM - CLS BERT - r-BLEU -

[71 r-BLEU -

[8] CLS CNN -

[9] CLS LSTM - EMB-SIM - PPL LM (RNN) - F1(S,M) -

[10] CLS ROBERTa X EMB-SIM v PPL LM (ROBERTa) — J(S,M,F) v

[11] CLS CNN X r-BLEU X F1(S,M) -

[12] CLS GRU X CLS Linear reg. X r-BLEU X

[13] CLS BERT v r-BLEU v PPL LM (KenLM) X GM(S,M,F) -

[14] r-BLEU -

[15] CLS FASTTEXT V' r-BLEU v PPL LM (GPT) v

[16] CLS CNN - r-BLEU - PPL LM (LSTM) -

[17] CLS CNN v r-BLEU v

[18] CLS CNN v r-BLEU v GMIHM(S,M) Vv

[19] CLS GRU - CLS BERT - r-BLEU v

[20] CLS RoOBERTa - r-BLEU - PPL LM (GPT) - GMIHM(S,M) —

[21] CLS CNN - r-BLEU v PPL LM (GPT) v

[22] r-BLEU -

[23] REG BERT X s-BLEU v PPL LM (KenLM) X r-BLEU

Table 1: Details on automatic evaluation practices of prior work for FoST. For each dimension, v/ and X denote
whether the best ranking system based on the automatic evaluation agrees or disagrees with the one pointed by
the human evaluation; — denotes that no human evaluation is conducted. REG stands for regression, CLS for
classification, SIM for similarity, EMB for embedding-based, LM for language model, GM or HM for geometric or
harmonic mean, J for corpus-level product, and arch. for architecture. The mappings between each paper 1D

and its corresponding citation is included in Table 2.

PAPER 1D CITATION LANGUAGE
[1] Rao and Tetreault (2018) EN

[2] Kajiwara (2019) EN

[3] Lietal. (2019) EN

[4] Luo et al. (2019) EN

[5] Shang et al. (2019) EN

[6] Wang et al. (2019) EN

[71 Xu et al. (2019) EN

[81 Korotkova et al. (2019) EN, ET, LV
[91 Gong et al. (2019) EN

[10] Krishna et al. (2020) EN

[11] Sancheti et al. (2020) EN

[12] Wau et al. (2020) EN

[13] Yi et al. (2020) EN

[14] Zhang et al. (2020b) EN

[15] Goyal et al. (2020) EN

[16] He et al. (2019) EN

[17] Cheng et al. (2020) EN

[18] Zhou et al. (2020) EN

[19] Wang et al. (2020) EN

[20] Li et al. (2020) EN

[21] Liu et al. (2021) EN

[22] Lyu et al. (2021) EN

[23] Briakou et al. (2021b) BR-PT, FR, IT

Table 2: List of prior works on FoST along with lan-
guages (i.e., 1 so codes) addressed in each of them.

while similar resources are not available for other
languages. Different model architectures have been
used by prior work (e.g., CNN, LSTM, GRU, fine-
tuning on pre-trained language models such as
RoBERTa and BERT; Table 1). In most papers,
the resulting classifier is evaluated on the test side
of the GYAFC corpus, reporting accuracy scores

in the range of 80 — 90%. Despite the high ac-
curacy scores, the best ranking system under the
classifier is very often in disagreement with hu-
man evaluations (marked as X under the third sub-
column of style of Table 1). A few works train
regression-based models instead, using the training
data of Pavlick and Tetreault (2016) that are human-
annotated for formality on a 7-point scale—while,
again, this resource is only available for EN.

Meaning Preservation Evaluation of this dimen-
sion is performed using a wider spectrum of ap-
proaches, as presented in the third column of Ta-
ble 1. The most frequently used metric is reference-
BLEU (r-BLEU), which is based on the n-gram
precision of the system output compared to hu-
man rewrites of the desired formality. Other ap-
proaches include self-BLEU (s-BLEU), where the
system output is compared to its input, measuring
the semantic similarity between the system input
and its output, or regression models (e.g., CNN,
BERT) trained on data annotated for similarity-
based tasks, such as the Semantic Textual Simi-
larity task (STS) (Agirre et al., 2016).

Fluency Fluency is typically evaluated with
model-based approaches (see fourth column of Ta-
ble 1). Among those, the most frequent method is
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that of computing perplexity (PPL) under a lan-
guage model. The latter is either trained from
scratch on the same corpus used to train the FOST
models (i.e., GYAFC) using different underlying ar-
chitectures (e.g., KenLM, LSTM), or employ large
pre-trained language models (e.g., GPT). A few
other works train models on EN data annotated for
grammaticality (Heilman et al., 2014) or linguistic
acceptability (Warstadt et al., 2019) instead.

Overall Systems’ overall quality (see fifth col-
umn of Table 2) is mostly evaluated using r-BLEU
or by combining independently computed metrics
into a single score (e.g., geometric mean - GM(.),
harmonic mean - HM(.), F1(.)). Moreover, 6 out of
8 approaches that rely on combined scores do not
include fluency scores in their overall evaluation.

English Focus Since most of the current work
on FoST and ST is in EN, prior work relies heavily
on EN resources for designing automatic evalua-
tion methods. For instance, resources for training
stylistic classifiers or regression models are not
available for other languages. For the same reason,
it is unclear whether model-based approaches for
measuring meaning preservation and fluency can
be ported to multilingual settings. Furthermore,
reference-based evaluations (e.g., -BLEU) require
human rewrites that are only available for EN, BR-
PT, IT, and FR. Finally, even though perplexity does
not rely on annotated data, without standardizing
the data language models are trained on, we cannot
make meaningful cross-system comparisons.

2.4 Summary

Reviewing the literature shows the lack of stan-
dardized metrics for ST evaluation, which hampers
comparisons across papers, the lack of agreement
between human judgments and automatic metrics,
which hampers system development, and the lack
of portability to languages other than English which
severely limits the impact of the work. These issues
motivate the controlled multilingual evaluation of
evaluation metrics in our paper.

3 Evaluating Evaluation Metrics

‘We evaluate evaluation metrics (described in §3.2)
for multilingual FoST, in four languages for which
human evaluation judgments (described in §3.1) on
FOST system outputs are available.

3.1 Human Judgments

We use human judgments collected by prior work
of Rao and Tetreault (2018) for EN and Briakou
et al. (2021b) for BR-PT, FR, and IT. We include
details on their annotation frameworks, the quality
of human judges, and the evaluated systems below.

Human Annotations We briefly describe the
annotation frameworks employed by Rao and
Tetreault (2018) and Briakou et al. (2021b) to col-
lect human judgments for each evaluation aspect:
1. formality ratings are collected—for each sys-
tem output—on a 7-point discrete scale, ranging
from -3 to +3, as per Lahiri (2015) (Very informal,
Informal, Somewhat Informal, Neutral, Somewhat
Formal, Formal. Very Formal); 2. meaning preser-
vation judgments adopt the Semantic Textual Sim-
ilarity annotation scheme of Agirre et al. (2016),
where an informal input and its corresponding for-
mal system output are rated on a scale from 1 to
6 based on their similarity (Completely dissimi-
lar, Not equivalent but on same topic, Not equiv-
alent but share some details, Roughly equivalent,
Mostly equivalent, Completely equivalent); 3. flu-
ency judgments are collected for each system out-
put on a discrete scale of 1 to 5, as per Heilman et al.
(2014) (Other, Incomprehensible, Somewhat Com-
prehensible, Comprehensible, Perfect); 4. overall
judgments are collected following a relative rank-
ing approach: all system outputs are ranked in order
of their formality, taking into account both meaning
preservation and fluency.

Human Annotators Both studies recruited
workers from the Amazon Mechanical Turk plat-
form after employing quality control methods to
exclude poor quality workers (i.e., manual checks
for EN, and qualification tests for BR-PT, FR, and
IT). For all human evaluations and languages Bri-
akou et al. (2021b) report at least moderate inter-
annotator agreement.

Evaluated Systems The evaluated system out-
puts were sampled from 5 FoST models for each
language, spanning a range of simple baselines
to neural architectures (Rao and Tetreault, 2018;
Briakou et al., 2021b). We also include detailed
descriptions of them in Appendix C. For each eval-
uation dimension 500 outputs are evaluated for EN
and 100 outputs per system for BR-PT, FR, and IT.
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3.2 Evaluation Metrics

For the FoST evaluation aspects described below,
we cover a broad spectrum of approaches that range
from dedicated models for the tasks at hand to
more lightweight methods relying on unsupervised
approaches and automated metrics.

Formality We benchmark model-based ap-
proaches that fine-tune multilingual pre-trained lan-
guage models (i.e., XLM-R, mBERT), where the
task of formality detection is modeled either as a
binary classification task (i.e., formal vs. infor-
mal), or as a regression task that predicts different
formality levels on an ordinal scale.

Meaning Preservation We evaluate the BLEU
score (Papineni et al., 2002) of the system out-
put compared to the reference rewrite (r-BLEU)
since it is the dominant metric in prior work. Prior
reviews of meaning preservation metrics for para-
phrase and sentiment ST tasks in EN (Yamshchikov
et al., 2021) cover n-gram metrics and embedding-
based approaches. We consider three additional
metric classes to compare system outputs with in-
puts, as human annotators do:

1. n-gram based metrics include: s-BLEU (self-
BLEU that compares system outputs with their
inputs as opposed to references, i.e., -BLEU),
METEOR (Banerjee and Lavie, 2005) based on
the harmonic mean of unigram precision and
recall while accounting for synonym matches,
and chrF (Popovié, 2015) based on the char-
acter n-gram F-score;

2. embedding-based methods fall under the
category of unsupervised evaluation ap-
proaches that rely on either contextual word
representations extracted from pre-trained lan-
guage models or non-contextual pre-trained
word embeddings (e.g., word2vec (Mikolov
et al., 2013); Glove (Pennington et al., 2014)).
For the former, we use BERT-score (Zhang
et al., 2020a) which computes the similarity
between each output token and each reference
token based on BERT contextual embeddings.
For the latter, we experiment with two simi-
larity metrics: the first is the cosine distance
between the sentence-level feature represen-
tations of the compared texts extracted via
averaging their word embeddings; the second
is the Word Mover’s Distance (WMD) metric

of Kusner et al. (2015) that measures the dis-
similarity between two texts as the minimum
amount of distance that the embedded words
of one text need to “travel” to reach the word
embeddings of the other;

3. semantic textual similarity (STS) models
constitute supervised methods that we model
via fine-tuning multilingual pre-trained lan-
guage models (i.e., XLM-R, mBERT) to predict
a semantic similarity score for a pair of texts
on an ordinal scale.

Fluency We experiment with perplexity (PPL)
and likelihood (LL) scores based on probability
scores of language models trained from scratch
(e.g., KenLM (Heafield, 2011)), as well as pseudo-
likelihood scores (PSEUDO-LL) extracted from
pre-trained masked language models similarly to
Salazar et al. (2020), by masking sentence tokens
one by one.

4 Experiment Settings

Supervised Metrics For all supervised model-
based approaches, we experiment with fine-tuning
two multilingual pre-trained language models:
1. multilingual BERT, dubbed mBERT (Devlin
et al.,, 2019)—a transformer-based model pre-
trained with a masked language model objective
on the concatenation of monolingual Wikipedia
corpora from the 104 languages with the largest
Wikipedias. 2. XLM-R (Conneau et al., 2020)—a
transformer-based masked language model trained
on 100 languages using monolingual Common-
Crawl data. All models are based on the Hugging-
Face Transformers (Wolf et al., 2020)? library. We
fine-tune with the Adam optimizer (Kingma and
Ba, 2015), a batch size of 32, and a learning rate
of 5e—5 for 3 and 5 epochs for classification and
regression tasks, respectively. We perform a grid
search on held-out validation sets over learning rate
with values: 2e-3, 2e—4, 2e-5, and 5e—5 and over
number of epochs with values: 3, 5, and 8.

Cross-lingual Transfer For supervised model-
based methods that rely on the availability of
human-annotated instances to train dedicated mod-
els for specific tasks, we experiment with three
standard cross-lingual transfer approaches (e.g., Hu
et al. (2020)): 1. ZERO-SHOT trains a single model

https://github.com/huggingface/
transformers
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DIMENSION LANGUAGE CODE DATASET LINEAGE LABELS SIZE
Formalit EN GYAFC Rao and Tetreault (2018) informal vs. formal 105K

Y Formality ratings  Pavlick and Tetreault (2016) [ -3,-2,-1,0,1,2, 3 ] 5K
Meaning EN STS Cer et al. (2017) [1,2,3,4,5] 5K
Fluency EN, BR-PT, IT, FR  OpenSubtitles Lison and Tiedemann (2016) none 1M

Table 3: Details on training data used for model-based metrics across the three ST evaluation aspects.

on the EN training data and evaluates it on the origi-
nal test data for each language; 2. TRANSLATE-
TRAIN uses machine translation (MT) to obtain
training data in each language through translat-
ing the EN training set—and trains independent
systems for each language; 3. TRANSLATE-TEST
trains a single model on the EN training data and
evaluates it on the test data that are translated into
EN using MT.

Unsupervised Metrics For meaning preserva-
tion metrics, we use the open-sourced implemen-
tations of: Post (2018) for BLEU (Papineni et al.,
2002); Banerjee and Lavie (2005) for METEOR;
Popovié (2015) for chrr.>**> For BERT-score we
use the implementation of Zhang et al. (2020a);®
non-contextualized embeddings-based approaches
are based on fast Text pre-trained embeddings.’
For fluency metrics, we use the implementation
of Salazar et al. (2020) for computing pseudo-
likelihood.® PPL and LL scores are extracted from
a 5-gram KenL.M model (Heafield, 201 1.

Training Data Table 3 presents statistics on the
training data used for supervised and unsuper-
vised models across the 3 ST evaluation aspects.
For datasets that are only available for EN, we
use the already available machine translated re-
sources for STS '° and formality datasets (Briakou
et al., 2021b). The former employs the DeepL
service (no information of translation quality is
available) while the latter uses the AWS translation
service'! (with reported BLEU scores of 37.16 (BR-

*https://github.com/mjpost/sacrebleu
*https://www.cs.cmu.edu/~alavie/
METEOR/
5https://github.com/mfpopovic/chrF
*https://github.com/Tiiiger/bert_score
"https://fasttext.cc
8https://github.com/awslabs/
mlm-scoring
*https://github.com/kpu/kenlm
Yhttps://github.com/PhilipMay/
stsb-multi-mt
llhttps://aws.amazon.com/translate

PT), 33.79 (FR), and 32.67 (IT)).!* The KenLM
models for all the languages are trained on 1M ran-
domly sampled sentences from the OpenSubtitles
dataset (Lison and Tiedemann, 2016).

S Experimental Results

We analyze the results of comparing the outputs
from the several automatic metrics to their human-
generated counterparts for formality style transfer
(§5.1), meaning preservation (§5.2), fluency (§5.3)
via conducting segment-level analysis—and then,
turn into analyzing system-level rankings to evalu-
ation overall task success (§5.4).

5.1 Formality Transfer Metrics

The field is divided on the best way to evaluate the
style dimension — formality in our case. Practition-
ers use either a binary approach (is the new sen-
tence formal or informal?) or a regression approach
(how formal is the new sentence?). We discuss the
first approach and its limitations in § 5.1.1, before
moving to regression in § 5.1.2.

5.1.1 Evaluating Binary Classifiers

As discussed in §2, the vast majority of FOST works
evaluate style transfer based on the accuracy of a
binary classifier trained to predict whether human-
written segments are formal or informal. Yet, as
Table 1 indicates, this approach fails to identify
the best system in this dimension 59% of the time.
To better understand this issue, we evaluate these
classifiers on human-written texts versus ST system
outputs.

Human Written Texts Table 4 presents F1
scores when testing the binary formality classi-
fiers on the task they are trained on: predicting
whether human-written sentences from GYAFC and
XFORMAL are formal or informal. First, the last
column (i.e., §(XLM-R, mBERT)) shows that XLM-
R is a better model than mBERT for this task, across

ZBLEU scores were computed on 5,000 randomly sampled
data from OpenSubtitles.
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METHOD MBERT XLM-R 0(XLM-R, mBERT)
EN BR-PT FR IT EN BR-PT FR IT EN BR-PT FR IT
ZERO-SHOT 90 &7 84 88 90 90 86 89 0 +3 +2 +1
TRANSLATE-TRAIN 85 (-2) 82(-2) 83 (-5) 87 (-3) 84(-2) 84 (-5) +2 42 +1
TRANSLATE-TEST 82 (-5) T3 (-11) 79 (-11) 82 (-8) T74(-12) 80 (-9 0 +2 +1

Table 4: F1 scores of binary formality classifiers under different cross-lingual transfer settings. Numbers in paren-
theses indicate performance drops over ZERO-SHOT. ZERO-SHOT Yyields the highest scores across languages and
pre-trained language models. XLM-R yields improvements over mBERT across most setting (§(XLM-R, mBERT)).
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Figure 1: Number of formal vs. informal predictions of binary classifiers for each formality bin. Binary classifiers
are biased towards outputing formal predictions for BR-PT, FR, and IT, while their performance degrades when
moving closer to more neutral formality levels.

METHOD mMBERT XLM-R 0(XLM-R, mBERT)
EN BR-PT FR IT EN BR-PT FR IT EN BR-PT FR IT
ZERO-SHOT 66 64 51 51 67 72 59 61 +1 +8 +8 +10
TRANSLATE-TRAIN 61 (-3) 48 (-3) 49 (-2 63 (-9) 52 (-7) 55 (-6) +2 +4 +6
TRANSLATE-TEST 60 (-4) 39 (-12) 45 (-10) 61 (-11) 37 (-15) 51 (-10) +1 -2 +6

Table 5: Spearman’s p correlation (%) of formality regression models. Numbers in parentheses indicate perfor-
mance drops over ZERO-SHOT. ZERO-SHOT yields the highest scores across languages and pre-trained language

models. XLM-R yields improvements over mBERT across most settings (§(XLM-R, mBERT)).

languages, with the largest improvements in the
ZERO-SHOT setting where XLM-R beats mBERT by
+3, +2, +1 for BR-PT, FR, and IT respectively.

Second, ZERO-SHOT is surprisingly the best
strategy to port EN models to other languages.
TRANSLATE-TRAIN and TRANSLATE-TEST hurt
F1 by 3 and 9 points on average compared to
ZERO-SHOT, despite exploiting more resources in
the form of machine translation systems and their
training data. However, transfer accuracy is likely
affected by regular translation errors (as suggested
by larger F1 drops for languages with lower MT
BLEU scores) and by formality-specific errors. Ma-
chine translation has been found to produce out-
puts that are more formal than its inputs (Briakou
et al., 2021b), which yields noisy training signals
for TRANSLATE-TRAIN and alters the formality of
test samples for TRANSLATE-TEST.

System Outputs We now evaluate the best per-
forming binary classifier (i.e., XLM-R in ZERO-

SHOT setting) on real system outputs—a setup in
line with automatic evaluation frameworks. Fig-
ure 1 presents a breakdown of the number of formal
vs. informal predictions of the classifiers binned by
human-rated formality levels. Across languages,
the performance of the classifier deteriorates as we
move away from extreme formality ratings (i.e.,
very informal (-3) and very formal (+3)). This
lack of sensitivity to different formality levels is
problematic since system outputs across languages
are concentrated around neutral formality values.
In addition, when testing on BR-PT, FR, and IT
(ZERO-SHOT settings), the classifier is more biased
towards the formal class, which leads one to ques-
tion its ability to correctly evaluate more formal
outputs in multilingual settings. Taken together,
these results suggest that validating the classifiers
against human rewrites rather than system outputs
is unrealistic and potentially misleading.
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METRIC EN IT BR-PT FR
r-BLEU 0.31  0.00 0.05 0.12
S-BLEU 0.48 0.59 0.67 0.66

S METEOR 054 058 0.64  0.60

= chrr 0.59 0.67 0.70 0.75

v

Y

§ WMD 0.51 0.52 0.57  0.55

= Cosine 0.49 0.50 0.54 0.52
BERT-score 0.59 0.62 0.65 0.68

TRANSLATE-TRAIN (STS)

m-BERT 0.53 0.58 0.51 0.63

"§ XLM-R 0.55 0.64 0.57  0.60

§ ZERO-SHOT (STS)

2 m-BERT - 061 060 0.66
XLM-R - 0.67 0.68 0.65

Table 6: Spearman’s p correlation of meaning preserva-
tion metrics with human judgments.

5.1.2 Regression Models

Table 5 presents Spearman’s p correlation of regres-
sion models’ predictions with human judgments.
Again, XLM-R with ZERO-SHOT transfer yields
the highest correlation across languages. More
specifically, the trends across different transfer ap-
proaches and different pre-trained language mod-
els are similar to the ones observed on evaluation
of binary classifiers: XLM-R outperforms mBERT
for almost all settings, while ZERO-SHOT is the
most successful transfer approach, followed by
TRANSLATE-TRAIN, with TRANSLATE-TEST yield-
ing the lowest correlations across languages. In-
terestingly, regression models highlight the differ-
ences between the generalization abilities of XLM-
R and mBERT more clearly than the previous anal-
ysis on binary predictions: ZERO-SHOT transfer
on XLM-R yields 8%, 8%, and 10% higher corre-
lations than mBERT for BR-PT, FR, and IT—while
both models yield similar correlations for EN.

5.2 Meaning Preservation Metrics

Table 6 presents Spearman’s p correlation of mean-
ing preservation metrics with human judgments.
chrF consistently yields the highest correlations
across languages—this result is in line with prior
observations on evaluating meaning preservation
metrics for EN ST tasks (Yamshchikov et al., 2021)
and is now confirmed in a multilingual setting.
This trend might be explained by chrF’s ability to
match spelling errors within words via character n-
grams. XLM-R trained on STS with zero-shot trans-

METHOD EN IT PT FR
KenLM (LL) 0.33 027 043 0.39
KenLM (PPL) 0.40 0.35 0.45 0.41
mBERT (PSEUDO-LL) 0.42 0.28 0.43 0.41
XLM-R (PSEUDO-LL) 0.50 0.46 0.55 0.61

Table 7: Spearman’s p correlation of fluency metrics
with human judgments.

fer is a close second to chrF, consistent with this
model’s top-ranking behavior as a formality trans-
fer metric. However, chrF outperforms the remain-
ing more complex and expensive metrics, includ-
ing BERT-score and mBERT models. In contrast
to Yamshchikov et al. (2021), embedding-based
methods (i.e., cosine, WMD) show no advantage
over n-gram metrics, perhaps due to differences
in word embedding quality across languages. Fi-
nally, it should be noted that r-BLEU is the worst
performing metric across languages, and its corre-
lation with human scores is particularly poor for
languages other than English. This is remarkable
because it has been used in 75% of automatic eval-
uations for FOST meaning preservation evaluation
(as seen in Table 1). We, therefore, recommend
discontinuing its use.

5.3 Fluency Metrics

Table 7 presents Spearman’s p correlation of
various fluency metrics with human judgments.
Pseudo-likelihood (PSEUDO-LL) scores obtained
from XLM-R correlate with human fluency rat-
ings best across languages. Their correlations are
strong across languages, while other methods only
yield weak (i.e., KenLM, mBERT) to moderate
correlations (i.e, KenLM-PPL) for IT. We, there-
fore, recommend evaluating fluency using Pseudo-
likelihood scores derived from XLM-R to help stan-
dardize fluency evaluation across languages.

5.4 System-level Rankings

Finally, we turn to predict the overall ranking of
systems by focusing on how many correct pairwise
system comparisons each metric gets correct. For
each language, there are 5 systems, which means
there are 10 pairwise comparisons, for a total of
40 given the 4 languages. We analyze corpus-level
r-BLEU, commonly used for this dimension, along
with leading metrics from the other dimensions:
XLM-R formality regression models, chrF and XLM-
R pseudo-likelihood. r-BLEU gets 30 out of 40
comparisons correct while the other metrics get
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25, 22, and 19 respectively. This indicates that
r-BLEU correlates with human judgments better
at the corpus-level than at the sentence-level, as
in machine translation evaluation (Mathur et al.,
2020). We caution that these results are not defini-
tive but rather suggestive of the best performing
metric, given the ideal evaluation would be a larger
number of systems with which to perform a rank
correlation. The complete analysis for each lan-
guage is in Appendix B.

6 Conclusions

Automatic (and human) evaluation processes are
well-known problems for the field of Natural Lan-
guage Generation (Howcroft et al., 2020; Clinciu
et al., 2021) and the burgeoning subfield of ST is
not immune. ST, in particular, has suffered from
a lack of standardization of automatic metrics, a
lack of agreement between human judgments and
automatics metrics, as well as a blindspot to de-
veloping metrics for languages other than English.
We address these issues by conducting the first
controlled multilingual evaluation for leading ST
metrics with a focus on formality, covering metrics
for 3 evaluation dimensions and overall ranking for
4 languages. Given our findings, we recommend
the formality style transfer community adopt the
following best practices:

1. Formality XLM-R formality regression mod-
els in the ZERO-SHOT cross-lingual transfer set-
ting yields the clear best metrics across all four
languages as it correlates very well with human
judgments. However, the commonly used binary
classifiers do not generalize across languages (due
to misleadingly over-predicting formal labels). We
propose that the field use regression models instead
since they are designed to capture a wide spectrum
of formality rates.

2. Meaning Preservation We recommend us-
ing chrF as it exhibits strong correlations with hu-
man judgments for all four languages. We caution
against using BLEU for this dimension, despite its
overwhelming use in prior work as both its refer-
ence and self variants do not correlate as strongly
as other more recent metrics.

3. Fluency XLM-R is again the best metric (in
particular for French). However, it does not cor-
relate well with human judgments as compared to
the other two dimensions.

4. System-level Ranking chrF and XLM-R are
the best metrics using a pairwise comparison eval-
uation. However, an ideal evaluation would be to
have a large number of systems with which to draw
reliable correlations.

5. Cross-lingual Transfer Our results support
using ZERO-SHOT transfer instead of machine
translation to port metrics from English to other
languages for formality transfer tasks.

We view this work as a strong point of depar-
ture for future investigations of ST evaluation. Our
work first calls for exploring how these evaluation
metrics generalize to other styles and languages.
Across the different ways of defining style evalu-
ation (either automatic or human), prior work has
mostly focused on the three main dimensions cov-
ered in our study. As a result, although our meta-
evaluation on ST metrics focuses on formality as
a case study, it can inform the evaluation of other
style definitions (e.g., politeness, sentiment, gender,
etc.). However, more empirical evidence is needed
to test the applicability of the best performing met-
rics for evaluating style transfer beyond formality.
Our work suggests that the top metrics based on
XLM-R and chrF are robust across 4 Romance lan-
guages; yet, our conclusions and recommendations
are currently limited to this set of languages. We
hope that future work in multilingual style trans-
fer will allow for testing their generalization to
a broader spectrum of languages and style defini-
tions. Furthermore, our study highlights that more
research is needed on automatically ranking sys-
tems. For example, one could build a metric that
combines metrics’ outputs for the three dimensions,
or one could develop a singular metric. In line with
Briakou et al. (2021a), our study also calls for re-
leasing more human evaluations and more system
outputs to enable robust evaluation. Finally, there
is still room for improvement in assessing how flu-
ent a rewrite is. Our study provides a framework to
address these questions systematically and calls for
ST papers to standardize and release data to support
larger-scale evaluations.
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A Cross-metric Correlation Analysis

Correlations across meaning preservation met-
rics Figure 3 presents a cross-metric correlation-
based analysis of the different approaches for mea-
suring meaning preservation. We observe consis-
tent trends across languages: methods that are sim-
ilar in nature correlate well with each other. Con-
cretely, across settings, n-gram based methods (i.e.,
BLEU, METEOR, and chrF) yield 0.8 — 0.9 correla-
tion scores. The latter also holds when looking at
correlations within the group of embedding-based
methods (cosine and WMD) and and group of STS
approaches for EN, FR, and IT, while for BR-PT we
observe that the correlation between XLM-R and
MBERT based approaches is smaller (0.7 vs. 0.8 for
other languages). Finally, n-gram approaches cor-
relate better with STS methods (with correlations in
the range of 0.7 — 0.8) across languages, while the
lowest correlations (0.5—0.6) are observed between
embedding-based methods (i.e., cosine, WMD) and
each of the rest metrics.

Correlations within and across formality-
fluency metrics Figure 4 presents results of
cross-metric correlations for the studied approaches
that capture formality transfer and fluency. For
formality, each of the translate-based approaches
(i.e., TRANSLATE-TRAIN and TRANSLATE-TEST)
yields high correlations (0.8 — 0.9) between mod-
els that fine-tune XLM-R vs. mBERT, while their
correlations decrease (0.7) for IT and BR-PT in
the zero-shot setting. Finally, pseudo-perplexity
metrics extracted from XLM-R—that consists the
best correlated metric with human judgments for
fluency—ryield positive correlations with all for-
mality metrics.

B System-level Analysis

Table 8 presents the number of correct system-
level pair-wise comparisons of automatic metrics
based on human judgments. For STS, chrF, F.REG*,
F.CLASS*, and PSEUDO-LKL*, system-level scores
are extracted via averaging sentence-level scores.
For s-BLEU and r-BLEU the system scores are ex-
tracted at the corpus-level. The total number of pair-
wise comparisons for each language is 10 (given
access to 5 systems). Among the meaning preser-
vation metrics (i.e., STS, s-BLEU, and chrF), chrF
yields the highest number of correct comparisons
(i.e., 37 out of 40 for all languages). The formality
regression models (i.e., F.REG*) result in correct

rankings more frequently than the formality classi-
fiers (i.e., F.CLASS*) yielding 35 out of 40 correct
comparisons. Reference-BLEU (i.e., -BLEU) is
compared with overall ranking judemnts. It ranks 8
out of 10 systems correctly for EN, FR, and BR-PT
and only 6 for IT. Finally, perplexity (i.e., PPL) re-
sults in the fewest correct rankings at system-level
(i.e., 22 out of 40), despite correlating well with
human judgments at the segment-level.
Additionally, in Figure 2 we visualize the differ-
ences between relative rankings induced by human
judgments and the best segment-level correlated
metrics for each dimension, averaged per system.

C Evaluated Systems Details

For each of BR-PT, IT, and FR, outputs are sampled
from:

1. Rule-based systems consisting of hand-
crafted transformations (e.g., fixing casing,
normalizing punctuation, expanding contrac-
tions, etc.);

2. Round-trip translation models that pivot to EN
and backtranslate to the original language;

3. Bi-directional neural machine translation (MT)
models that employ side constraints to per-
form style transfer for both directions of for-
mality (i.e., informal<>formal)—trained on
(machine) translated informal-formal pairs of
an English parallel corpus (i.e., GYAFC);

4. Bi-directional NMT models that augment the
training data of 3. via backtranslation of infor-
mal sentences;

5. A multi-task variant of 3. that augments
the training data with parallel-sentences from
bilingual resources (i.e., OpenSubtitles) and
learns to translate jointly between and across
languages.

For EN, the outputs were sampled from:

1. A rule-based system of similar transforma-
tions to ones for BR-PT, FR, and IT;

2. A phrase-based machine translation model
trained on informal-formal pairs of GYAFC;

3. An NMT model trained on GYAFC to perform
style transfer uni-directionaly;
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MEANING FORMALITY FLUENCY OVERALL
Language STS s-BLEU r1-BLEU chrF F.REG* F.CLASS* PPL 1-BLEU F.REG* chrF pseudo-LL
EN 6 7 8 7 9 9 7 8 6 6 3
BR-PT 10 9 7 9 7 7 5 8 8 4 5
FR 9 7 10 10 10 9 5 8 6 3 7
IT 10 10 8 10 9 8 5 6 5 9 4
ALL 35 33 35 36 35 33 22 30 25 22 19

Table 8: Number of correct system level pair-wise comparisons between 5 systems for each language.

STS s-BLEU

chrF

r-BLEU

*FREG *F.CLASS. *PPL

4. A variant of 3. that incorporates a copy-
enriched mechanism that enables direct copy-
ing of words from input;

5. A variant of 4. trained on additional back-
translated data of target style sentences using
2.

In general, neural models performed best for all
languages according to overall human judgments,
while the simpler baselines perform closer to the
more advanced neural models for BR-PT, FR, and
IT. For each evaluation dimension 500 outputs are
evaluated for EN and 100 outputs per system for
BR-PT, FR, and IT.

D Meaning Preservation Metrics
(reference-based)

Table 9 presents supplemental results on meaning
preservation metrics for reference-based settings.

METRIC EN IT PT FR
r-BLEU 0.306  0.004 0.047 0.122
METEOR 0.279 -0.005 0.061 0.124
chrF 0.319 0.065 0.044 0.174
WMD 0.316  0.039 0.098 0.198
Cosine 0.218 0.027 0.048 0.161
BERT-score 0.359 -0.023 0.054 0.112
MBERT (TRANSLATE-TRAIN) 0.369 0.077 0.167 0.165
MBERT (ZERO-SHOT) - 0.124 0.197 0.179
XLM-R (TRANSLATE-TRAIN) 0.385 0.183 0.136 0.259
XLM-R (ZERO-SHOT) - 0179 0.153 0.258

Table 9: Spearman’s p correlation of meaning preserva-
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Figure 2: Difference in relative ranking between human
judgments and automatic metrics across systems (i.e,
represented by different markers) for different evalua-
tion dimensions. STS, s-BLEU and chRF are compared
with meaning rankings, r-BLEU (reference-BLEU) with
overall, XLM-R classifiers (¥*F.CLASS) and regression
(*F.REF) models with formality, and XLM-R pseudo-
perplexity (*PPL) with fluency.

tion metrics for reference-based meaning.
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Figure 3: Cross-metric correlations for meaning preservation automatic evaluation metrics. Mode-based metrics
marked with * use XLM-R while markers ~ use mBERT as the base pre-trained language model.
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Figure 4: Cross-metric correlations for fluency and formality automatic evaluation metrics. Mode-based metrics
marked with * use XLM-R while markers ~ use mBERT as the base pre-trained language model. F.REG refers to

formality regression models, PPL to perplexity, and LL to likelihood.
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